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Abstract— In this paper, we propose a graph-search based
multi-contact locomotion planning method for humanoid
robots, focusing on the sustainability of contacts as its key
feature. We introduce the idea of sustainable contact area,
which represents the area on which contacts can be maintained
during contact transitions. This enables us to select feasible
contact candidates along a given root path. Then, we compute
all the possible combinations of these candidate contacts with
every limb appearing at most once, which we call contact sets.
The list of these contact sets can be regarded as a list of nodes in
a graph structure representing transitions between sustainable
contacts, which we name as the sustainable contact graph. We
apply A* search on this graph, and evaluate the connectability
of nodes by planning quasi-static motion sequences for their
contact transitions. In this process, we locally modify the
candidate contact to satisfy kinematics constraints and static
equilibrium of the robot. The proposed method enables us
to plan feasible contact transition motions without random
sampling or manually designed contact transition models, and
solves the problem of ignoring possible contact transitions,
which is caused by the discretization in existing graph-search
based planners. We evaluate our proposed method in both
simulation and a real robot, and confirm that it contributes to
improving the multi-contact locomotion abilities of a humanoid
robot.

I. INTRODUCTION

A humanoid robot is expected to take over big burden
tasks on human workers like large scale manufacturing [1]. In
these scenarios, the robot is required to traverse environments
designed for humans utilizing its human-like body structure.
The multi-contact locomotion planning method is critical for
these real-world uses, and has been researched in the field
of humanoid robotics for many years. For a legged robot,
multi-contact locomotion is a sequence of contact transitions.
However, it is still an open problem to find feasible contact
transitions for a humanoid robot in a large search space
of candidate contacts. This problem can be simplified by
pre-defining contact transition candidates carefully designed
by an operator. However, these manually discretized models
may cause oversight of possible contact transitions, which
can result in the failure of the locomotion planning.

In this paper, we propose a graph-search based contact
transition planning method for multi-contact locomotion by
a humanoid robot as shown in Fig. 1. The target of our
paper is to reveal a method to find a sequence of feasible
contact transition motion. In order to evaluate feasibility of
the contact transition, we focus on the sustainability of a
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Fig. 1. The achieved multi-contact locomotion by the proposed method,
where the humanoid robot traversed a corridor using handrails.

contact, based on the idea of “geometrical feasibility” [2]. A
contact is defined as sustainable when it can be maintained
by a robot during contact transitions. This concept enables
us to effectively find the feasible contact transitions without
random sampling or manually designed contact transition
candidates, and to locally modify a target contact in order to
solve the oversight problem while maintaining its feasibility.
We also apply our proposed method to a humanoid robot in
both simulation and real environments, which experimentally
proves its practicality.

II. RELATED WORKS

A. Methodologies to find feasible contact transitions

Generally, a contact transition is regarded as feasible when
there is an executable motion sequence for it. In this context,
it is a challenging problem to find a sequence of such feasible
contacts considering kinematics and stability constraints. The
random sampling approach is one of the common solutions
to this problem [3]. However, this kind of approach has
the problem of increasing computational costs because of
the very large search space for possible contact transitions.
Recently, Tonneau et al. [4] proposed an efficient algorithm
to plan multi-contact locomotion for a multiped robot. They
utilized the reachability model, which consists of the bound-
ing box of the trunk and the convex hulls of the reachable
points for each limb, to find a global path where random
sampling based planner could generate a sequence of multi-
contact postures. However, there remains the problem that
the resulting postures are not always executable. Fernbach
et al. [5] proposed an efficient method to reject infeasible
contacts based on the existence of a dynamic CoM trajectory
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Fig. 2. Overview of the proposed multi-contact locomotion planning.

in a contact transition, but it is still difficult to find feasible
contact transitions within reasonable computational costs
while planning.

Another approach is to manually design possible contact
transitions in advance, which can simplify the feasibility
problem in the contact transition planning [6], [7]. However,
these contact planning algorithms based on contact transition
models have the disadvantage of oversight in the possible
contact transitions, because they can search only discretized
nodes in the target graph. Griffin et al. [8] proposed a
local footstep modification method for a discretized footstep
planning system, but this kind of local modifications has
not been introduced to multi-contact planners yet because it
changes the number and positions of friction cones. Brossette
et al. [9] proposed the method to allow a whole-body posture
generator to consider a partial contact, but it only evaluated
the stability of the resulting posture when the new contact
did not support any contact forces.

Instead of search-based approaches, several methods to
formulate the multi-contact planning problem as an op-
timization problem are also proposed [10], [11]. These
optimization-based methods do not suffer from the limita-
tions related to the discretization, but they are less robust
than search-based methods, which can backtrack and search
suboptimal but reasonable contact transitions.

B. Overview of the proposed approach

Based on the above discussion, we propose a graph-
search based contact transition planning method for multi-
contact locomotion of a humanoid robot. The overview of the
proposed method is shown in Fig. 2. The proposed system
assumes that the environment model, the reachability model
[4] of a robot, detailed robot model and its root path are
given as input. First, we discretize the input root path to find
the candidate contacts along it. In this process, we compute
a sustainable contact area, which represents the existing
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Fig. 3. Overview of the idea of geometrical feasibility. In this figure, we
use the right arm as an example (l = RA).

area of the contacts that can maintained while the robot
moves between certain points on the path. Then, we put the
initial guesses for the candidate contacts on the centroid of
each sustainable contact area, and compute all their possible
combinations for each phase. We call these combinations
contact sets. These contact sets are regarded as the nodes
of a graph representing feasible contact transitions, which
we refer to as the sustainable contact graph. We define the
cost function based on the geometrical features of the contact
set, and search for the appropriate contact transition sequence
using A* search [12] on this graph. When connecting the
contact sets, we evaluate their connectability by planning
quasi-static motion sequence for their contact transition.
In this process, we also search its transition orders and
locally modify the candidate contacts to satisfy kinematics
constraints and static equilibrium. The approach proposed by
Escande et al. [13] also found candidate contacts for graph-
search based contact planning by a quadratic programming
based posture generator. In contrast to them, the novelty of
our method is the concept of sustainable contact area, which
contributes to efficiently finding feasible contact transitions
without random sampling or pre-defined contact transition
models. It also enables us to modify a contact locally while
maintaining its sustainability during the contact transition.

III. SUSTAINABLE CONTACT GRAPH

We assume that the environment E consists of convex
polygons, and the reachability model of the robot is gener-
ated in advance. In this paper, we generate the input path
by the method proposed in our previous paper [2], which is
optimized RB-RRT [4].

A. Generating sustainable contact areas from the root path

1) Sustainability of the contact: In general, at least one
contact should be maintained in order to support the robot
while some contacts are in transition. Therefore, it is impor-
tant to consider this contact sustainability during the contact
transition to achieve multi-contact locomotion. When esti-
mating the contactable area, it is a reasonable approximation
that the reachable area of a limb l in the environmental



Algorithm 1 Path discretization
Input: path - Input path for the reachability model
Output: X - List of the sustainable contact areas

1: p0 ← getStart(path)
2: i← 0
3: X ← ∅
4: while not reachedToGoal(path, pi) do
5: ∆d← ∆ddef

6: while ∆d ≥ ∆dmin do
7: pi+1 ← goAlongThePath(path, pi, ∆d)
8: {lePi+1} ← getSustainableContactAreas(pi, pi+1)
9: if {lePi+1} ≠ ∅ then

10: add({lePi+1}, X)
11: i← i+ 1
12: break
13: end if
14: ∆d← ∆d

2
15: end while
16: if ∆d < ∆dmin then
17: return ∅
18: end if
19: end while
20: return X

polygon e is the intersection of the reachability volume
of l and e [14]. However, this assumption cannot take
the sustainability of resulting contact during the contact
transition into account. In order to solve this problem, we
proposed “geometrical feasibility” in our previous paper [2].
If we know the posture of a robot in the target phase i
and previous phase i − 1, the area where the sustainable
contact l

eCi for l and e exists is expected to be the common
part of their reachable areas l

ePi, as shown in Fig. 3. In
this paper, we introduce this idea to the graph-search based
contact transition planning and show that it can also solve
the problem of the discrete graph search.

2) Path discretization: In order to apply the idea of
geometrical feasibility, we need to divide the locomotion
process into discretized phases as shown on the top of Fig.
2. We generate these phases by discretizing the input root
path based on the existence of sustainable contact areas.
The algorithm for path discretization is shown in Alg. 1.
The parameters ∆ddef and ∆dmin represent the default and
minimum discretization distance respectively. We travel ∆d
along the path from the i-th point pi ∈ R6 on it, and place the
reachability model there. Then, we compute the sustainable
contact areas as shown in Fig. 3. We make the discretization
step ∆d half when there are no sustainable contact areas.
If we cannot find any sustainable contact until ∆d become
smaller than ∆dmin, this discretization process will return
with failure. As a result of this path discretization, we obtain
list of the sustainable contact areas X with the N discretized
phases.

For each sustainable contact area l
ePi in X , we define

an initial guess of the contact l
eCi at its centroid. Then, we

compute the area of intersection between the contact surface
of limb l at l

eCi and the environment e. This intersection
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Fig. 4. Left: Definition of variables for the cost function f(Sj
i ). Right:

The offset computation of the leg contact for a humanoid robot.

represents the support area for l
eCi. If the ratio of this support

area to the entire area of contact surface of limb l is smaller
than the pre-defined threshold rthsp, we reject l

eCi and remove
l
ePi from X . By this contact generation process, we can
obtain the list of candidate contacts {leCi} for phase i.

B. Building sustainable contact graph
1) Generation of contact sets as graph nodes: Next, we

compute the list of all possible combinations of {leCi},
where every limb l appears at most once. We define the j-th
combination of candidate contacts in phase i as a contact
set Sj

i as shown on the middle of Fig. 2. Empty contact
sets are not allowed. The basic idea behind our contact
transition graph generation is that the list of contact set
{Sj

i } can be regarded as a list of nodes. The contact sets
in {Sj

i } can be connected only from those in {Sj
i−1}, and to

those in {Sj
i+1}. In addition, these contacts are expected to

be sustainable in their transitions since all the contacts are
inside of the sustainable contact area. Therefore, we define
this graph as a sustainable contact graph, and formulate the
problem of finding the feasible contact transition sequence
as searching the valid path from i = 0 to i = N − 1 in it.
This idea removes the necessity of pre-defined successors for
the graph-search based planner to expand the child nodes.

2) Cost function for A* graph search: For the graph
search algorithm, we adopt A* search. In order to apply this
algorithm to the proposed sustainable contact graph, we need
to define an appropriate cost function for the node Sj

i . In A*
search, the cost of the node f(Sj

i ) is defined as the sum of
the path cost g(Sj

i ) and heuristics cost h(Sj
i ).

First, we define the cost of a contact fc(leCi) in the contact
set Sj

i as (1). As shown on the left of Fig. 4, l
eA

ca
i is the

square measure of the sustainable contact area l
ePi and l

edi
is the distance from the closest point from l

eCi on the input
root path to its goal. The weights wca and wds are pre-
defined parameters. A small l

eA
ca
i means that the l

ePi is
near the boundary of the robot’s reachability volume or the
environmental polygon, which means that the manipulability
is expected to be low, or highly accurate manipulation is
required. Therefore, fc(

l
eCi) imposes a large cost to the

contact which is difficult to be reached or far from the goal.

fc(
l
eCi) =

wca

l
eA

ca
i

+ wds
l
edi (1)



Next, we define the reaching cost, which represents the cost
to reach the contact set Sj

i from its parent node, as (2). Agr
i is

the area of the convex polygon computed by all the vertices
of contacts in Sj

i projected on the ground plane, as shown on
the left of Fig. 4. The weight wsp is a pre-defined parameter.
This is not a strict support area, but can be used as a criterion
of the supportability.

c(Sj
i ) =

∑
l
eCi∈Sj

i

fc(
l
eCi) +

wsp

Agr
i

(2)

Then, we define the path cost for the contact set g(Sj
i ) as

(3). Sk
i−1 is the parent node of Sj

i . The function αf (S
j
i )

represents a penalty cost, which increases in proportion to
the number of past failures in the transition planning for Sj

i .
The proportional coefficient af for αf (S

j
i ) is pre-defined.

g(Sj
i ) = g(Sk

i−1) + c(Sj
i ) + αf (S

j
i ) (3)

Finally, we define the heuristics cost h(Sj
i ) for the node

Sj
i . Since we already know all the nodes in the sustainable

contact graph, we can compute the smallest reaching cost
cmin
i for each phase i. We use the sum of this cmin

i from
phase i+1 to phase N−1 as the heuristics cost for the nodes
in phase i as (4). This heuristics cost is obviously consistent,
which guarantees the optimality of the A* search.

h(Sj
i ) =

N−1∑
k=i+1

cmin
k (4)

3) Additional assumptions for a humanoid robot: The
sustainable contact graph proposed above can be applied
to any type of robot which makes contacts for locomotion.
However, since our target is a humanoid robot, we add
some additional assumptions in order to make resulting
motion more suitable for it. First, we assume that a robot
makes contact with environment only by right arm (RA),
left arm (LA), right leg (RL) and left leg (LL). In addition,
we require that candidate contacts for both legs should be
included in all of the contact set Sj

i . This also means that at
least one sustainable contact area for both legs are required in
the path discretization process. Finally, we keep the distance
from the base link to the contact for a leg db larger than
dmin
b , and we align its front direction to that of base link as

shown on the right of Fig. 4. If this modified contact is out
of its sustainable contact area, we reject it before computing
contact sets.

IV. MOTION PLANNING FOR CONTACT TRANSITION

During A* search for the sustainable contact graph, we
need to determine whether Sj

i and Sk
i+1 are connectable or

not. We consider that these nodes are connectable when a
valid quasi-static motion sequence for the contact transition
between them exists as shown on the bottom of Fig. 2.

A. Transition order between contact sets

1) Contact transition pair: In this paper, we assume
that the robot moves only one limb at once. However,
this assumption raises a problem of the order of contact

transitions. Although each contact is inside of its sustainable
contact area, it may not be reached because of the collisions
or stability constraints, and these factors will depend on the
sequence of contact transitions. In order to appropriately
sort contact transitions from Sj

i to Sk
i+1, we define the

contact transition pair T l = {lnCi,
l
mCi+1} for each limb

l. This pair means that limb l will move from l
nCi ∈ Sj

i to
l
mCi+1 ∈ Sk

i+1. When the limb l is not in contact, ∅ is put
into T l. The empty contact transition pair T l = {∅, ∅} is
ignored. In addition, when l

nCi is inside of the sustainable
contact area l

mPi+1 of the target contact l
mCi+1, and the

displacements of both translation and rotation from l
nCi to

l
mCi+1 are less than the thresholds ∆Cth

t and ∆Cth
r , we

assume that l
nCi can be maintained in phase i + 1 and do

not plan motion for T l.
2) Searching transition order: First, we sort the set of

these contact transition pairs T = {T l} in descending order
of fc(

l
mCi+1). fc(∅) is regarded as the infinity cost. This

sorted order of the contact transition pairs is used as the
initial guess of the transition order. Then, we plan contact
transition motion for T l from the top of T . When this motion
planning for T l is failed, the order of contact transition pairs
in T is reorganized in lexicographic order at its index, and
we re-try planning quasi-static motion from the top of the
new T as shown in Fig. 5. If the planner reaches the last
permutation of the index order, we consider that Sj

i and Sk
i+1

are not connectable.

B. Motion generation with local contact modification

1) Quasi-static whole-body motion planning: We plan
the quasi-static whole-body motion sequence for the contact
transition T l to evaluate its feasibility. Prete et al. [15]
proposed the linear programming formulation to evaluate
static equilibrium with friction coefficient µ. We introduce
the improved formulation of their work, which can compute
statically stable CoM at the same time [2]. Then, in order to
consider the kinematic constraints of a robot, we use inverse
kinematics based on the prioritized quadratic programming
[16]. We introduced the collision avoidance constraints [17]
with the efficient GJK algorithm [18], 6D posture constraints
for contacting end-effectors, joint angle limitation, and joint
velocity limitation as priority 0, which is the highest priority.
We also add the constraint for CoM position, which is
computed to satisfy the static equilibrium condition [2], as
priority 1. However, since the next target contact l

mCi+1 is
just put on the centroid of l

mPi+1, it may not be feasible
when the kinematics constraints of a robot are taken into
account as shown in the lower right of Fig. 6.

2) Local contact modification: We need to find the feasi-
ble target contact to satisfy kinematics constraint of a robot,
but we also need to keep its sustainability for following
contact transitions. Since we already know l

mPi+1, it is
reasonable to assume that the modified target contact l

mĈi+1

is expected to be sustainable if it is kept in l
mPi+1. Therefore,

we define the inequality constraint to make the contact point
r ∈ R3 of the limb l in the convex polygon l

mPi+1. We
assume that the vertices {v0, · · · ,vK} of l

mPi+1 are ordered



Fig. 5. Example of searching contact transition order from Sj
i to Sk

i+1. In this example, the planner failed to plan quasi-static motion for TRL twice,
which caused reorganization of T as shown in the green characters.

Fig. 6. Left: Kinematics constraints to generate a quasi-static multi-contact
motion sequence with local contact modification. Right: The constraint to
keep sustainability in the local contact modification. The original RL

3 Ci+1

will make the collision between the right leg and the second step.

Algorithm 2 Local contact modification
Input: l

mCi+1 - next target contact, x0 - initial robot state
Output: l

mĈi+1 - modified target contact
1: S ← getContactSet(x0)
2: removeContactForLimb(l, S)
3: addContact(lmCi+1, S)
4: cref ← getStaticallyStableCoM(S)
5: count← 0
6: while count < maxCount and not cref = NaN do
7: xkp ← solveIK(S, cref )
8: if not xkp = NaN then
9: S ← getContactSet(xkp)

10: c← getCoM(xkp)
11: if ∥cref − c∥ < ϵ then
12: l

mĈi+1 ← getContactForLimb(l, S)
13: return l

mĈi+1

14: end if
15: cref ← getStaticallyStableCoM(S)
16: end if
17: count← count+ 1
18: end while
19: return NaN

in counter-clockwise as shown in the upper right of Fig. 6.
For the local coordinate system of l

mPi+1, the normal vector

n ∈ R3 represents the direction of its z-axis, and its x-axis
and y-axis are same as those of l

mCi+1. Then, the constraint
for r to be kept in l

mPi+1 is written as (5). dmin
r is the

allowable minimum distance from r to the each edge.
nT {(v1 − v0)× (r − v0)} > dmin

r ∥v1 − v0∥
...

nT {(v0 − vK)× (r − vK)} > dmin
r ∥v0 − vK∥

(5)

Using the jacobian matrix Jl for limb l, the previous contact
point of the end-effector r0 and the selection matrix W =
[I1×3 O1×3], the end-effector position r can be represented
by the configuration of a robot q as (6).

r = r0 +WJl∆q (6)

By substituting (6) for (5), we can obtain the inequality
constraint for ∆q to keep r in l

mPi+1 as (7).

ApWJl∆q < bp −Apr0 (7)

Ap and bp are obtained from (5) as (8).

Ap =

nT [v0 − v1]×
...

nT [vK − v0]×


bp =

nT (v0 × v1)
...

nT (vK × v0)

− dmin
r

 ∥v0 − v1∥
...

∥vK − v0∥


(8)

By using (7) and constraining the displacement on the z-
axis position, its rotation around x-axis and its rotation
around y-axis for the end-effector of the limb l relative to
the local coordinate system of l

mPi+1 to 0, we keep the
limb l contact inside of the l

mPi+1 while solving prioritized
inverse kinematics. Their priorities are defined as 0. We also
constrain the 2D pose on the local x-y plane of l

mPi+1 to
l
mCi+1 with the lowest priority.

Then, we obtain the new target contact l
mĈi+1. The

algorithm for the local contact modification is shown in Alg.
2. The initial robot state x0 is the last robot state obtained
from the previous contact transition planning. Since the static
equilibrium evaluation requires the vertices of the support
polygon for each contact, modifying a target contact makes
static equilibrium evaluation a non-linear problem. We solved
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Fig. 7. The result of contact planning in traversing a terrain. Upper:
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sequence (filled polygons). Lower: The resulting multi-contact motion in a
kinematics simulation.

this problem by dividing the motion planning process into
CoM based static equilibrium evaluation and whole-body
inverse kinematics. First, we compute the reference CoM
cref from static equilibrium evaluation, and sequentially
solve inverse kinematics to obtain the the keypose xkp,
which satisfies the kinematics constraints discussed above.
When the resulting xkp is not NaN , which means inverse
kinematics is successfully solved, and the difference between
cref and the resulting CoM c from xkp converges within the
threshold ϵ, we compute the posture of the end-effector for
the limb l from xkp. We use it as the new target contact
l
mĈi+1 for the motion planning of T l. If cref is NaN ,
which means that a statically stable CoM cannot be found, or
the resulting CoM cannot converge within the maximum trial
count, the local contact modification process returns with
failure and the motion planning for T l fails. The resulting
l
mĈi+1 is not only feasible for kinematics constraints, but is
also still sustainable because of (7).

3) Generating contact transition motion: After the local
contact modification step, we plan the quasi-static contact
transition for moving limb l to l

mĈi+1 along a cubic-spline
trajectory. In this phase, target contacts are not modified
any longer. The modified contact l

mĈi+1 is used only for
this contact transition, and the original contact set Sk

i+1 is
not modified. We generate contact transition motion for one
iteration in 20ms. More details are available in [2].

V. EXPERIMENTAL EVALUATION

We applied the proposed method to our humanoid robot
HRP-5P [19]. In the following experiments, the proposed
planner was executed with Intel(R) Xeon(R) CPU E5-1680
v4. We used Choreonoid [20] as simulation environment. In
the real world experiment, we sent the resulting motion to
the multi-contact stabilization controller [21]. The parameters
for each experiment are shown in TABLE I.

A. Simulation experiments

1) Traversing a terrain: We conducted a simulation ex-
periment to plan multi-contact locomotion to traverse a
terrain. The terrain consisted of 30×20cm rectangles rotated
at 0.25rad around various directions and two vertical walls.
The result of this experiment is shown in Fig. 7. The
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Fig. 8. The result of contact planning in traversing a scaffold. Upper:
The generated contact candidates (light blue borders) and resulting contact
sequence (filled polygons). Lower: The resulting multi-contact motion in a
kinematics simulation.

proposed planner succeeded in connecting 8 contact sets
without failure. It successfully generated motions for 7 out
of 19 contact transitions. There are also 6 modified contacts
out of 30 planned contacts in total due to the kinematics
constraints. The computational time was 20.62s.

2) Traversing a scaffold: We also planned multi-contact
locomotion to traverse a scaffold in a simulation. This
scaffold is a series of three 30cm×60cm steps which have
15cm height, and a 1.8m×50cm walkway. Each part has two
handrails with 1m spacing. The result of this experiment is
shown in Fig. 8. The proposed planner connected 9 contact
sets without failure, where it succeeded to plan 8 contact
transitions out of 9, and modified 8 contact out of 21.
The total computational time was 12.64s. This experiment
showed that the proposed planner can efficiently plan multi-
contact motion in a series of different environments as well.

3) Performance evaluations: We quantitatively evaluated
the success rate and computational efficiency of the proposed
planner in the above two simulation environments. We tested
the entire proposed planner (ALL), the one without searching
transition order (W/O TO) and the one without local contact
modification (W/O CM). We applied random offsets in the
range of ± 10cm to the x and y position of pre-defined
start and goal for each of the 50 trials in each scenario. The
motion planning was regarded as failed if it took over 90s to
find a solution. The results are shown in TABLE II. We only
consider successful trials to obtain the average computational
time and the average effective branching factor b∗ [12]. In
both environments, the entire planner succeeded in finding
a solution for 90% of the trials. As a comparison, the
average computational time of the “ALL” scenario in the
terrain outperforms the state-of-the-art planner in similar
uneven platforms with comparable success rate [5] (17.83s
planning time and 83.5% success rate). It should be noted
that our motion is quasi-static but kinematically more com-
plex because of arm contacts. In terms of efficiency, b∗

was close to 1.0 for both environments, which proved that
proposed heuristics can find a solution without expanding
less unnecessary nodes than the existing method [13] (b∗ =
1.12 for climbing a ladder for example). TABLE II also
showed that the success rates dropped and b∗ increased for
the “W/O TO” scenario in both environments. This proved



TABLE I
PARAMETERS FOR THE EXPERIMENTAL EVALUATION

Parameter ∆ddef ∆dmin rthsp wca wds wsp af dmin
b ∆Cth

t ∆Cth
r dmin

r ϵ µ

Terrain 0.4m

0.05m

0.5

1.0

2.0 5.0

50.0

0.1m 0.05m

0.087rad

0.05m

0.01m 0.6Scaffold 0.32m 0.8 8.0 7.0 0.1m 0.07m 0.01m
Stairs 0.34m 0.5 3.0 6.0 0.06m 0.12m 0.01m

Corridor 0.3m 0.8 1.0 10.0 0.08m 0.05m 0.01m

TABLE II
PERFORMANCE EVALUATION RESULT IN 50 TRIALS

Scenario Terrain Scaffold
ALL W/O TO W/O CM ALL W/O TO W/O CM

Success 90% 72% 88% 90% 26% 60%
Time 15.70s 25.43s 15.91s 20.94s 45.61s 33.40s
b∗ 1.01 1.14 1.02 1.05 1.27 1.13

that searching transition order also played an important role
in improving efficiency of the planner. Although the “W/O
CM” scenario did not make a large difference in the terrain, it
worsened the performance of the planner in the scaffold. This
is because the collision avoidance constraints were severe
in the scaffold, especially while stepping up stairs. On the
other hand, the sustainable contact area cannot guarantee a
solution of inverse kinematics because it also depends on the
initial state and constraints such as collision avoidance. This
limitation can be shown by the fact that the major reason
of the failures was timeout due to a series of unsuccessful
inverse kinematics. TABLE II suggests that although the
sustainable contact area has potential to efficiently find
promising contact candidates, we need transition order search
and local contact modification to properly generate valid
multi-contact motions.

B. Real world experiments

1) Stepping up stairs: We conducted a real world exper-
iment to step up stairs with handrails. The stairs consisted
of three steps, whose height was 15cm and depth was 28cm,
and two handrails. Although the spacing of the handrails was
64cm and it was notably narrow for HRP-5P, the proposed
planner succeeded in connecting 5 contact sets out of 8, and it
successfully generated motion for 4 contact transition orders
out of 17 in total. In addition, the local contact modification,
which modified 22 contacts out of 28 in total, was also
critical for collision avoidance as shown on the left of Fig. 9.
The total computational time in this experiment was 20.01s.
We also confirmed that the resulting motion enabled the real
HRP-5P to climb up the staircase using a handrail as shown
on the right of Fig. 9.

2) Walking on a corridor: Finally, we conducted a real
world experiment to walk on a corridor with handrails.
Since the robot needed to use its arms to keep its balance
on an elastic corridor, the parameters were assigned high
priorities on increasing Agr

i . The planning result for this
experiment is shown on the left of Fig. 10. The proposed
planner succeeded in connecting 3 contact sets and generated
motion for 2 contact transitions without failure. The local
contact modification did not occur in 8 planned contacts.
The total computational time in this experiment was 7.10s.
The resulting motion was successfully executed by the real
HRP-5P as shown on the right of Fig. 10, which utilized
both arms to support the robot as intended.

VI. DISCUSSION

A. Computational complexity

In the worst case scenario, the time complexity of the
proposed planner for A* search is O(bN ), where b is the
branching factor [12]. Therefore, when the traveling distance
becomes longer or ∆ddef becomes smaller, the time com-
plexity can grow exponentially. In addition, b depends on
the number of contact sets in each phase. This suggests that
when the number of contactable surfaces or limbs is large,
the number of contact sets may suffer from a combinatorial
explosion, which will make b large. The proposed method
efficiently avoid these problems by properly designing costs
and heuristics, which was experimentally proved by the low
effective branching factor as discussed in Subsection V-A.

B. Limiting assumptions

In this paper, we employed the environmental polygons
as the input to the proposed planner, which also means that
we pre-defined the contact direction for each surface. We
can mitigate this limitation by using more accurate meshes
for environment models, but that will cause a combinatorial
explosion of possible contact sets. In addition, since our
planner assumes that the robot will move forward following
the given root path, it is difficult to plan in-place contact
repositioning. It can be possible to approximate some in-
place contact sequence by making discretization step of
the input path smaller, but it may also increase the time
complexity as the trade-off factor.

C. Static equilibrium evaluation

Since we modified the contact transition order and the
target contacts while motion planning, we need to compute
the reference CoM and evaluate the stability criterion repeat-
edly. Therefore, in order to reduce computational costs, we
adopted static equilibrium evaluation, which can compute a
statically stable CoM and contact forces from the current
target contacts by the quadratic programming [2]. Although
this assumption makes resulting motion quasi-static, we
experimentally proved that our planner can achieve practi-
cal multi-contact locomotion with the dynamic stabilization
controller [21]. However, in order to perform more chal-
lenging locomotion, we will introduce a dynamic stability
criterion such as proposed by Lin et al. [22] in the future.

VII. CONCLUSION

In this paper, we proposed a contact transition planning
method for multi-contact locomotion by a humanoid robot.
This method searches the graph representing the possible
transitions of sustainable contact sets. This sustainable con-
tact graph can efficiently find feasible contacts without pre-
defined successors or random sampling. Then, we search for



Fig. 9. Left: The contact candidates (light blue borders) and the resulting contact sequence (filled polygons). Some contacts were modified to avoid
collisions (emphasized by yellow lines). Right: The resulting multi-contact motion sequence of the real HRP-5P to step up stairs with handrails.

Fig. 10. Left: The contact candidates (light blue borders) and the resulting contact sequence (filled polygons). The parameters preferred to use contact
sets which had larger Agr

i (green polygon) in this experiment. Right: The resulting multi-contact motion of the real HRP-5P to traverse a corridor.

a sequence of quasi-static contact transitions by applying
A* search to it. In this process, we locally modify the
next target contact to satisfy the kinematics constraints and
static equilibrium conditions, which avoids the oversight of
possible contact transitions caused by the discretization for
the graph-search algorithm. We experimentally confirmed
that the proposed method could provide feasible motions for
HRP-5P to traverse simulated and real environments, and
concluded that the proposed method contributes to improving
multi-contact locomotion abilities of a humanoid robot.
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