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Abstract— Robotic rehabilitation for post-stroke therapies is
actually an emerging new domain of application for robotics
with proven success stories and clinical studies. New robotic
devices and software applications are hitting the market with
the aim of assisting specialists carrying out physical therapies
and even allowing patients exercising at home. Rehabilitation
robots are designed to assist patients performing repetitive
movements with their hemiparetic limbs to regain motion.
A successful robotic device for rehabilitation demands high
workspace and force feedback capabilities similar to a human
physiotherapist. These desired features are usually achieved at
the expense of other important requirements such as trans-
parency and backdrivability, degrading the overall human-
machine interaction experience. We present an active gravity
compensation method that can highly improve the performance
of mechatronic systems used for rehabilitation and many other
domains of robotic applications. Traditional algorithms to
obtain active gravity compensation usually require the static
equilibrium equations of the system. However, for complex
mechatronic configurations, solving these equations is not
straightforward. The use of Machine Learning methods can
achieve gravity compensation without the need to solve the
equilibrium equations. To validate the performance of the
proposed approach, HomeRehab robotic rehabilitation system
is used to obtain experimental results.

I. ROBOTIC REHABILITATION

Stroke is currently the second most frequent cause of

death after coronary artery disease and its prevalence is

increasing at an alarming rate. Hemiparesis is the most

common outcome of stroke leading to movement deficiency.

Fortunately, rehabilitation can help hemiparetic patients to

learn new ways of using and moving their weak arms

and legs. It is also possible with immediate therapy that

people who suffer from hemiparesis may eventually regain

movement. Although there are several approaches, extensive

task specific repetitive movement is one of the safest and

most effective methods to regain lost mobility of the affected

limbs. This therapy requires incessant medical care and

intensive rehabilitation often requiring one-on-one manual

interaction with the physical therapist.

Robotic rehabilitation is an emerging field that allows a

patient performing exercises with the assistance of a robotic

device [1]. These systems can be used in providing therapy

(even at the patient’s home) for a long period of time
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irrespective of skills and fatigue compared to manual therapy.

Besides the cost-effective aspect, robotic devices introduce

higher accuracy and repeatability in performing exercises.

Precise measurements of quantitative parameters by means

of robotic instrumentation also improve objective monitoring

of patients recovery. Furthermore, rehabilitation robots can

be combined with virtual reality environments to engage and

push patients to keep training as the patient’s motivation and

cognitive involvement has a great impact on the outcome of

rehabilitation [2].

Currently, there are several devices in the market that

give a robotic solution to these repetitive movements, and

have been installed in many hospitals around the world.

Some examples are: InMotion ARM (Bionik Labs), ReoGo

(Motorika) and Armeo Power (Hocoma). For a successful

rehabilitation system, the robot must have the capability to

deliver physical forces similar to manual therapy. Mechan-

ically, this implies developing robots with high workspace

and force feedback features. Such systems have in turn

the drawback of being bulky and heavy degrading final

interaction experience with the patient. Among the different

technical challenges of these systems, gravity compensation

is key for high rehabilitation performance.

Fig. 1. HomeRehab robotic rehabilitation system developed at Ceit

In previous work [3], we have developed the HomeRehab

robotic system capable of restoring haptic effects at its handle

for upper limb rehabilitation (Fig. 1). This mechanism has

three degrees of freedom and it consists of a pantograph that

pivots on a horizontal axis, but it is not perfectly gravity-

balanced. Thus, an active compensation strategy is needed.

Note that in this work gravity compensation means removing

the gravity components of the mechanical device in order to
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make it transparent or imperceptible to the patient, in the

sense that during the rehabilitation exercises the patient only

has to overcome the weight of his/her own arm.

II. RELATED WORK

Gravity compensation is a basic need in robotics, and

more specifically in haptics, to ensure system usability and

transparency. It is also a key specification of mechatronic

rehabilitation devices [4], so that the users can move their

arm freely without feeling (and holding) the weight of

the robot during the therapy. Besides, friction could be an

additional limiting factor of these mechanisms, and some

strategies try to compensate both unknown static friction and

gravity forces [5]. A comparison of different algorithms for

gravity compensation of parallel mechanisms can be found

in [6].

In the field of rehabilitation devices, several gravity com-

pensation strategies have been applied that are also valid

for any mechatronic system. In some cases, the mechanism

is designed to be gravity-balanced, that is, to be in neutral

equilibrium without requiring joint actuator torques [7]. This

feature can also be achieved by adding a passive mechanism

to the robotic arm [8]. These solutions are intrinsically safe,

but they are difficult to design.

A. Analytical Approaches

The analytical active compensation methods balance the

system acting on each joint according to a gravity model

of the mechanism. In this model, the torques depend on the

pose and the weight distribution of the links. The positions

of the centers of mass and the weights of the links could be

estimated from the CAD model. However, these parameters

have to be experimentally adjusted, to take into account

manufacturing uncertainties and unmodeled components.

In the case of the rehabilitation robot presented in [9], the

authors focused on offsetting the gravity of the motors. The

mass of the rest of the mechanism is neglected compared to

the mass of the motors. This assumption is due to the fact

that the designed rehabilitation robot for the forearm and the

wrist is relatively small. Instead of using the CAD parameters

or the known mass of the motors, some authors prefer to

measure the torques in a set of positions to estimate the

parameters of the gravity model without the need to identify

the masses [10]. Note that this approach also uses the static

equilibrium equations of the system.

Other methods do not use any equation of the system. For

example in [4], the authors define a working area where the

compensation of the weight of the exoskeleton is going to

be applied and this volume is discretized into small cubes.

In each cube, the force is calculated at each vertex so the

gravity is compensated and the robot is immobile. Once the

force database is completed, and knowing in which cube the

exoskeleton is located during the rehabilitation exercise, a

weighted mean of the eight vertices of the cube gives the

gravity compensation force value.

B. Machine Learning-based Approaches

Machine Learning (ML) is a set of algorithms based on

two main ideas: the acquisition of new knowledge from

external sources, and the improvement of knowledge rep-

resentations and structures, so that existing knowledge may

be better exploited [11]. In ML, there are many possible

techniques and approaches to achieve the same goal, some

of them are more appropriate than others for a specific prob-

lem. Amongst the existing approaches are: neural networks,

Bayesian classifiers, nearest neighbor classifiers, support

vector machines and decision trees.

Machine Learning algorithms use computational methods

to get information directly from data without relying on a

predetermined model. Thus, once a gravity force database is

available, ML-based techniques can compute an estimation

of the gravity components. In fact, ML has already been used

to solve some mechatronic problems such as the design of

smart laser welding controllers [12] and adaptive exoskeleton

controllers for optimal rehabilitation [13].

III. MATERIALS AND METHODS

Based on the strategies found in the literature, this work

analyzes and compares two different solutions to achieve

gravity compensation (Fig. 2) and tests them on HomeRehab

system. The first one, the analytical method, uses the gravity

equations of the device with experimentally fitted parameters.

The second solution implements a novel strategy based on

Machine Learning to compensate gravity without using the

static equations of the device.

Fig. 2. Gravity compensation strategies

HomeRehab robotic system (Fig. 3) is used to train and

test the proposed methods. Table I shows its main technical

specifications.

TABLE I

HOMEREHAB SPECIFICATIONS

Workspace 800 × 400 × 400 mm

Maximum force 14 N (cont.), 28 N (peak)

Actuators Maxon DCX32L-GPX32

128 mN·m, 4:1

Transmission 20:1 cable transmission

Encoders Maxon ENX16, 1024 ppr

Position resolution 6 μm

Weight 8.2 kg
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Fig. 3. Scheme of the pantograph and positions of the centers of gravity

HomeRehab has the option to work both in 2D and 3D

workspace. When working in 2D, the patient exercises with

HomeRehab sitting in a chair and training 2D movements in

a planar workspace. Once the patient is able to control and

hold the weight of its arm, our device lets him exercise on

virtual Daily Life Activities in a 3D workspace, standing

in front of the system, and holding its end-effector as a

traditional haptic device. In this case, the proposed active

gravity compensation methods aim to overcome the weight

of the device so the exercises are more realistic and less tired.

To derive the static equilibrium equations of HomeRehab,

it is assumed that the centers of gravity of the links are

placed along their axis, but not necessarily at their geometric

centers (unknown distances lb, lc, ld and le), and also at

different heights with respect to the plane of rotation of the

pantograph (l′b, l′c, l′d and l′e). The lengths of the mechanism

are l1 = 0.2 m, l2 = 0.3 m and l3 = 0.4 m. Angle θ1 is the

rotation of the mechanism with the horizontal plane, while

angles θ2 and θ3 define the position of the pantograph links.

The handle is modeled as a punctual mass (point A), and

the gravity centers of the driving links (points D and E) are

located closer to the ends where the motors are anchored.

Note that the pulley of the mechanism rotates in solidarity

with the pantograph. Its center of gravity (point F ) is not

over axis x, and it is also outside the pivoting plane of the

pantograph.

Using the scheme of Fig. 3 and operating the static

equilibrium equations, the gravity components of the device

are:

τ1 = −p1s1 + p2c1c2 + p3c1s3 − p4c1 + p5c1c3
τ2 = −p2s1s2
τ3 = p3s1c3 − p5s1s3

(1)

where si = sin θi and ci = cos θi. These components depend

on five parameters, p1, p2 p3, p4 and p5, which in turn depend

on the masses and positions of the centers of gravity of the

links:

p1 = (mal
′
a+mbl

′
b+mcl

′
c+mdl

′
d+mel

′
e+mf l

′
f ) g

p2 = (mal2+mbl2+mclc−mele) g

p3 = (mal3+mblb+mcl1−mdld) g

p4 = mf lf g

p5 = mala g

(2)

A rough estimation of the five parameters pi could be

derived using a CAD model of the mechanism. However, to

obtain reliable values for pi, an experimental fit is required.

ML-based methods do not require the resolution of ana-

lytical equations. While HomeRehab is a mechanism whose

equations may be derived with relative ease, some parallel

mechanisms and commercial devices whose CAD models

and geometrical data are not available, the process to develop

the equations may be complex.

Among the different ML techniques and approaches, in

this work a decision tree technique is used as it allows fast

responses and accurate results, as many researchers have

already tested [14], [15]. A decision tree is an algorithm

and data structure oriented for supervised learning, where

each node represents an attribute or feature (in our case,

3D coordinates). For each node, the children are classified

according to a criteria until obtaining a leaf node. These

leaves will represent the final decision [16].

Usually, several decision trees are used because more

accurate results are obtained (each tree may give a different

solution and a vote scheme is performed to decide the final

decision). The algorithm that achieves this process is called

Random Forest [17]. This algorithm can be used to classify

or perform a regression prediction, where each tree in the

ensemble is trained on a subset of the entire training dataset.

Then, each split is performed on a random subset of features

(one for each tree) [16].

The Extra Trees are an extension of the random forest

regression model proposed by Geurts [18]. Random Forest

and Extra Trees are important algorithms within this class

and have reported state-of-the-art performance on many
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regression tasks with high-dimensional inputs and outputs

[19]. The differences with the original Random Forest are:

i) unlike the Random Forest, the Extra Trees does not use

the tree bagging step to generate the training subset for each

tree, and ii) it randomly selects the best feature along with

the corresponding value to split the node [20]. These two

differences result in the Extra Trees being less susceptible to

overfitting and reporting better performance [18].

It is important to note that the Extra Trees Regression

it is not a classification tree. In a regression tree as the

target variable does not have classes, we fit a regression

model to the target variable using each of the independent

variables. Then for each independent variable, the data is

split at several points. At each split point, the error between

the predicted value and the actual values is squared to get a

Sum of Squared Errors (SSE). The split point errors across

the variables are compared and the variable/point yielding

the lowest SSE is chosen as the root node/split point. This

process is recursively continued.

Both methods, analytical and ML-based, need experimen-

tal data in order to fit the model or to train the algorithm. The

inputs to the methods are the angles measured at the three

active joints of the device in any Cartesian position of its

workspace, while the outputs are the three torques that have

to be applied to each joint to hold the device still in each

Cartesian position. For other devices, the number of inputs

and outputs should be equal to the number of active degrees

of freedom of the device. To generate such force and position

database, the workspace of the device is divided into a finite

number of points, and an experiment is designed to compute

the torque values necessary to hold the system still in each

point.

IV. EXPERIMENTS

This section first describes how the force database is

collected, and the procedure to fit the analytical equations

for gravity compensation and to train the ML-based method.

A final experiment is carried out on a set of points of

HomeRehab’s workspace, different from the points used for

the training, to compare the performance of each method.

A. Experimental Setup

The workspace of HomeRehab is divided into 4920 points

covering 79.4 % of the workspace used for rehabilitation

applications with HomeRehab. The tested positions (Fig. 4)

form a rectangular parallelepiped grid in the Cartesian axes,

0.8 m × 0.22 m × 0.18 m. The distance between points is

2 cm.

A PID controller forces the system to move automatically

from one position to another. When the mechanism reaches

the steady state at each tested position (position error below

0.1 mm), the torques provided by the controller are precisely

the torques that compensate the gravity. These torques τ1, τ2
and τ3 are recorded in a database, together with the angles

θ1, θ2 and θ3 measured at each active joint of the device.

The generation of this database takes two hours and a half.

Fig. 4. Tested positions

B. Analytical Model

A least-squares optimization method is carried out to

obtain the values of pi that best fit model (1) with the training

database. The following values are obtained:

p1 = 3.33 N·m
p2 = 3.97 N·m
p3 = 3.98 N·m
p4 = 2.05 N·m
p5 = 0.77 N·m

(3)

The experimental torques and the torques that are obtained

from the gravity model (1) with the proposed parameters

(3) are shown in Fig. 5 for 2000 consecutive points of the

training database. It is worth noting that the gravity model

experimentally fitted is robust to some assumptions of the

scheme depicted in Fig. 3, because the estimated parameters

pi contain the contribution of several distributed masses. It

is not especially relevant for the validity of the model to find

the exact value of each length and mass of the model.

Taking into account that the DC motors of the mechanism

can exert up to 10.24 N·m after the transmission, a non-

negligible amount of torque is used to compensate the gravity

of the device. In the case of torque τ1, which is the worst

case of the three motors (Fig. 5), the mean value within all

the positions of the workspace is 2.27 N·m, which represents

the 22 % of the maximum continuous torque. The maximum

gravity torque τ1 is 3.91 N·m, 38 % of the available torque.

C. Machine Learning based method development

The input data for the ML algorithm is the same as for

the analytical method (the 4920 training points). This data is

arranged in six columns (x, y, z, τ1, τ2, τ3). There was

no editing, cleaning or any other technique used on the

dataset. The ML method development consisted of evaluating

several scenarios for the Extra Tree algorithm, changing the

% of data for training and testing. The ML algorithm is

implemented in Python 3.6 using the environment Anaconda

5.0.1 x64 and the library Scikit-learn 0.19. Table II shows

the results of applying Extra Trees algorithm to different

scenarios.
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Fig. 5. Experimental and theoretical torques of the fitted model

The tests were performed using a fixed seed for NumPy

12345 in order to be reproducible. Accuracy was evaluated

using other different seeds, but there was no significant

difference in the results. The base function used was Extra-
TreesRegressor with 50 estimators. It is relevant to consider

that increasing this parameter adds complexity on the calcu-

lation adding trees into the forest, and we tried to increase

it with no significant improvement, but with high penalty

on point calculation. The maximum features are 3, since the

dataset only has 3 inputs. Finally, the random state is set to

0.

TABLE II

RESULTS FOR DIFFERENT SCENARIOS OF EXTRA TREE ALGORITHM

Scenario 1 2 3 4

Training 80% 40% 20% 5%

Testing 20% 60% 80% 95%

R2 0.958 0.943 0.931 0.899

From Table II it can be seen that using the 80% of

data for training gets the best results. Other approaches

such as Random Forest Regressor, Decision Tree Regressor

and others, were also tested with those datasets to check

our initial hypothesis of using the Extra Trees Regression

method. The results were not improved in terms of accuracy

(coefficient of determination R2 in Table III). However, note

that MultiO/P GBR method achieves good performance with

lower prediction time and memory usage. Thus, if real-time

implementation specifications are very relevant (below 1 ms),

this last method would be the preferred choice.

D. Validation

A validation experiment is carried out with HomeRehab

to test the performance of both methods. Analytical gravity

compensation equations are directly programmed in the NI

MyRIO controller of HomeRehab, that runs at a sampling

time of 1 ms. A local-host Python server is created as a

middleware between the PC that runs the ML algorithm

and the controller of HomeRehab. The input message for

the server is the actual position of the end-effector (three

angles) and the output are the torques needed in the three

motors to compensate the gravity force of the mechatronic

device. Communication between the computer and the NI

MyRIO controller is achieved by UDP protocol, sending

end-effector positions from the controller to the computer

and receiving compensation torques computed by the ML

algorithm. Average computation time for ML prediction and

UDP communication is approximately 2-3 ms.

The validation experiment consists of moving HomeRe-

hab system to 120 points (84 points inside the limits of

the training cube, 36 points outside the training cube).

None of these points were previously used for the training

phase. These 120 points result from the combination of

x = [−0.53,−0.43,−0.33,−0.23,−0.13,−0.03, 0.03, 0.13,
0.23, 0.43], y = [0.07, 0.11, 0.15], and z = [0.29, 0.33, 0.37,
0.41] (m). 36 of the 120 points are outside the training cube

(do not satisfy −0.4 < x < 0.4 m).

The validation test is carried out as follows: First, a PID

controller holds the device still in the selected point with a

position error below 0.1 mm. The torque values computed

by the PID to hold the device still in each one of the

points are considered the ground truth data for validation.

Once the system reaches each point, we replace the torques

computed by the PID controller by the torques derived from
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TABLE III

RESULTS FOR DIFFERENT ML ALGORITHMS

Name MSE R2 Training

time (mean)

Prediction

time (mean)

Memory

(MB)

Extra Trees 0.0156 0.9489 1.05 s 2.64 ms 278.61

K-Nearest Neighbors 0.0213 0.9280 1.87 ms 353 μs 278.81

Linear Regression 0.0655 0.7516 465 μs 45.3 μs 279.15

Ridge Regression 0.0655 0.7509 1.37 ms 43.9 μs 279.57

Lasso 0.3305 - 598 μs 50.6 μs 279.61

Random Forest Reg. 0.0176 0.9419 667 ms 5.32 ms 279.61

Decision Trees 0.0363 0.8879 9.85 ms 50.1 μs 271.80

Multi Output Gradient Boosting Reg. 0.0199 0.9342 1.39 s 747 μs 271.92
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Fig. 6. Torque values computed by the PID controller and both methods (analytical model and Machine Learning algorithm) in a set of 10 validation
points.

the proposed two methods, and we evaluate whether the

device remains immobile in the same position or if it moves

(either falling or moving in other directions).

The outcomes of this experiment show that both methods

behave properly holding the device in all the 84 points that

lie within the training workspace. However, the ML-based

method fails to hold the device still in 25 points outside the

training workspace while the analytical method succeeds in

all 36 points outside the training workspace.

Fig. 6 shows an example of the torque values computed

by both methods along ten validation points: x = [−0.53,
−0.43,−0.33,−0.23,−0.13,−0.03, 0.03, 0.13, 0.23, 0.43],
y = 0.11, and z = 0.37 (m). It can be seen from Fig. 6

that torque values for both methods, compared with the

PID torque values, are slightly different in each point.

However, HomeRehab remains still in most of them, which

is considered a good behavior. This fact is due to the friction

components of the mechanism that need to be overcome to

start moving.

In this particular set of 10 points, the analytical equations

are able to hold the system still in all of them. However, the

ML-based method fails on points 1 and 10, that are outside

the limits of the training cube (point 2 is also outside the

limits but the method performs well). At these two points,

the robot does not hold still with the ML-based method.

Fig. 7 shows the box plots visualizing the error in all

120 points between the PID values and the values given

by both methods. For each joint and method, two set of

box plot figures are shown, one for the 84 points inside the

limits of the training cube (in black) and the other set for

the remaining points outside the limits (in blue). It can be

seen that while ML-method computes similar values to the

analytical method inside the training cube (except for joint

1), outside the cube joint 2 and 3 torque values are different.

V. DISCUSSION

From the outcomes of the validation experiment it is

difficult to compare which one of the two methods provides

better gravity compensation torque values. There is a range of
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torques where the results can be considered valid, that is, the

system holds still. This range of torques directly depends on

the friction of the system. Even the PID torque values, used

as ground truth, are affected by the friction. Nevertheless,

the qualitative result of whether the system holds still or not

is a valid outcome for the aim of compensating the gravity

forces of the device.

Training data is obtained relatively fast, two hours and

a half, for a medium-size workspace used for upper-limb

rehabilitation. The analytical method seems to behave better

as it can give proper results even outside of the workspace

covered by the training data. However, deriving the gravity

equilibrium equations may not be always possible or easy,

e.g. for some parallel mechanisms. ML-based method allows

the implementation of an algorithm that overcomes this

drawback as it does not require the analytical equations of

equilibrium, but it does not perform so well outside the

workspace considered in the training data.

The drawback of the ML method may not be relevant if the

training data covers the entire workspace of the mechanism.

However, this circumstance should be considered for large

and complex workspaces. The fact that the ML-method per-

forms poorly outside the area of the training data sounds like

overfitting. We performed several experiments with different

parameters (estimators, seeds, train test split, etc.) to further

analyze the issue, but we discovered that it was not overfitting

but lack of precision on the method. Therefore, we think that

using Deep Learning methods may lead to better results. The

goal of this paper was to focus specifically on traditional ML

methods, but future work will evaluate the performance of

Deep Learning methods as a solution to the poor performance

of the ML method outside the workspace considered on the

training data.

A video showing the behavior of the system using the

compensation methods is available as a supplement material

of this work. The ML-based method code and the training

dataset are also available to the public.

VI. CONCLUSION

Gravity compensation is a mandatory feature of mecha-

tronic devices used for rehabilitation. People with limited

mobility cannot manipulate bulky apparatus and should be

able to perform rehabilitation tasks without extra impedi-

ments, as if they were moving their limbs freely.

In this article, we describe the use of Machine Learning

methods to ease the complex task of developing proper active

gravity compensation control algorithms for robotic rehabil-

itation. Gravity compensation is of paramount importance to

achieve transparent haptic interactions specially for medium

and large-size mechatronic devices where the inertia of the

system is not negligible in free motion. Traditional control

methods for active gravity compensation require to derive

the gravity equilibrium equations of the system that may

not be straightforward for complex kinematic configurations.

This work proposes a gravity compensation strategy based on

Machine Learning methods as an easy and fast approach to

the problem. It describes its implementation and it compares

the method with the traditional approach that it is also

described in detail. In general, the results show that the

traditional analytical solution performs better than the ML-

approach. However, in situations where it is difficult to derive

an analytical solution but obtaining training data for ML
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approaches is considerably easier, results shows that ML-

models offer a promising alternative with certain limitations

regarding workspace coverage. Results can also be extended

to other robotic and haptic domains. Furthermore, we believe

that Machine Learning can also be applied to other rehabil-

itation tasks such as the monitoring of the patients progress

by gathering and analyzing multiple robot sensor measures

during the exercises, and personalizing the assistance control

algorithms for each individual patient and exercise.
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