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Abstract— Acquiring a motor ability is a complex process,
whether for an athlete working toward peak performance or
a post-stroke patient re-learning to control a limb. Curriculum
selection is the process of choosing a sequence of sub-tasks,
their training order, and their frequency in order to achieve
a complex target task. Currently, in motor skill training, no
systematic method exists for selecting curricula, and can result
in long, costly and often unsuccessful training. At the same
time, recent advances in artificial intelligence have introduced
curriculum learning using Reinforcement Learning, which
has enabled some impressive speed-ups in artificial agents’
abilities to learn complex tasks. This paper delineates how
the computational approaches used in curriculum learning
for reinforcement learning can be modified, to represent the
learning process of people in motor tasks. This paper also
presents some preliminary results on a dynamic motor game
designed to evaluate the process of motor task learning and the
efficacy of different curricula.

I. INTRODUCTION

How best to train humans to perform new motor tasks is
a challenging and open problem across diverse fields such
as neuroscience, rehabilitation, medicine, and athletics [2],
[11]. However, currently in human motor skill training, no
systematic method exists for creating, organizing, and testing
training programs (or curricula), and can result in long,
costly, and often unsuccessful training. Curricula across these
domains are developed largely based on tradition and intu-
ition, centered around the ill-defined notion of ‘practice’ [13].
While there are rehabilitative robots that are designed to
help people learn or regain skills, a physical therapist is
still required to individually prescribe a curriculum for using
the robot. At the same time, recent advances in AI enabled
efficient curriculum learning using Reinforcement Learning
(RL), which has enabled some impressive speed-ups in
artificial agents’ learning abilities [18]. Specifically, RL is
a paradigm for learning sequential decision making tasks
with delayed rewards that has been employed for training
autonomous agents to perform sequential tasks [27]. Within
RL, curriculum learning algorithms have been developed
where the goal is to design a sequence of source tasks for
an agent to train (practice) on, such that final performance
or learning speed is improved compared to learning on the
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target task directly. This paper leverages the formulation of
curriculum learning as an RL problem to enable automatic
generation of such curricula for people.

The first contribution of this paper is a computational
model for learning a motor task similar to a curriculum
learning problem in RL. With the ability to formalize a
motor learning task as an RL problem, many potential RL
algorithms can become available to assist in learning a
curriculum for the defined target task. The formulation in-
volves defining the curriculum learning problem as a Markov
Decision Process (MDP), where the actor is the teacher
that needs to learn the best training policy for a student.
The second contribution of this paper is a compilation of
human skill acquisition and motor learning concepts, such
as challenge point [12] and flow channel [34] into formal
definitions within a MDP. The third contribution is a motor
game specifically designed to evaluate learning performance
using our new framework. We represent learning processes in
this novel task as a MDP, and show preliminary results from
a pilot study, where we investigate the potential applicability
and the benefit of a curriculum for the newly introduced
motor task.

II. RELATED WORK

Various works have addressed the problem of modulating a
sequence of tasks to improve learning. All of them share the
common premise that there is value not only to the content of
tasks given to the learner, but also in the order in which these
motor tasks are introduced, so that the task is challenging
enough to learn from, but not too challenging that the learner
will not be able to learn from it. This section is ordered
as follows: We start by presenting different approaches for
choosing tasks and their difficulty, then we discuss works
that identify the leading concepts behind the notion of a
“good next task.” We then detail the recent advancements
in curriculum learning for RL agents. Finally, we describe
how these different components can be combined together,
and how they were combined in previous work.

A. Task Choices in Motor and Cognitive Tasks

In rehabilitation, a curriculum usually amounts to se-
quentially selecting the difficulty (or challenge) of the task
presented to the patient. This curriculum can be modified in
various ways, including the amount of assistance provided by
a robot during individual therapy, and the method of selecting
it is often based on the idea of a “challenge point”. [3], [15],
[33]. Another approach to modulate challenge is to use a
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social assistive robot that engages individuals to choose chal-
lenging tasks [9]. In all of these approaches, the challenge
point was located manually by either the clinicians or the
patients. Similar principles apply in cognitive tasks, though
these have received a slightly more elaborate treatment, and
many ways to automate the challenge level of tasks have
been proposed. Baker et al. (2008) evaluate the knowledge
level of students as a latent variable and learn to predict
the next task to give to a student given past performances
[8]. Segal et al. (2014) use collaborative filtering to match
a student with a next task given past experiences of other
students with similar performance level [22]. Other works did
not focus on task sequencing, but rather on when to provide
advice to students when they seem to be stuck [5], [28]. The
recurring idea behind all of these works is that the learner
should always be challenged enough to avoid boredom and
to promote learning, but not too much to cause frustration.
This idea has many different names in the literature –
challenge point, flow channel, difficulty adjustment, zone
of proximal development, and more [4], [12], [31], [34].
However, to the best of our knowledge, this idea was never
explicitly formalized into a computational model for general
motor learning tasks. Gentile [11] presented a taxonomy to
categorize difficulty of different motor tasks, and proposed
that this can be used, in a similar manner to the Challenge
Point Theory, to identify a suitable progression of tasks.
This taxonomy asserts that the amount of information the
learner gets from the task depends on a combination of a
learner’s level and the task environment. As the learner’s skill
level cannot be controlled, reaching this optimal challenge
point means that the task of the teacher is to find the
optimal task environment given the learner’s skill level. This
work did not formalize or quantify the learner’s skill level
or the environment difficulty. In educational research, the
Zone of Proximal Development [31] is one of the ideas
behind educational scaffolding [30]: to present a student
with examples and tests that are challenging enough to
promote development, but are not so hard that the students
are discouraged.

B. Curriculum Learning in Reinforcement Learning

Several recent works have been proposed to learn a cur-
riculum for reinforcement learning agents. Teacher-Student
Curriculum Learning (TSCL) is a framework for automatic
curriculum learning, where the student tries to learn a com-
plex task, and the teacher automatically chooses subtasks
from a given set for the student to train on [16]. This
work was used to train a Long-Short Term Memory (LSTM)
network, and RL agents for playing Minecraft. Narvekar et
al. (2017) formulated the design of a curriculum as a Markov
Decision Process, which directly models the accumulation of
knowledge as an agent interacts with tasks, and proposed a
method that approximates an execution of an optimal policy
in this MDP to produce an agent-specific curriculum [19].
A later work demonstrated how several different representa-
tions can be used to learn a curriculum policy for multiple
agents [20]. All of these works were used to train artificial

agents on computational tasks. In this work, we leverage a
formalization similar to the ones presented in these works to
train a human agent on motor task learning.

C. Motor Task Tuition as a Reinforcement Learning Problem

In this paper, we formalize the curriculum learning prob-
lem using an RL formulation that models how the various
tasks that can be presented to the learner impact learning.
Following this formulation, in order to maximize learning,
the task of the teacher becomes choosing which of these
tasks to present next such that it will be in the challenge
point of the learner. The most relevant work to ours may
be a formulation of a motor task as a multi-armed bandit
problem, which is a simple version of an RL problem, where
there is only one state. In this work, the decision on the
next task to choose for the learner only depends on the
current performance of the learner, rather than on some future
goal [23]. As we are interested in constructing a complete
curriculum in advance so that the learning process towards
some target motor task is efficient, this work is less suitable.
Other related work has applied optimization principles to
derive curricula that attempt to maximize long-term retention
of learning when practicing multiple different tasks [14].

III. BACKGROUND

In this section, we provide background on reinforcement
learning and curriculum selection, and discuss how these
ideas can be used to improve human training for motor tasks.

A. Reinforcement Learning (RL)

Reinforcement learning is a paradigm for learning sequen-
tial decision making tasks for an artificial agent acting in an
environment. It models a task as a Markov Decision Process
(MDP) [26]. A MDP M is a 4-tuple (S,A, p,r), where S is
the set of states in the environment, A is the set of actions
the agent can take, p(s′|s,a) is a transition function that
gives the probability of transitioning to state s′ after taking
action a in state s, and r(s,a,s′) is a reward function that
gives the immediate reward for taking action a in state s and
transitioning to state s′.

At each time step t, the agent observes its state and
chooses an action according to its policy πθ (a|s), which we
assume is parameterized by θ . The goal of the agent is to
learn an optimal policy π∗, which maximizes the expected
return (cumulative sum of rewards) until the episode ends.
The optimal policy can be learned through value function
methods (such as Q-learning [32]) or policy search methods
(such as deterministic policy gradients [25]).

B. Curriculum Learning in RL

In order to learn which actions to take, an RL agent must
explore the environment and accumulate rewards. In some
tasks, learning can be difficult due to sparse rewards or the
presence of adversarial agents or elements. One way to ac-
celerate learning in these settings is to first train the agent on
an easier source task. This task might require fewer actions
to reach the goal, or have fewer adversaries or elements in
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the environment that the agent needs to learn about. The
knowledge acquired in this simpler environment can then
be transferred to improve learning on the challenging target
task. Transfer learning [29] is an area of research dedicated
to how an agent can transfer knowledge between tasks.

Instead of just training on one source task, an agent can
train on a sequence of source tasks, where each subsequent
task becomes progressively harder and builds upon skills
learned in previous tasks. This choice of a sequence of
tasks is called a curriculum. Curriculum learning [18] is
a methodology to optimize the order in which tasks are
presented to the agent, so as to improve learning speed or
performance on a final target task.

In this paper, we draw inspiration from a model for
curriculum design [20] that poses curriculum generation as
an interaction between two MDPs. The first is an MDP for
the student agent, which is the recipient of the curriculum.
This agent interacts in the standard way with a given task.
The second is a higher level curriculum MDP (CMDP) for
the teacher, whose goal is to select tasks for the student to
train on. Formally, a CMDP can be defined as follows:

Definition 1: A curriculum MDP (CMDP) MC is a tuple
(SC,AC, pC,rC) where:

State Space The set of states SC represent the state of
the student agent’s knowledge or learning progress. For RL
agents, the student agent’s knowledge is represented by its
policy π . Terminal states are those where the student’s policy
is able to surpass a specified performance threshold on the
target task.

Action Space The set of actions AC are the possible source
tasks the student can train on.

Transition Function The transition function
pC(sC,aC,s′C) gives the probability that s′C is the student
agent’s policy after training on task aC and starting with
policy sC.

Reward Function The reward function rC(sC,aC,s′C)
gives a scalar reward for the transition where the student
starts with policy sC, trains on aC, and updates its policy
to s′C. We define a reward function to maximize asymptotic
performance by rewarding transitions into terminal states by
the final score achieved on the target task.

In this model of curriculum learning, the goal is to
learn a policy over a CMDP, which specifies which task
the student should train on next given it’s current state of
knowledge, so as to maximize performance on the target task.
This model was inspired by human learning, and designed
to improve training for autonomous reinforcement learning
agents. In this work, we take the complementary view and
aim to train human agents by adapting curriculum learning
methods designed for RL agents to the human setting. In the
curriculum MDP model, this effect is achieved by replacing
the RL student agent with a human learner.

IV. CURRICULUM SELECTION FOR HUMAN
MOTOR LEARNING

Many frameworks and heuristics have been proposed to
promote human motor and cognitive learning via task selec-

(a) Challenge point framework (b) Flow channel

Fig. 1: Theories on human skill and performance in literature:
Fig. 1a depicts the relation between learning and perfor-
mance curves according to the challenge point theory [12];
Fig. 1b depicts the flow channel concept [34].

tion. The two most popular are the Challenge Point Frame-
work [12] and the Flow Channel [7]. The challenge point
framework (Figure 1a) suggests that the effect of practice
conditions in learning a new task depends on two conditions:
the skill level of the subject, and the task difficulty. The
authors further hypothesize that for any subject learning
a given task, an optimal challenge point exists where the
potential learning benefit is maximized:

Proposition 1: For any given skill level (state) of the
learner, there exists a task difficulty level (source task) at
which the learning can be maximized.

The Flow Channel theory (Fig. 1b), which is commonly
used in game design, suggests that in order to maintain the
game saliency towards the player and maximize engagement,
the game must remain in a ‘flow channel’ by optimizing the
difficultly level based on player’s skill level:

Proposition 2: The choice of the optimal source task pro-
gresses from lower to higher difficulty level as the learner’s
skill level increases.

Using these two theories as motivation, we define a CMDP
where the student is no longer an RL agent with its own
MDP, but a human. However, the adaptation is not straight-
forward because of the challenges involved in formalizing
the CMDP components for the human learner. For example,
in RL agents, the state is usually defined as the agent’s policy
- which represents the agent’s state of knowledge. With the
agent’s policy available, one can predict the agent’s behavior
in each possible state. However, for humans, there is no
perfect way to fully capture the learner’s state of knowledge.
Similar issues arise when we try to define the transition
dynamics and reward function for the CMDP for humans.
As a first step, we propose to formalize a CMDP for human
motor learning such that a person’s performance on the target
task will be used as a proxy to the state of knowledge, and
thus it provides only partial information about the person’s
abilities:

Definition 2: The Human Curriculum Markov Decision
Process (H-CMDP) MC is a tuple (SC,AC, pC,rC) where:

State Space State sC is defined as the learner’s score on
the target task. The set of all possible scores in that task
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defines the state space (SC). For a given target task, we define
a threshold score sC, such that all sC ≥ sC are considered
terminal states, meaning that the human was able to achieve
the threshold score or higher.

Action Space The action space (AC) is defined by the
possible source tasks the subject can train on.

Transition Function The transition function
pC(sC,aC,s′C) gives the probability that the subject
will obtain a score of s′C on the diagnostic task (target task)
after training on aC and starting with a score sC.

Reward Function The reward rC(sC,aC,s′C) for the
teacher is defined for the specific threshold score that we
wish the learner to achieve, sC. Then

rC(sC,aC,s′C) =

{
s′C, s′C ≥ sC

0, otherwise
Notice that the target task is also part of AC and can be

chosen at any point as the next task to train on. According to
Proposition 1, for every sC current score of the learner, there
is an optimal source task aC∗ that will maximize the learning
of the agent. This claim is a fundamental assumption used
by many RL-based curriculum learning algorithms that aim
to find such an optimal source task. Following Proposition
2, we choose the target task to be the most difficult task
in AC. Every time the learner tries this task, it is used as
a probe to estimate the skill level or state of knowledge of
the learner and to get a new accurate value sC. However, we
cannot get the true sC after each task, as the learner continues
to learn both while training on the target task and on other
tasks. This challenge is beyond the scope of this paper, and
we only evaluate the learner’s performance in the beginning
and in the end of a sequence of tasks, as we detail in the
experimental design.

V. THE REACH NINJA DOMAIN

Using our proposed formulation of a H-CMDP, we now
present an example domain for evaluating different target
tasks, learners, and curricula in a specific motor learning
skill. We refer to this domain as The Reach Ninja, as it
corresponds with both existing work on reaching as a motor
skill [1], [21] and with the popular game “Fruit Ninja” [10].
Given the current global pandemic and keeping in mind the
safety of the subjects, the task was designed to be conducted
online without the need for in-person interaction.

a) Task Setup: The OpenCV Library [6] was used in
conjunction with a webcam in order to track the subject’s
motion during experimentation. The method tracks an object
held in the subject’s hand (Fig. 2a), and is visualized on
the screen in real time (red marker in Fig. 2b). The goal
of this game is to gather points by reaching with the red
marker to the blue markers on the screen, while avoiding
black markers. These settings enable a variety of difficulty
levels and potential target tasks. Next, we detail the design
of a target task that we hypothesize to be challenging enough
so it is non-trivial and can benefit from a curriculum, but not
too challenging that subjects are unable to improve.

(a) Webcam view (b) On-screen feedback

Fig. 2: Gameplay setup: Fig. 2a shows the subject playing
the game. The area marked by the green border tracks the
subject’s hand location and corresponds to the red marker in
the on-screen feedback. Fig. 2b shows the feedback provided
to the subject as they play the game. The red marker shows
the tracked position of the hand, and the blue marker shows
a virtual target.

b) Task Selection: Following Proposition 2, we define
our target task as the hardest task out of a pool of potential
tasks we can present to the subject. However, difficulty is
not trivial to determine and likely varies among participants.
For example, one participant might find that adding velocity
to the blue markers makes the task more challenging than
adding more negative markers, but the reverse may be true
for another participant. To overcome this challenge, we
designed a target task that combines several modifications
of the task dynamics and held certain parameters constant
while allowing others to vary.

c) Task Dynamics: A baseline task was created to
emulate the static reaching task in earlier studies [1]. The
subject would see a single static blue target marker on the
screen and would try to reach it by moving their hand. Each
successful encounter between the subject’s hand (red marker)
and the target (blue marker) resulted in an increase in the
score. This score is depicted in the top left corner of the
game screen (Fig. 2b). The remaining duration of the game
is also shown on the top right corner of the game screen.
We introduced a number of additional task components to
increase the difficulty of the task beyond this simple point-
to-point task:

Target marker motion: The blue virtual markers spawn at
random locations at the bottom of the screen and are
given a constant velocity. The orientation and magnitude
of this velocity are randomly selected such that the
markers travel across the screen. The subject thus has
to move as fast as or faster than the markers in order
to reach them.

Target marker acceleration: The markers are further acted
upon with a constant downward acceleration imparting
projectile motion.

Negative marker: ‘Negative’ markers, represented in black,
are randomly created similar to the blue target markers.
However, when the subject encounters these negative
markers, they lose points instead of gaining them, and
the game freezes for a duration of 2 seconds.

Cursor Visibility: We manipulated visibility of the cursor
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Fig. 3: Experimental protocol over 15 sessions: 2 baseline;
10 training; 3 post training of 60 second duration each.

in order to increase the difficulty of the task. The red
marker is displayed on screen for a fixed period of
time (we used 0.8 seconds in our experiments) and then
disappears for another period (we used 0.2 seconds),
without affecting game play. The cursor disappearance
would require participants to be able to predict the
cursor location based on their internal model of their
actions [17].

These high level task components gave rise to several
task parameters that could be changed to affect game play,
such as marker size, marker velocity, downward acceleration,
percentage of negative markers spawned, duration of partial
observability, and more. The selected task presented in our
empirical study used both target and negative markers that
displayed projectile motion, while the participant’s position
was only partially available as feedback. The starting veloci-
ties and sizes of the markers were allowed to vary randomly,
while the acceleration, percentage of negative markers and
periods of observability for feedback were held constant. The
game created based on the combination of these components
will be referred to as the target task.

VI. EXPERIMENTAL DESIGN

The first goal of our experiments is to identify a suitable
target task that satisfies the condition of being difficult, but
not too difficult. We hypothesize that participants will be
able to improve their performance on the target task by
practicing it repeatedly. This improvement would suggest
that cognitive and motor adaptation and learning are taking
place over the course of the training. If learning is in fact
occurring, based on the background presented from existing
literature, we expect a curriculum that is able to keep the
learner within the flow channel (or to present the right
challenge point) to further augment this learning. The second
goal of our experiments is to demonstrate that a manually
designed curriculum, following principles of curriculum de-
sign, improves the participants’ learning. We hypothesize
that a manually designed curriculum will result in greater
eventual improvement on the target task compared to only
ever practicing the target task.

a) Experimental Protocol: The experimental protocol
shown in Fig. 3 was designed to inform both these goals.
The subjects are asked to participate in 15 sessions, each
session lasting for one minute. During the first two sessions,
the subjects are exposed to the target task in order to
collect baseline data on their performance. Following the

baseline, the participants were asked to perform 10 training
sessions depending on their experimental group: control or
curriculum. Subjects in the control group practice with the
same target task for 10 sessions. Subjects in the curriculum
group are given a manually designed curriculum for the
10 training sessions as discussed in the following section.
Subjects from both groups then play the target task for the
final 3 sessions, referred to as the post-training sessions.

b) Manual Curriculum Design: The subjects in the cur-
riculum group were asked to perform a set of training tasks
that we manually selected based on the modifications used to
create the final task. Five training tasks were administered,
for two sessions each, in the following order:

1) The target and negative markers were held stationary
and the subject received full feedback of the their hand
position.

2) The target and negative markers were held stationary,
but the subject received only partial feedback of the
their hand position (0.5 seconds on, 0.5 seconds off).

3) The target and negative markers were imparted random
velocity magnitudes in the vertically upward direction,
while being acted upon by a downward acceleration.
The subject received full feedback of their hand posi-
tion.

4) The target and negative markers were imparted random
velocity magnitudes in the vertically upward direction,
while being acted upon by a downward acceleration.
The subject received partial feedback of their hand
position (0.5 sec on, 0.5 sec off).

5) The target and negative markers were imparted random
velocities both in magnitude and direction, while being
acted upon by a downward acceleration. The subject
received full feedback of their hand position.

VII. PILOT STUDY RESULTS

In this section, we detail the results of running this
protocol with two participants, from among the authors of
this paper, as a pilot study towards a larger experiment. These
participants were randomly assigned to either the control or
the curriculum group. Fig. 4 shows the performance of the
subject from the control and the subject from the curriculum
group. The X axis displays the name of the session shown
on the plot (BL1 and BL2 refer to Baseline attempt 1 and
2 respectively, and PT1, PT2, PT3 refer to Post-Training 1,
2, and 3 respectively). The solid line shows the change in
average end of session score from baseline to post training.
The blue lines refer to the control subject and red refer to
the curriculum subject.

Both subjects showed an improvement in average perfor-
mance from baseline to post training (Fig. 4). If this result
holds in larger studies, we may conclude that training does
result in improvement, suggesting that practice does indeed
enable participants to improve their performance through
practice, regardless of the curriculum followed. Further, we
see that the improvement seen in the curriculum subject (of
53 points) is higher than that seen by the control subject (39
points). This difference across these two pilot participants
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is consistent with our hypothesis that an appropriate cur-
riculum can improve learning. In future work, we will more
rigorously test this hypothesis using a much larger cohort
of participants. It is also worth noting that improvement
is easier to achieve if a player begins at a lower baseline
performance, rather than at a higher baseline performance.
This effect makes it challenging to compare two participants
where one started with a score of 40 and improved to 50,
while the other started at 50 and improved to 55. In our
pilot experiment, the curriculum subject started with a higher
score and showed higher average performance during the
baseline sessions, so in this case it is clear that there was
a larger absolute improvement in the curriculum subject’s
performance over the baseline subject’s performance.

In order to delineate the effect of the curriculum, we
compared the technique used by both subjects before and
after training. By averaging the total score with respect to
the number of times the subject reached a marker (whether
a target or a negative), we were able to infer the subjects’
strategies. For example, if a participant had hit a marker
a total of 10 times over a session, and had a total score
of 80, the participant’s score increase per hit is 8 (Fig. 5).
Again, the blue line depicts the control subject’s performance
and red depicts the curriculum subject’s performance. The
high variability in the control subject’s average increase per
hit across the two baseline and three post-training sessions
is interesting. The variability suggests that the subject did
not learn a strategy to consistently hit markers that would
result in a better score [24]. Instead, the subject’s better
performance in the post-training sessions may be attributed
to simply hitting more markers without regard for the dif-
ferences in value due to size, speed, or type of marker.
On the other hand, the curriculum subject’s data shows
that while the strategy the subject used was similar in the
two baseline sessions, resulting in an almost constant score
increase per hit, there was an improvement during the post-
training sessions. This result suggests that the curriculum
subject learned to both hit more targets as well as better
targets, i.e. to get a higher score per successful hit.

VIII. DISCUSSION

There are many similarities between task sequencing in
human motor learning and curriculum learning using RL:
they both try to maximize similar objectives (proficiency
level, accuracy, time to target, etc.); they both use similar
notions (incremental difficulty adjustment); and they both
consist of a set of source tasks and a target task. In this
paper, we presented a formal description of a human motor
task curriculum learning using a MDP, namely H-CMDP.
We discussed the key differences from CMDP learning for
RL agents, such as the learner’s knowledge level that is not
directly observable and needs to be evaluated by proxies. We
then showed how common motor learning concepts, such as
an optimal challenge point, can be compiled and represented
in the H-CMDP model. Lastly, we presented a rich test-
bed environment, the “reach ninja” game, that is suitable for
evaluating different curricula without the need for in-person

Fig. 4: Results from the pilot experiments (blue: control
subject; red: curriculum subject) show that the scores of the
subjects at the end of the baseline (BL) and post training
(PT) sessions as well as the average performances

Fig. 5: Results from the pilot experiments (blue: control
subject; red: curriculum subject) show that the average
change in the subject’s score for every marker hit in each
of the 5 sessions.

interaction with subjects, given the safety restrictions of the
current pandemic.

Our H-CMDP formulation is a first step to bridge the gap
between task sequencing for motor learning and curriculum
learning using RL. We are currently investigating how exist-
ing curriculum learning approaches are used, and how they
can be modified to handle people instead of RL agents as
learners, which is not a trivial shift. For example, these works
make assumptions that are unrealizable in practice for motor
learning, such as an ability to execute each possible action
infinitely often and having a complete, accurate representa-
tion of the learner’s knowledge. In addition, due to attention
span, fatigue, and other constraints, people cannot train for
extensive amounts of time. Thus, curriculum learning that
allows for subjects to meet their potential will have to use
relatively small amount of data and to provide a curriculum
that is appropriate to human abilities.
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