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Abstract— Legged robots have great potential to perform
complex loco-manipulation tasks, yet it is challenging to keep
the robot balanced while it interacts with the environment.
In this paper we investigated the use of additional contact
points for maximising the robustness of loco-manipulation
motions. Specifically, body-ground contact was studied for its
ability to enhance robustness and manipulation capabilities of
quadrupedal robots. We proposed equipping the robot with
prongs: small legs rigidly attached to the body which create
body-ground contact at controllable point-contacts. The effect
of these prongs on robustness was quantified by computing the
Smallest Unrejectable Force (SUF), a measure of robustness
related to Feasible Wrench Polytopes. We applied the SUF
to evaluate the robustness of the system, and proposed an
effective approximation of the SUF that can be computed at
near-real-time speed. We developed a hierarchical quadratic
programming based whole-body controller that can control
stable interaction when the prongs are in contact with the
ground. This novel prong concept and complementary control
framework were implemented on hardware to validate their
effectiveness by showing increased robustness and newly en-
abled loco-manipulation tasks, such as obstacle clearance and
manipulation of a large object.

I. INTRODUCTION

Combined locomotion and manipulation tasks are a key

competence for legged robots in applications such as ware-

housing, search and rescue, and offshore inspection and

maintenance. To manipulate objects, a robot must exert

forces onto the environment. To locomote, the robot must

remain balanced and stable under the load of the manipula-

tion. The main challenge of loco-manipulation is performing

these tasks simultaneously by managing the limited resources

required to complete them: motor torques and tangential

contact forces [1], [2]. Better management of these resources

will improve the robot’s workspace, payload, robustness

and stability. This paper investigates how to improve that

management by adding contact points to a quadruped robot.

Previous work has shown that extra contact points reduce

resource consumption and improve the stability. Examples

are found in humans or humanoid robots using their arms for

balance and in multi-finger and arm manipulation, [3], and

[4]–[6], and [7] respectively. By using extra body contact, a

humanoid robot can go beyond traditional stepping balance

control [8], [9], which is useful in a confined space with

restricted foot placement. Also, torque controlled actuators
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Fig. 1: The body-ground contact for enabling diverse loco-

manipulation tasks: manoeuvring objects by legs.

enable accurate force control at multiple contacts that can in-

crease the robustness of quadrupedal locomotion, especially

during perturbations [10] and on various soft and slippery

ground conditions [11].

Additional environmental contacts, however, also produce

challenges in control, due to the uncertainty in estimating

exact contact locations, and dealing with non-trivial surface

geometries of the contacting body. Complex contacts do not

fit well into multi-contact frameworks, which rely on simple

contact geometry, and often on contacts only occurring at the

end of the kinematic chain. This can limit the versatility of

using extra contact points such as knee-ground contact [12],

sliding [13] or rolling interactions in humanoid robots [14].

Recent machine learning approaches address more complex

contact scenarios, such as in hand-manipulation and Jenga

[15], [16] but also have limited versatility due to challenges

of learning.

In contrast, humans and animals use various parts of their

bodies to increase movement stability. Next to enhancing

robustness, body-ground contact provides a manipulation

benefit: by resting on the body, supporting limbs can be

freed for performing manipulation tasks. We are motivated

to investigate how quadrupedal robot movement might ben-

efit from additional non-conventional body-ground contacts,

which will be evaluated in this paper.

To enable versatile body-ground contact, we equip a

quadruped robot with additional fixed limbs (see Figure 1),

which we call prongs. These prongs are rigidly attached

to the base of the robot and ensure point-contact at a

known location. Such contact fits into the whole-body force

control pipeline shown to be versatile in other multi-contact

scenarios [17]. Rigidly connecting the prongs to the robot’s

torso means they will reduce actuator loads by supporting
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the robot’s weight when they are in contact with the ground,

thereby allowing the robot to perform additional tasks. Note

the contrast between prong-ground and belly-ground contact:

by using prongs, we know the exact contact locations, which

would be difficult to estimate when using the belly, especially

on non-level ground. A second key issue is manipulability:

the height of the prongs allows the body to be mobile while

maintaining contact with the ground, which would be more

difficult with belly-ground contact.

Prong-like concepts are seen in wheeled platforms. Using

outriggers, a wheeled robot can resist more disturbance force

[18] [19], with an estimate of the benefits found in [20].

Legged robots can be augmented with wheels or skates at

the feet to speed up locomotion in easy terrain [21], [22], or

with a tail to counteract inertial shifts during fast locomotion

[23]. Augmentations proposed in this paper can be used in

parallel with those mentioned above.

While the prongs provide controllable ground contact,

there are three related open questions: how to design

prongs so they provide maximal benefit, how to deal with

the control challenges posed by body-ground even with the

simplified point contacts, and how to plan motions while

deciding if and how to make contact with the prongs. This

paper focuses on the proof-of-concept and the systematic

analysis of enabling body-ground contact, therefore aspects

such as planning or further mechanical enhancement such as

retractable prongs are not within the scope.

We first deal with prong design, which must consider

placement, ground-clearance (length), manipulability and

disturbance rejection capabilities. We define the Smallest

Unrejectable Force (SUF) as a metric to quantify disturbance

rejection ability in loco-manipulation tasks within actuation

limits and interaction constraints, and provide a fast-to-

compute approximation, which are used optimise the design

of the prongs. Our approach extends previous work on

similar metrics (e.g., [24], [25]) and works directly showing

the importance of optimising posture for robustness (e.g., [2],

[26]).

To control the robot with prongs, we use the estab-

lished framework for modern quadruped robots: Quadratic

Programming (QP) based inverse dynamic controllers [10],

[17], [27], [28]. However, these controllers were designed

for contacts at the ends of the kinematic chain, not at

the torso. The control of non-end-effector limb contact

has been studied in manipulation [24] considering contacts

with moving obstacles which do not kinematically constrain

the contact limbs. When using prongs, the torso will be

constrained, and the above controllers might become unstable

due to rank deficiency of the constraint Jacobian. We propose

a hierarchical QP controller that uses a reorganised QP

hierarchy and a singular-value-decomposition-based pseudo-

inverse of the constraint Jacobian to handle provide stable

and numerically reliable control.

A. Contributions

Our paper studies the design of prongs for body-ground

contact in quadrupedal robots. We validate their performance

in three hardware experiments: push-rejection, obstacle clear-

ance and object manipulation. The last two experiments use

two conventional legs freed for manipulations by the support

of the prongs. This provides the following contributions:

1) A proof-of-concept prong design for the ANYmal robot

which enables effective body-ground contact (Section

III).

2) A novel method to quickly compute an approximation

of the Smallest Unrejectable Force, a measure for the

robustness of the robot (Section IV).

3) Metrics for benchmarking the robustness and stability

of a robot with and without prongs (Section VII).

4) An hierarchical QP controller that enables the robot to

be operated with prongs by including contact constraints

on base movement (Section VI).

Section II explains our notation for the robot dynam-

ics. Section III discusses the optimal prong design. Our

robustness measure, the SUF, and its novel approximations

are explained in Section IV. Section V shows results from

simulations and optimisations. Section VI explains the con-

troller for the hardware experiments. Hardware experiments

highlighting the efficacy of the prongs are in Section VII.

The discussion and conclusion are in Section VIII and IX.

II. PRELIMINARIES AND ROBOT DYNAMICS

The dynamics of a quadrupedal robot with a manipulator,

and prongs attached, as shown in Fig. 2, are given by:

M(q)q̈+h(q, q̇)=d(q̈, q̇, q)=Bτ+J⊤
f λf+J⊤

p λp+J⊤
e F, (1)

where q are the generalised coordinates of the robot describ-

ing the position and orientation of the body, and the position

of each joint, M(q) is a positive definite mass matrix, h(q, q̇)
is the dynamic bias containing of centrifugal, Coriolis and

gravitational effects, τ are the joint torques, B is a selection

matrix, Jf, Jp and Je are the Jacobians of the feet, prongs

and end-effector of the arm respectively, and λf, λp and F

are external (reaction) forces at those points.

These equation of motions are subject to further con-

straints to ensure physically feasible ground interaction and

joint/motor torques. Ground interaction constraints ensure

the robot does not slip or penetrate the ground, and are

only considered when the associated body part is in ground

contact. For computational efficiency, these conditions are

approximated as linear constraints for each contact point i:

[

0 0− 1
]

λi ≤ 0 (2)
[

1 0 − 1

2

√
2µ

]

abs(λi) ≤ 0 (3)
[

0 1 − 1

2

√
2µ

]

abs(λi) ≤ 0 (4)

Jiq̈ + J̇iq̇ = 0 (5)

where µ is a friction coefficient, and the abs-operator returns

the piece-wise absolute value. Additionally, the motor capa-

bilities are reflected in bounds on the joint torque for each

joint index i and torque limit τ̄i:

−τ̄i ≤ τi ≤ τ̄i. (6)
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III. OPTIMAL DESIGN OF THE PRONGS

The prongs enlarge the buffer between the motor torque

limits and the torques required to stand. This buffer can then

be used to reject disturbances or perform secondary tasks.

However, the magnitude of the benefits depend on how the

prongs are placed and sized. To investigate the effects of the

prong design we focus on a scenario in which a force is

applied at the end-effector of an arm attached to the torso of

a robot (Fig. 2). We find the effect of prong placement on the

size of the disturbance the end-effector can sustain without

moving the robot. We then optimise the prong placement and

the robot configuration for this robustness measure.

By using a two prong configuration, the robot can either

fix torso pitch (by grounding both prongs) or allow pitching

(by grounding one prong) depending on task requirements.

For simplicity, we enforce symmetry by placing two prongs

of equal length on the x-axis of the robot frame. Fur-

thermore, we enforce a symmetric position of the feet. In

this configuration, maximum robustness is achieved when

the prongs are furthest apart, so prongs are placed as far

apart as possible without interfering with the leg motion.

Alternate placements might be beneficial for tasks with

different loading conditions, and can be optimised using

the methods presented. For the current configuration, the

optimisation only requires three parameters:

max
{xf ,yf ,bz}

FSUF(xf , yf , bz), (7)

where the SUF is a measure for the robustness (defined in the

next section) and xf , yf and bz are the feet x and y position

and torso z position. These decision variables are shown in

Fig. 2. When optimising prong position, the prong length

matches the height of the torso. To solve the inverse kinemat-

ics, we use a standard iterative procedure with the transpose

Jacobian, which requires no further regularisation.

IV. SMALLEST UNREJECTABLE FORCE

A key element of the robustness of a robot is the amount

of external force it can withstand whilst tracking a target

motion. Computing such forces and associated robustness

metrics can be done via Feasible Wrench Polytopes, as

discussed for legged robots in [24], and for manipulation

in [29]. The FWP is the set of wrenches applied to the

robot, such that the ground reaction forces and joint torques

required to execute the desired motion stay within the friction

cone and motor limits respectively. Here, we are interested

in a slight variation: the Rejectable Force Polytope (RFP),

the set of forces that can be applied to the robot at the

end-effector, such that it is able to perform the desired

accelerations while satisfying the constraints in (1)-(6).

FRFP(q, q̇, q̈d) = {F ∈ R3|(1)-(6) hold for some values

of(λf , λp and τ), q̈ = q̈d}, (8)

where q̈d is the desired acceleration. The RFP is a polytope,

as the constraints are linear in the free variables.

In practice, it is desirable to summarise the RFP into a

single robustness metric. For this we propose the Smallest

Fig. 2: Rejectable Force Polytope and maximal rejectable

force for optimised robot configuration with prongs (bottom)

and without prongs (top). The end-effector is set to a world

frame position: {0.8m, 0.2m, 0.4m}.

Unrejectable Force: the smallest disturbance force the robot

cannot withstand while performing its desired motion. This

is the same as finding the the Chebyshev radius of the RFP,

but with the centre of the circle fixed to the origin.

The scheme from [30] can compute the exact RFP, but

the computation time does not scale well with the number of

contacts and joints, as it requires a transition between vertex-

representation of the FWP to its halfspace-representation.

The next step is to compute the SUF from the RFP, which

is a one-dimensional linear optimisation problem (see (9)

for details). To further simplify this step, a metric that finds

the Smallest Unrejectable Force in a single predetermined

direction was proposed in [24].

Here we propose and investigate three approximations of

the SUF: Fibonacci, affine, and quadratic. The first approxi-

mates the RFP, the latter two directly approximate the SUF

without finding the RFP.

The Fibonacci approximation is based on an inner (con-

servative) approximation for the RFP. Points on the boundary

of the RFP are found by solving the optimisation problem:

max
f,λf ,λp,τ

f s.t. (1)-(6), F = fF̂

where the resulting f is the maximum feasible scaling

factor for force in the direction F̂ , considering the dynamic

equations and leg joint torque limits τ̄ .

The approximation of the RFP is the polytope spanned by
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vertices found by solving the above optimisation for a set

of approximately uniformly distributed force directions (the

Fibonacci-sphere [31]).

To determine the size, ρ of the Smallest Unrejectable

Force, we check for each halfspace that determines the

polytope to check if the worst case force direction would

violate the associated constraint at that value of ρ. Given

halfspace representations aiF ≤ bi, where i indexes the

halfspaces of the RFP, we know the worst case force is in

the direction of ai (see [32]). Hence we solve the following

optimisation problem using enumeration:

max
ρ

ρ s.t. ρ||ai|| ≤ bi ∀i = max
i

(bi||ai||−1) (9)

The Fibonacci approximation still requires a conversion from

vertex to halfspace representation. The computation time

depends on the number of vertices sampled. We use 1024

samples for a high quality approximation.

The affine and quadratic approximations of the SUF do not

compute the RFP explicitly. Instead, they find the worst case

disturbance force (similar to above), while simultaneously

solving for an optimal control law determining how the

joint-torques and ground reaction forces change with the

disturbance force. As the true (nonlinear) optimal control

law cannot be computed efficiently, the two approximations

adapt the computation techniques from [33] to find opti-

mal affine and quadratic control laws respectively. Detailed

derivations of the techniques can be found in their work. Our

formulations deviate slightly from those in [33] to simplify

handling of the equality constraints for this specific scenario,

and to search for the largest sphere centred around the origin,

rather than around an arbitrary point.

First reparametrise the control equations:

[

F τ λ
]⊤

=

[

I 0
−W+J⊤

e N

] [

F

δQ

]

+

[

0
W+d

]

where δQ are combinations of joint-torques and ground

reaction forces in the null-space of the dynamics equation,

which are solved using the matrix W =
[

B J⊤
f J⊤

p

]

, the

matrix N is a basis for the nullspace of W and the Moore-

Penrose pseudo-inverse is indicated by the + superscipt. The

use of the pseudo-inverse in this computation requires that

the desired acceleration satisfy the movement constraints and

can be executed by the robot, given unlimited motor torques

and contact forces.

The affine approximation optimises an affine control law

from disturbance to reaction forces and torques:

δQ = δQ0 + V F (10)

where δQ0 are nominal joint torques and ground reaction

forces, and V is a gain matrix. These parameters are op-

timised along with the magnitude of the SUF (ρ), via the

conical quadratic program:

max
ρ,δQ0,V

ρ s.t.
[

0 δQ0

]

ai +
∣

∣

[

ρI V ⊤
]

ai
∣

∣ ≤ bi ∀i (11)

the constraint coefficients in ai and bi are taken from (3)-

(6). Informally, the term inside the norm represents the effect

of the worst case disturbance force on the original linear

constraint. The quadratic approximation uses a quadratic

control law. The resulting semi-definite program is included

in the Appendix.

V. SIMULATIONS

This section first compares the proposed approximations

on computational efficiency and accuracy. Then the prong

optimisation problem from Section III is solved using the

affine approximation of the SUF.

A. Comparing Approximation Methods

This section compares the computation time and accuracy

of all computation methods: exact, single direction [24],

Fibonacci, affine and quadratic. The simulations were imple-

mented with Julia libraries for rigid body dynamics [34]

and optimisation [35], [36]. Simulations were ran using an

Intel Core i7-7830x processor and 32Gb of memory.

To compare the approximations the SUF was computed for

random robot configurations from two scenarios: 1) tele-op-

eration scenario, similar to [30], in which there is no arm

attached to the robot, three legs are on the ground, and the

remaining leg is used as end-effector 2) a scenario with an

arm attached to the robot functioning as end-effector, and all

four legs of the robot in contact with the ground (see Fig.

2).

The results, shown in Table I, affirm the slow computation

of the exact method. The affine and quadratic approxima-

tions are faster than the Fibonacci approach. The quadratic

approximation scales less well to the arm-attached scenario,

due to the number of parameters in the quadratic term of the

control law. The single direction approach is clearly fastest.

Fig. 4 conveys the quality of the approximations, by

comparing the sizes of their SUFs relative to exact compu-

tation. Only the arm-attached scenario is shown to highlight

the potential differences in quality, as those are larger in

that scenario. The quadratic and Fibonacci approximations

are very close to exact, with the affine approach resulting

in slight under-approximations. The affine approximation

failed to converge once due to numerical issues. Note these

three approximations are conservative. The single-direction

approximation is shown to have poor accuracy. Furthermore,

this approach overestimates of the SUF, which is undesirable
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Fig. 4: Boxplot of relative SUF size in each approximation.

The background color indicates the desirability. More ac-

curate approximations are preferred, and errors that under-

approximate the SUF are less undesirable, as the perfor-

mance of the robot at the least matches the prediction,

meaning that such errors do not lead to failures.

TABLE I: Computation time of SUF-approximations in ms

Task Exact Fibonacci Affine Quadratic Single

teleoperation 4301 588.8 13.8 84.169 4.65
manipulation 37747 727.0 17.49 709.1 4.93

for robustness analysis. Due to the favourable trade-off

between conservativity, accuracy and computation time, the

affine approximation is used in the remainder of this paper.

B. Optimising Robust Body-Ground Contact

We optimised the prong length and placement in order

to maximise the SUF for a fixed end-effector position, see

(7). As the FSUF function is non-smooth, and gradients are

difficult to obtain even where they exist, we use a gradient

free optimisation method (COBYLA [37] in the Nlopt li-

brary [38]). A penalty method on the foot-placement error

ensures the inverse-kinematics is successful at the solution.

A multi-start with 20 trials is used.

The results of this optimisation are shown for scenarios

with and without prong in Fig. 2. Shown are the optimal

configuration of the robot, the resulting rejectable force

polytope, and a sphere with the SUF as radius. The forces are

scaled using a ‘stiffness’ of 1000Nm−1. The polytopes and

spheres are translated, such that their origin (0 disturbance

force) is at the end-effector. The minimal non-rejectable

forces are 88N and 96N respectively.

To show the efficacy of prongs, we also found the SUF

given a body height, optimising only the foot locations, see

Fig. 3. Slight noise is caused by approximations in the IK

algorithm. When the prongs are attached, the SUF is pointed

upwards, and is limited by the unilaterality conditions. The

prong’s length has little effect in this direction, so does not

Fig. 5: The push recovery experimental setup. The robot is

being pushed by a stick equipped with a force/torque sensor.

effect the SUF. Therefore, the prong length can be decided

by other considerations: ground clearance and a minimum

height from the base. Similar reasoning shows that adjusting

the y-position of the prongs (or non-prong body-ground

contact) would not benefit robustness for this scenario. The

prongs also have little effect on the SUF when the torso

height is larger, as the robot legs are then close to their

singular position, which limits joint torques. However, as

this singularity comes with mobility and control issues, such

heights are undesirable. For more practical torso heights we

see that the prongs provide a benefit of up to 35%.

VI. DESIGN OF THE QP CONTROLLER

The whole-body-control of ANYmal uses the well es-

tablished hierarchical QP paradigm [39]. Recently, modi-

fications have been proposed to this paradigm to improve

robustness. For example, the techniques from [27] aim to

improve robustness against joint tracking errors. In this pa-

per, we follow the hierarchical QP framework by combining

foot contact constraints and prong contact constraints into a

single augmented contact Jacobian. As such, the prong and

foot contacts are considered in the same way and their forces

are optimised simultaneously.

At each time-step, as part of the QP, the controller min-

imises an error between the desired and actual task-space

accelerations space: ||ẍ−ẍd||2w, with the desired accelerations

based on the error e in the task space position. If for

ẍ = ẍd the kinematic constraints do not hold, i.e. the system

is overconstrained with respect to its desired movement,

minimising the acceleration error might lead to unstable

behaviour. To ensure a solution that stabilises the robot, we

use a whole-body controller consisting of the following five

hierarchical layers, each solving a QP:

1) Dynamic feasibility: finds any feasible solution for the

dynamic constraints, (1)-(6).

2) Torso angular acceleration tracking: minimises the error

between the desired angular acceleration and the exe-

cuted angular acceleration.

3) Torso translational acceleration tracking: when the

prongs contact the ground, this layer has no effect on

the outcome, as translational acceleration is not in the

available nullspace. This prevents unstable behaviour.

4) Swing foot acceleration tracking
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Fig. 6: The top two plots show the push force and resulting

displacement during the experiment, and show that the

behaviour of the robot is similar in both scenarios. The

bottom plot shows a comparison of required motor torque

when pushing the robot with (red) and without (blue) prongs.

5) Torque minimisation: minimises the sum of squared

motor torques, in order to reduce energy consumption.

Each layer ensures that optimality conditions of the previous

layers are satisfied, i.e., by optimising into the nullspace

of the previous layers. This implementation also reduces

computational load using methods from [40] to avoid directly

computing the torques. Due to the prongs, the first layer

involves a pseudo-inverse of the constraint Jacobian, imple-

mented using singular-value-decomposition. The hierarchical

order ensures numerical stability of this pseudo-inverse, and

ensures stable motions even if the desired accelerations

cannot be tracked exactly. Note that the prongs increases

the number of optimisation parameters, which potentially re-

quires consideration on platforms with severe computational

constraints.

VII. HARDWARE EXPERIMENTS

To validate the use of prongs, we perform three exper-

iments. 1) Pushing the robot to assess the joint-torques.

2) Clearing an obstacle using the robots’ conventional legs,

freed for this task by the prongs. 3) Lifting a box with two

side legs, to establish the versatility of the controller.

A. Push Recovery

To verify that our controller is able to use the prongs to

enhance the robustness of the robot, we push the robot with

a rod equipped with a force-torque sensor. The experiment

is shown in Fig. 5. We push the robot horizontally at the

centre of lateral side of the base. The robot is pushed

with and without prongs in contact and starts in the same

configuration for both experiments, which is the default

standing configuration of the robot-platform with the torso

height lowered to the height of the prongs. The force is

gradually increased up to approximately 30 N. After holding

this force for 5 seconds, the force is reduced to 0.

Fig. 6 shows the base displacement, disturbance force

and motor torque during the experiment. The key result

is found by comparing the effective compliance and the

amplification factor between disturbance force and motor

torque during the period of maximum push force. The motor

torque is significantly lower with prong, despite a slightly

stiffer torso behaviour. These reduced knee-joint torques

result in a capacity to reject larger disturbance forces.

B. Obstacle Clearance

The second experiment shows how the robot’s ability to

perform basic manipulation is improved when using prongs.

Standard quadrupeds would be unable to perform manipula-

tion with more than one leg, as they are required for standing.

The prongs take over responsibility for standing, freeing the

legs for manipulation. Using the free-gait motion description

library [41], we generate a sequence of body and end-effector

targets, such that the robots pushes an obstacle away.

The resulting motion can be seen in Figs. 7 and 8. Note

that, by necessity, the legs of a quadruped are equipped

with relatively strong motors, which makes them well suited

for obstacle clearing tasks such as this. Performing such a

task is only possible when relying on body-ground contact.

Enhancing the capabilities of the robot to allow obstacle

clearing makes them more versatile in rough terrain.

C. Box Lifting

Experiment three shows controlled torso mobility while

prongs are in contact with the ground, followed by manip-

ulation using the legs. The robot lowers on its prongs, and

leans to its right side, freeing the left legs for manipulation.

The legs are controlled in task-space with low-gains, allow-

ing basic dual arm manipulation, shown by picking up a box.

Figures 9 and 10 show snapshots two different box lifting

experiments. This and the previous experiment are shown in

the accompanying video.

When lifting the left-side legs, we found that the desired

ground-contact force changed very quickly, which can result

in jerky motions. We enforced a smooth contact force in

our optimisation framework to mitigate this issue. And for

future work, a passivity-based compliance control [42] can

be introduced to resolve the stability issue during the drastic

switch of multiple contact points.

VIII. DISCUSSION

The improvement in robustness and manipulation capa-

bilities introduced by the body-ground contact opens several

applications, improving the intervention capabilities in robots

deployed for exploration and monitoring. However, body-

ground contact needs more research before quadrupeds are

ready for such applications.
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Fig. 7: The robot leaning on both prongs to push a box away. From top left: From a standing position (1), the robot lowers

itself onto the prongs (2), which enables the front legs to be lifted from the ground. These front legs are used to push the

box (3), which is pushed out of the way (4-6), clearing space for the robot to navigate onto the platform.

Fig. 8: The robot leaning on both prongs to push a box away. From top left: From a standing position (1), the robot lowers

itself onto the prongs (2), which enables the front legs to be lifted from the ground. These front legs are used to push the

box (3), which is pushed out of the way (4-5), creating a clear path.

Fig. 9: Snapshots of box lifting experiment: support provided by the prongs frees up two of the legs for a manipulation task.

Fig. 10: Snapshots of a second box lifting experiment using a box with different dimensions.

There are four main areas of exploration for future work.

First is developing an approach to quantify and optimise the

manipulability benefits the prongs. Second is extending the

affine and quadratic approximations of the SUF. Knowledge

about the distribution of contact forces can be used to bias

the robustness measure towards more likely disturbances.

With further computational efficiency improvements, these

approximations could be incorporated in real-time planning

and control. Third is incorporating body-ground contact in

motion planning. Making decisions about when to use the

prongs (for robustness) and when not (for speed), maximising

the utility of the prongs is a challenging problem due to the

intermittent nature of the contact. Fourth is applying prongs

to body-environment contact with other robot morphologies.

Two examples are: a quadruped increasing its robustness by

leaning sideways on a wall with its body, and a robot arm

increasing its accuracy by contacting a table with a prong on

its elbow.
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IX. CONCLUSION

This paper studied the use of prongs to enable body-

ground contact in quadrupedal robots. We showed that using

prongs increases the robustness of the robot, as measured

by its ability to reject forces applied to the end-effector, by

up to 35 %, largely independent on prong length. A method

was developed for fast approximation of this Smallest Unre-

jectable Force metric.

We applied an optimisation-based whole-body controller

that handles constrained body motion resulting from body-

ground contact. On the hardware, we verified the increased

robustness in the form of push resistance with limited motor

torques. We also showed obstacle clearance and basic object

manipulation, two capacities added by the prongs freeing the

legs from their body-support task.

APPENDIX

To compute the SUF, it is also possible to use a quadratic

inverse dynamics law. Optimising this law for maximal force

rejection is a semi-definite program. The program is detailed

below, by adapting from [33].

max
ρ,δQ0,V,W,ζ,ξ

ρ s.t. ζ ≤ b (12)

ξ ≥ 0 (13)
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Here the quadratic term of the inverse dynamics law is W ,

and we introduced two intermediate variables ξ and ζ.
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