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Abstract— In this letter, we revisit an open problem of
constraints formulation in the context of task-space control
frameworks formulated as quadratic programs. In most inverse
dynamics implementations, the decision variables are: robot
joints acceleration, interaction forces (mostly physical contacts),
and robot torques. Nevertheless, many constraints, like distance
and velocity bounds, are not written originally in terms of one
of these decision variables. Previous work proposed solutions
to formulate and enforce joint limits constraints. Yet, none
of them worked properly in closed-loop, specifically when
bounds are reached or when they are time-varying. First,
we show that constraints like collision avoidance, bounds of
center of mass, constraints on field-of-view, Cartesian and
velocity bounds on a given link... are written in a generic
class. Then, we formulate such a class of constraints with gain-
parameterized ordinary differential inequality. An adaptive-
gain method enforces systematically such class of constraints,
and results on a stable behavior when their bounds (even when
they vary with time) are reached in closed-loop. Experimental
results performed on a humanoid robot validate our solution
on a large panel of constraints.

I. INTRODUCTION

Task-space multi-objective and multi-sensory control by
means of soft or strict hierarchy quadratic programming
(or QP control in short) is demonstrated in state-of-the-art
humanoid robots realizing complex behaviors [1]–[6].

In almost all existing inverse dynamics QP controllers,
the decision variables, are the contact forces, the torques,
and the robot state acceleration. These are the output of the
task-space controller sent as desired input to the low-level
(actuators) controller.The motivation of this paper came first
some experimental failures. In the context of aircraft manu-
facturing robotics [6], we shall demonstrate the capability of
humanoid robots in accessing narrow, cumbersome or con-
fined spaces. In one specific use-case, our QP controller [3]
repeatedly failed in the course of the execution at an extreme
configuration. The log data revealed that similar failures
happened when the joints reached their bounds, or in cases
where joint velocities were too high. We also discovered
later on that the QP either failed or generated oscillatory
and discontinuous motions in closed-loop for other bounds
(e.g. collision avoidance). Similar experimental failures en-
countered in closed-loop control have been reported in [7].

Formulating constraints, originally written in position or
velocity spaces, in terms of their derivative to be expressed
in decision variables is not new. Whether the robot is
position or torque-controlled, it is necessary that any bound
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is reached with feasible velocity and acceleration drops.
The early work tackling this topic is presented in [8]. A
velocity linear damper is formulated to prevent collisions
of robotic manipulator links with the environment obstacles.
This formulation has been applied at the joints level in [9]
and implemented in terms of acceleration in [10].

In order to avoid unfeasible decelerations near the distance
bounds, a velocity constraint is formulated at the task-space
level assuming constant deceleration in [11]; which was
improved and applied at the joint level in [12]. This approach
is extended to the joint acceleration level in [13], where an
algorithm is proposed to account for joint jerk constraint.
In [14]–[17], Taylor expansion with a step-size taken as a
multiple of the control time-step, is used to formulate joints
position and velocity constraints in the acceleration space.

In [18], joints position bounds are treated outside the QP
control constraints-set through an explicit deceleration to
push back a joint if it gets closer to its bounds. In [19], a
parametrization of the feasible joint-space prevents the joints
trajectories from reaching the bound limits.

In [20], a position-dependent velocity constraint is pro-
posed to avoid QP failure when the humanoid robot knees are
fully stretched while walking. The same formulation is given
in [21] for redundant robotic manipulators. This constraint is
also known as viability constraint in [22], where a discrete-
time implementation in terms of joints acceleration is pro-
vided. All these approaches have the following shortcomings
(explicitly acknowledged by their authors):
• A precise knowledge of the robot state is necessary and

hence assumed;
• Undesirable discontinuous motions (chattering) near the

constraints bounds in closed-loop;
• Mostly applied for joints bounds and few in collision

avoidance;
• They do not handle time-varying bounds.
We propose a general formulation for distance and velocity

limit constraints expressed in the acceleration space, that
apply for a wider class of constraints. Our method is based
on Ordinary Differential Inequality (ODI) solutions [23]. It
does not require precise knowledge of the robot state (i.e. it
accounts for uncertainties and noise). Our approach generates
closed-loop smooth motion near and at the constraints
bounds. It also allows having time-changing bounds. In
Section II, we give an overview of the QP multi-task control
formulation. In Section III, we investigate and explicit the
drawbacks of two state-of-the-art methods [10] and [22].
Then, we provide the details of the proposed formulation,
based on an adaptive-gains method. Finally, Section IV
assesses our approach with humanoid HRP-4 experiments.
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The following notations are adopted throughout the paper:
• t ∈ R+ denotes time, in seconds;
• dt denotes the control time-step, in seconds;
• ε(idt)

4
= εi, i ∈ N;

• superscript ∗ denotes a desired entity;
• gxT =

[
eT ėT

]
, cxT =

[
hT ḣT

]
, rxT =

[
qT q̇T

]
denote the task-state, constraint-state and robot-state
vectors, respectively.

II. QUADRATIC-PROGRAMMING CONTROL
FORMULATION

A. Equation of Motion

The Equation of Motion (EoM) for a robot with a floating-
base is given by:[

M(q̂) −S −JTtr
]
χ+N(q̂, v) = 0 (1)

where χT =
[
v̇T τT fT

]
, (q̂, v) is the full state of the

system including the floating-base. q̂T =
{
qT ξT

}
stacks

the actuated joints vector q and the root SE(3) of the robot,
and vT = [q̇T νT ] where q̇ = dq/dt and ν is the robot
base frame linear and angular velocities. M(q̂) is the inertia
matrix. N(q̂, v) gathers Coriolis-centrifugal and gravitational
terms. S is a diagonal selection matrix for actuated joints.
f is the external contact forces and Jtr the translational
Jacobians at contact points. Each non-sliding contact force
f is constrained to remain strictly within the linearized
friction cone K mapped by a finite set of generator vectors
{ρj}j=1,··· , η [3]:

f ≤
η∑
j=1

βjρj , βj ≥ 0 (2)

This robot motion shall be restricted by a set of limitations:
• torque range bounds:

τmin ≤ τ ≤ τmax (3)

• a set of constraints of the form:

H(q, q̇) ≤ 0 (4)

where H(q, q̇) can express different constraints, such as:
• joint position bounds:

qmin ≤ q ≤ qmax (5)

• joint velocity bounds:

q̇min ≤ q̇ ≤ q̇max (6)

• center-of-mass CoM(q) equilibrium [24] or any other
constraint (eventually implying CoM velocity):

CoM(q) ∈ P or
⋃

CoM(q) ≤ ∆ (7)

where P is a given polyhedron that can be rewritten into
a set of inequalities; ∆ being the given lower distance-
bound vector.

• distance constraint δ(q) for none-desired collisions [10]:

δ(q) ≥ δmin (8)

• field-of-view FoV(q) inclusion constraints in visual ser-
voing or vision-based object tracking. One needs to keep
the object of interest O within the field-of-view of the
robot embedded camera, and out of any known possible
occlusions. These are linked to the robot configuration:

FoV(q) 3 O (9)

the inclusion is also written equivalently into a set of
inequalities, see e.g. [25].

There are many other constraints that can be expressed
in the general form of (4). Notice that, except con-
straints (1), (2) and (3), the QP decision-variables vector χ
does not appear explicitly in constraints like (4). Hence, they
cannot be integrated directly into the QP controller. When
possible, one needs to rewrite such constraints in the form:

A(q, q̇)χ+ b(q, q̇) ≤ 0 (10)

where A is a matrix and b a vector of appropriate di-
mensions1. In this work, we will show how to formulate
constraints like (4) to be written as (10) resulting in a stable
and smooth motion in the context of closed-loop QP control.

B. Task-Space QP Formulation

Let g and gref be the current and reference tasks respec-
tively. Let us define e= g−gref, ė= ġ− ġref and ë= g̈− g̈ref

where ė= Jg q̇, ë= Jg q̈+ J̇g q̇, and Jg is the task Jacobian.
The continuous task state-space representation is given by
the following canonical form:

gẋ =

[
0 I
0 0

]
gx+

[
0
1

]
u (11)

A classical way to stabilize the system (11) is to choose a
task-state linear feedback control-law:

u = −
[
P D

]
gx (12)

where P and D are diagonal matrices of appropriate di-
mensions denoting the proportional and derivative feedback
gains. Hence, the system (11) takes the closed-loop form:

gẋ = Γ gx, Γ =

[
0 I
−P −D

]
(13)

where P and D are chosen so that Γ is Hurwitz [26], [27].
The goal is to have ë=u under explicit constraints (1), (10).
This is handled by means of a QP minimization:

min
χ

1

2
||ë− u||2

subject to: (1) (10)
(14)

If there is more than one task to achieve, the tasks need
to be ordered either by means of strict [28], or soft [3], [14]
hierarchy prioritization.

At each control step, the closed-loop QP (14) is built on-
line, where the cost-function and the constraints are updated
based on the current measured/estimated robot state rx.

1Constraints (2) and (3) can also be directly represented by formula-
tion (10) since force and torque are part of the decision-variables vector χ.



III. CONSTRAINTS FORMULATION IN CLOSED LOOP
BASED ON FEEDBACK ADAPTIVE GAINS

For the sake of comparison with previous works (that
didn’t address a large panel of constraints), and without loss
of generality, the constraints (4) are in practice either as a
distance constraint:

h(q) ≥ 0 (15)

or as a velocity constraint:

ḣ(q, q̇) ≥ 0 (16)

For the sake of clarity, constraints (15) and (16) are
noted h and ḣ respectively. To transform (15), (16) into the
form (10), most of the existing approaches assume exact:

hi+1 = hi + ḣidt+
1

2
ḧidt

2 (17a)

ḣi+1 = ḣi + ḧidt (17b)

where ḣ = Jhq̇, ḧ = Jhq̈+ J̇hq̇, Jh being the constraint
Jacobian. To ensure that (15) will be fullfiled, the velocity ḣ
should be enforced to decrease until stop when h=0.

In what follows, we review two state-of-the-art methods:
velocity linear damper [10] and viability formulation [22].
There are two reasons for this choice: besides the fact
that [22] is the most up-to-date work in this topic, both
of [10] and [22] resolved the task-space control in the
acceleration space (in contrast to the kinematics task-space
control in [11], [12]).

A. Related Works

1) Velocity Linear Damper: enforces ḣ to decrease lin-
early w.r.t h given the following formula [8]–[10]:

ḣi+1 + αhi ≥ 0 (18)

where α > 0 is a tuning parameter. Based on (17b), the
second order form of (18) is given as (see e.g. [10]):

ḧi +Kvḣi +Kphi ≥ 0 (19)

resulting in a 2nd order linear differential inequality, where
the stiffness Kp and damping Kv gains are given by: Kp=
α
dt , and Kv= 1

dt . The gains tuning of this implementation is
limited to α since the damping gain is constant.

2) Viability Formulation: this formulation is based on the
assumption of a constant deceleration ḧconst, such that:

ḣi+1 +
√
αhi+1 ≥ 0 (20)

where α= 2ḧconst. Considering (17a) and (17b), the imple-
mentation proposed in [22] is based on a switching logic that
guarantees a constant deceleration until stop at h= 0. The
resulting second-order differential inequality is nonlinear and
complex, but it can be further simplified to:

switching logic→

 ḧi + 1
dt ḣi ≥ 0
or

ḧi + 1
dt ḣi + 1

dt

√
αhi ≥ 0

(21)

If ḧconst can be well estimated for the joint constraints [22],
it is difficult and non-trivial to estimate if one attempts to

extend this formulation to other constraints such as collision
avoidance, CoM constraints, etc.

Yet, neither velocity linear damper nor viability formula-
tion methods have been applied in closed-loop, or considered
with varying bounds. In fact, in closed-loop control, cx is
computed from rx obtained from the robot real state, and
is subject to uncertainties and sensor noises. Hence, (17a)
and (17b) become invalid because noises and estimation un-
certainties are not taken into account. Moreover, the previous
methods assume constant bounds on distance and velocity,
which is explicitly stated in the conclusion section in [22].

Hereafter, we propose a second order ODI formulation
of (15) and (16) that overcomes those shortcomings.

B. Second Order ODI Formulation of Constraints

Although (15) is a distance constraint, it induces implicitly
a coupling with the velocity since it requires that the latter
must drop to zero when the bound is reached, i.e. h=0. An
alternative to handle this coupling in the acceleration space
is by means of a second order ODI.

Let us formulate (15) and (16) as follows:

(15) formulated−−−−−−−−−→
as 2nd order ODI

ḧi +Kvḣi +Kphi ≥ 0 (22)

(16) formulated−−−−−−−−−→
as 2nd order ODI

ḧi + γḣi ≥ 0 (23)

where γ,Kv, and Kp are in R+. γ is used to tune the first
order dynamics in terms of velocity ḣ (23). However, the
challenge here is how to tune the stiffness and damping
gains Kp and Kv , respectively, such that (i) h(t), the solution
of (22), enforces (15), and (ii) ḣ(t) drops to zero if h= 0.
First, we show how ODI (22) is solved. Then, since ad-
hoc gains-tuning is inappropriate for a generic approach, we
present a systematic method to compute the gains. All the
formulas are considered at time t = idt, and thereby the
subscript i is dismissed.

1) Mathematical Formulation: let us consider the follow-
ing second-order Ordinary Differential Equation (ODE):

ÿ +Kv ẏ +Kpy = 0 (24)

which is the saturated ODI (22) (i.e. ≥ is replaced by =).
ODE (24) can be written as a system of two first-order ODE
as follows2:[

ẏ
ÿ

]
=

[
0 1
−Kp −Kv

] [
y
ẏ

]
= K

[
y
ẏ

]
, K ∈ R2×2 (25)

where K is the constraint-state feedback matrix. Thanks to
Petrovitch theorem [23], it is shown that given (22) and (24),
under initial conditions h(t0) = y(t0), ḣ(t0) = ẏ(t0) for t=
t0, we get: h(t) ≥ y(t), ∀t ≥ t0. This theorem states that
the ODE solution y(t) is the lower bound for all the ODI
solutions h(t). The idea is to enforce y(t) to satisfy y(t)≥0,
and ẏ(t)=0 if y(t)=0. Hence, if y(t)≥0⇒h(t) ≥0. Thus,
we will focus on the solution y(t).

2To explain the proposed approach, the distance constraint is considered
as a scalar h, y ∈R . The generality is not lost since the constraints, that
are often posed as vectors (e.g. joints constraints), are a stack of multiple
scalar distance-constraints.



Fig. 1. Phase trajectories (in black) denoting (24)’s solutions depending
on the initial states (dots at y=1), for the same gains. The corresponding
eigenvectors are in red dashed arrows. The green zone represents the viable
region whereas the blue zone denotes the unviable region. Note that these
regions depend on the gains Kp and Kv .

Given Kv = 2ξ
√
Kp where ξ is the damping coefficient

to be set, the eigenvalues λ1,2 of K are computed such that:

(K−λI)µ=0⇒λ1,2 =−1

2
Kv(1∓

√
1−ξ−2), ξ≥1 (26)

where I is identity matrix, µ ∈ R2 are the eigenvectors
corresponding to the eigenvalues λ ∈ R such that λ1,2 <
0, λ1≥λ2 so that K is Hurwitz, and µT1,2 =

[
1 λ1,2

]
.

For computation efficiency, (22) is inserted into the con-
straints set of (14) only if h≤hd, where hd is a predefined
safety margin. Also, we denote by initial state (yt0 , ẏt0) =
(ht0 , ḣt0) at t= t0, the corresponding constraint state.

Given an initial state, the phase trajectory (y, ẏ) converges
asymptotically to the origin (0, 0) if (26) holds (K Hur-
witz) [26]. This convergence property, due to the constraint-
state feedback, allows to deal with time-varying bounds.
However, the phase trajectory convergence does not depend
solely on the eigenvalues. It depends also on the initial state:
we can have different phase trajectories shapes for different
initial states; yet for the same eigenvalues (see Fig. 1). In
the worst case, the phase trajectory overshoots y=0, losing
thereby any guarantee that (15) holds. This case occurs if the
initial state is in the blue area in Fig. 1. Let us call this area
the unviable region in contrast to the viable region, denoted
in green, where y(t)≥0, ∀t≥ t0. Hence, it is not trivial to
find the suitable gains, since the constraint (15) can become
active in many initial states. In what follows, we propose a
systematic method to overcome this issue.

C. Gains Adaptation Method

In order to avoid overshooting, our solution is to adapt
the gains to change the shape of the viable region so that
the initial state is included. Hence, the phase trajectory
is enforced to remain within the viable region, so that
the convergence is achieved such that lim

t→+∞
y(t) = 0+. In

fact, if lim
t→+∞

y(t) = 0−, it means that the phase trajectory
overshoots. Given an initial state and (26) for ξ > 1, (24)
solution is:

y(t)=yt0

λ2− ẏt0
yt0

λ2−λ1
expλ1(t−t0) +

ẏt0
yt0
−λ1

λ2−λ1
expλ2(t−t0)


The limit lim

t→+∞
y(t) follows the first term dynamics since λ1

is the dominant pole (the second term vanishes faster to 0):

lim
t→+∞

y(t)= lim
t→+∞

yt0
λ2−

ẏt0
yt0

λ2−λ1
expλ1(t−t0) = 0+

⇒ ẏt0
yt0

=
ḣt0
ht0
≥ λ2, (ht0 > 0, ḣt0 ≤ 0)

The same result is obtained for ξ = 1 (λ1 = λ2):

y(t) = yt0

(
1 + t(

ẏt0
yt0
− λ1)

)
expλ1(t−t0)

lim
t→+∞

y(t) = lim
t→+∞

yt0

(
1 + t(

ẏt0
yt0
− λ1)

)
expλ1(t−t0) = 0+

⇒ ẏt0
yt0

=
ḣt0
ht0
≥ λ1, (ht0 > 0, ḣt0 ≤ 0)

In both case, the following formulas should be satisfied:

ḣt0
ht0

= λ2 ⇒

Kv = − 2(ḣt0/ht0 )

1+
√

1−ξ−2
≥ 0

Kp = (Kv

2ξ )2
(27)

The gains are computed once, at each time the constraint
is activated. The graphical interpretation of this result is
to bring µ2, being the borderline between the viable and
unviable regions (see Fig. 1), to pass by the initial state.
This is achieved by making µ2 slope λ2 equal to ḣt0/ht0 . The
main advantage of this method is to be adaptive to any initial
state (see Fig. 2). In fact, the latter depends on the dynamics
resulting from the tasks and the current active constraints.
One may choose high Kp and Kv gains which will result
in a larger viable region. However, it is not recommended
to use high gains in closed-loop, as this results in vibrations
and chattering. In order to improve the damping, we propose
nonlinear-gains Kp=fp(h) and Kv=fv(h) as follows.

D. Nonlinear-Gains Based Feedback

Consider a deformable mechanism having a set of parallel
layers of identical springs and dampers, Fig. 3. These layers
are shifted from each other by an infinitesimal distance dθ.
This model is equivalent to a nonlinear spring-damper system
for which the equivalent stiffness and damping gains are Keq

p

and Keq
v , respectively. Let Keq

p (h) = Kp + Kdisp
p (h) where

Kp is obtained from (27), and Kdisp
p is the varying term due

to the displacement. We get: Kdisp
p (h) = −

∫ h
hd
Kpϕp(θ)dθ,

where ϕp(θ) is the springs density per displacement dθ. If
ϕp(θ) = ϕp constant, we get: Kdisp

p (h) = Kpϕp(hd − h),
and finally:

Keq
p (h) = Kp[1 + ϕp(hd − h)] (28)



Fig. 2. Phase trajectories (in solid) are (24) solutions with our adaptive
gains method. The viable region changes shape according to the initial state
(dots at y = 1). The eigenvectors (dashed arrows) are delimiting the viable
regions. The unviable region is not shown.

Similarly, we have: Keq
v (h) = Kv +Kdisp

v (h). Following the
same steps to obtain (28), we get:

Keq
v (h) = Kv[1 + ϕv(hd − h)] (29)

where ϕv is dampers constant density per displacement dθ.
From (28) and (29), ξeq is obtained as:

ξeq(h) =
Keq
v (h)

2
√
Keq
p (h)

= ξ
1 + ϕv(hd − h)√
1 + ϕp(hd − h)

(30)

ϕv = ϕp = ϕ yields ξeq(h) = ξ
√

1 + ϕ(hd − h). The
resulting gains (28) and (29) increase linearly while the phase
trajectory is converging to the origin. Besides, if ξ = 1 the
constraint dynamics evolves from critically damped (ξeq(h=
hd)=ξ=1) to overdampings (ξeq(h<hd)>1): the damping
is enforced and the velocity ḣ is effectively reduced.

dθ

dθ

Kp

Kv

hd0 h

Keq
p

Keq
v

Fig. 3. Nonlinear spring-damper model.

IV. EXPERIMENTAL RESULTS

We validate our approach using position-controlled hu-
manoid robot HRP-4. The mc rtc3 framework is used to

3https://jrl-umi3218.github.io/mc rtc/index.html

control the robot. The control loop runs at a frequency of
200 Hz. At each control cycle, the joints positions are pro-
vided by the encoders and the joints velocities are estimated
numerically. In return, mc rtc provides the desired joints
positions q∗ after double integrating q̈∗ solution of (14). All
experimental scenarios are performed in closed-loop with
set-point tasks assigned such that different constraints reach
their bounds4. First, we compare the state-of-the-art [10],
[22] to our approach for collision avoidance constraints.
Then, we extend and test our approach for other classes of
constraints like joint bounds, CoM and velocity constraints.

In these experiments, contacts between the robot feet and
the ground are defined as equality constraints, and formulated
also as a second order ODE:

Ẋfootk/ground =0
formulated−−−−−−−−−→

as 2nd order ODE
Ẍfootk/ground+γẊfootk/ground =0

where Ẋfootk/ground is the relative velocity between the foot-k
(k={1, 2}) and the ground, and γ=10.

A. Collision Avoidance

To compare our method to [10], [22] we extend the
viability formulation constraint –originally formulated solely
for joints bounds in [22], to collision avoidance constraint:
h = δ− δmin ≥ 0, where δ is the distance between a pair

of bodies. ḧconst is computed such that ḧconst =
ḣ2
t0

2hd
. The

collision avoidance constraint is defined between the robot
waist, and the right and left elbows, respectively (see Fig. 4).
We fix the minimal allowed distance between each pair of
bodies to δmin =6 cm with a safety margin hd=4 cm. The
damping coefficient and the springs and dampers density are
fixed to the best ones: ξ = 1.2 and ϕp = ϕv = 0.5

hd
. Starting

by an initial posture where the shoulders are fully stretched,
we assign joints position targets for both shoulders so that
the elbows get to the waist. The results are shown in Fig. 5.
The methods in [10], [22] lack robustness against noises and
un-modeled nonlinearities encountered in closed-loop: jerky
motions and chattering especially near δmin are noticed. In
contrast, our approach exhibits a smooth motion, and the
velocity decreases until stop when δ = δmin.

Figure 6 shows how our approach deals with variable
distance bounds that are assumed to be constant in [22]. At
t= 0, the constraint is violated h < 0. The QP solver does
not fail, and δ converges to δmin if δmin≥δtarget.

B. Joints Bounds and CoM Constraints

To validate our approach on the CoM constraint, we define
a conservative polygon of support for the CoM [24]. Next, we
define end-effector unreachable set-point target for the right
hand so as during the reaching motion, the CoM reaches
the polygon bounds. Different targets are defined, see Fig. 7.
Then, we fix the right hand target, and move the left arm to
reach the left shoulder roll and pitch joints limits; all con-
straints together. The robot floating-base is estimated using a
Kinematic Inertial Observer based on the IMU measurements

4https://youtu.be/0p6wd8pppKk



Fig. 4. Initial posture (left) and the pairs of bodies (right) concerned by
the collision avoidance constraint and highlighted with yellow contour.

and the the robot kinematics chains [29]. Figure 8 shows
the temporal and spatial evolutions of the estimated CoM in
addition to the different time-frame where either the right or
left arm is moving. We notice that the CoM is constrained
inside the polygon except in the yellow-highlighted spots
representing overshoots. The latter have a magnitude of
2 mm at maximum and occur very briefly when the end
effector task is assigned. This is due to the un-modeled
flexibilities at the ankles which act as a perturbation against
the constraint. However, these perturbations are damped and
the constraint is stabilized at the boundary. Moreover, despite
the CoM noisy-estimation, no jerky motions or chattering
have been observed near or at the bounds.

Figure 9 shows how the robot adjusts its whole-body
posture when the left arm is fully stretched in different
directions to maintain the CoM at the polygon boundary
(highlighted with the light green area in Fig. 8). The left-
shoulder roll and pitch joints-positions bounds are reached
smoothly with zero velocity as it is shown in Fig. 10.

C. Velocity Constraint

To validate our approach for velocity constraint formu-
lation, we bound the relative velocity between the pair
of bodies shown in Fig. 4. As in Section IV-A, variable
velocity bounds are considered. The gain γ is fixed to
γ = 10. Figure 11 shows how the velocity converges to
the bound when the latter is variable. Again, despite the
velocity noisy-estimation, no chattering or jerky motions
have been observed during the experiment. In [10], [22],
based on (17b), γ is taken as γ = 1

dt = 200 which is a
relatively high gain that could be critical in closed-loop.
Indeed, with such gain, the QP solver failed to find a solution
when the velocity approached the bound of 0.05 m/s.

V. CONCLUSION

In this letter, we propose a solution to deal efficiently
with a class of constraints commonly found in task-space
QP controllers based on acceleration, force and torque as de-
cision variables. More particularly, we address distance and
velocity constraints that originally are not written in terms of
the decision control variables. First, we show that [10], [22]
approaches have shortcomings when the constraints reach
their bounds. The main limitations acknowledged by their

authors are: (i) the need of precise models (no noise and
estimation uncertainties); (ii) they do not operate well in
closed-loop scheme, i.e. when the robot state is directly fed
back to the QP controller (chattering), which is the essence of
anything called control; and (iii) they do not handle variable
bounds. We first show that the reason of these limitations
is the ‘gains’ parametrization and subsequent tuning. Then,
we propose a formulation for such a class of constraints at
large based on ODI, with an automated adaptive gain tuning
to overcome all the previously mentioned problems. Exper-
iments conducted on the HRP-4 humanoid robot confirmed
performance and efficiency of our approach, which is then
integrated as part of our mc rtc controller library.

Nevertheless, there remain some limitations that need
further investigations. First, we assume no constraints on the
feasible accelerations ḧ. That is to say, if the constraint-
set includes implicit or explicit constraint such that ḧ ≤
ḧmax, it may result in constraints incompatibility as in [11],
[13], [22], [30]; namely when the necessary amount of
acceleration to enforce (15) is greater than ḧmax. This may
occur either if ḣt0 is high or hd is low. Currently, we are
working on how to handle constraints compatibility within
the proposed approach. At the same time (because this is
somehow related), we aim at solving few shortcomings due
to the feedback on the entire controller part, i.e. considering
the cost part of the tasks with more stability, robustness and
performances, together with a systematic setting of the tasks’
gains.
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contexts. Phd thesis, Université Pierre et Marie Curie - Paris VI,
Oct. 2017.

[14] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: A focus on sequencing and tasks transitions,”
in IEEE International Conference on Robotics and Automation,
pp. 1283–1290, 2011.

[15] L. Saab, O. E. Ramos, F. Keith, N. Mansard, P. Soueres, and J.-Y.
Fourquet, “Dynamic whole-body motion generation under rigid con-
tacts and other unilateral constraints,” IEEE Transactions on Robotics,
vol. 29, no. 2, pp. 346–362, 2013.

[16] A. Sherikov, D. Dimitrov, and P.-B. Wieber, “Whole body motion
controller with long-term balance constraints,” in 2014 IEEE-RAS



Fig. 9. Superposition of two pictures when the left arm is stretched in
two different directions. The blur of the whole body shows how the robot
adjusts its posture to keep the CoM at the boundary of the equilibrium
polygon (light green area at the bottom in Fig. 8).

Fig. 10. Left shoulder roll (top) and pitch (bottom) joints positions (blue)
and velocities (green). The upper and lower joints bounds are in red dashed.

Fig. 11. Velocity (blue) evolution with variable bounds (red dashed).

International Conference on Humanoid Robots, pp. 444–450, Nov
2014.

[17] R. Lober, Task compatibility and feasibility maximization for whole-
body control. Phd thesis, Université Pierre et Marie Curie - Paris VI,
Nov. 2017.

[18] S. Feng, X. Xinjilefu, W. Huang, and C. G. Atkeson, “3d walking
based on online optimization,” in IEEE-RAS International Conference
on Humanoid Robots, pp. 21–27, 2013.

[19] M. Charbonneau, F. Nori, and D. Pucci, “On-line joint limit avoidance
for torque controlled robots by joint space parametrization,” in IEEE-
RAS International Conference on Humanoid Robots, pp. 899–904, Nov
2016.

[20] K. Hu, C. Ott, and D. Lee, “Online human walking imitation in
task and joint space based on quadratic programming,” in IEEE
International Conference on Robotics and Automation, pp. 3458–3464,
2014.

[21] F. Flacco, A. De Luca, and O. Khatib, “Control of redundant robots
under hard joint constraints: Saturation in the null space,” IEEE
Transactions on Robotics, vol. 31, no. 3, pp. 637–654, 2015.

[22] A. del Prete, “Joint position and velocity bounds in discrete-time
acceleration/torque control of robot manipulators,” IEEE Robotics and
Automation Letters, vol. 3, pp. 281–288, Jan 2018.

[23] A. F. Dragoslav S. Mitrinovic, J. Pecaric, Inequalities Involving
Functions and Their Integrals and Derivatives. Mathematics and Its
Applications 53, Springer Netherlands, 1 ed., 1991.

[24] H. Audren and A. Kheddar, “3-d robust stability polyhedron in
multicontact,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 388–
403, 2018.

[25] D. J. Agravante, G. Claudio, F. Spindler, and F. Chaumette, “Visual
servoing in an optimization framework for the whole-body control
of humanoid robots,” IEEE Robotics and Automation Letters, vol. 2,
pp. 608–615, April 2017.

[26] H. K. Khalil, Nonlinear systems; 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 2002.

[27] K. Bouyarmane and A. Kheddar, “On weight-prioritized multitask
control of humanoid robots,” IEEE Transactions on Automatic Control,
vol. 63, pp. 1632–1647, June 2018.

[28] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[29] S. Caron, A. Kheddar, and O. Tempier, “Stair climbing stabilization
of the hrp-4 humanoid robot using whole-body admittance control,” in
IEEE International Conference on Robotics and Automation, pp. 277–
283, May 2019.

[30] S. Rubrecht, V. Padois, P. Bidaud, M. Broissia, and
M. Da Silva Simoes, “Motion safety and constraints compatibility for
multibody robots,” Auton. Robots, vol. 32, p. 333–349, Apr. 2012.


