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Abstract— We present an open-source framework for de-
veloping optimal leg designs for walking robots. The leg
design parameters (e.g. link lengths, transmission ratios, and
spring parameters) are optimized for a user-defined metric
such as the minimization of energy consumption or actuator
peak torque, enabling the user to better navigate through the
high-dimensional and unintuitive design space. Our approach
uses the single rigid body dynamics trajectory optimization
tool TOWR to generate realistic motion plans. The planned
predefined forces and motions are then used to identify actuator
velocities and torques. Next, the leg design parameters are opti-
mized using a genetic algorithm. The framework was validated
by comparison with measured data on the ANYmal quadruped
robot for a trotting motion, with errors in cumulative joint
torque and mechanical energy each below 8% per gait cycle.
Optimization of the ANYmal link lengths demonstrate that
reductions in joint torque, mechanical energy, and mechanical
cost of transport in the range of 5-10% are attainable.

I. INTRODUCTION

Developing legs for walking robots is a daunting task due to
the numerous design choices that significantly influence their
performance. The design space of these robots is generally
constrained by application-driven system-level requirements
(e.g. walking speed, operating time, payload) and the choice
of actuators. In this regard, the usage of the leg’s linkage
system may promote high performance because it allows the
continuous selection of link lengths and the integration of
transmission or elasticities (Figure 1). However, it compounds
the design problem by increasing the number of possible
designs with ambiguous trade-offs. Hence, manually finding
the optimal solution is virtually intractable.

In order to circumvent this complicated design space, some
designers took inspiration from nature. Examples include MIT
Cheetah [1], [2], Cheetah-Cub [3], StarlETH [4], ANYmal
[5], HyQ [6], and work based on Gravitationally Decoupled
Actuation [7]. While this biomimetic approach leads to feasi-
ble leg designs, it may not be optimal for a given robot and
task because of the fundamental structural difference between
robots and animals. For example, when rotary actuators are
used, pantograph legs tend to be energetically inefficient [8],
and reptilian or insectile legs require unnecessarily high joint
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Fig. 1: A graphical representation of the design optimization
problem. Given a motion task and a robot model, the
framework returns an optimized leg design.

torques in stance [9]. Moreover, some tasks for which a
robot should be designed for, such as heavy lifting and load
carrying, may not exist naturally.

Computational optimization methods offer an alternative
approach for finding solutions in such a design space. Here,
the engineering problem is modelled mathematically, and the
optimal solution is obtained numerically [10]. Since Sims’
Evolving Virtual Creatures [11], genetic algorithms have
been central to design optimization. An evolutionary strategy
based on Covariance Matrix Adaptation - Evolution Strategy
(CMA-ES) [12] was used in [13] to simultaneously adapt
the morphology and controller parameters to increase the top
speed of a quadrupedal robot, subjected to actuator limits.
Other CMA-ES approaches for the optimization of design
morphology, control parameters, and gaits were presented in
[14]–[16].

While these approaches obtain optimal solutions, the
designs are generally not feasible for real-world applications.
This is due to the assumptions made on the designs (e.g.
2D, having simple geometries), and the trajectories that they
are optimized for were derived from simple control policies
(e.g. walking on smooth and flat terrain). Purely continuous
optimization methods have also been proposed for trajectory
and leg design optimization. In [17], such an approach was
used to alter design and motion parameters simultaneously
using a sensitivity analysis between the parameter sets. Its
advantages include faster convergence, better guarantees on
optimality and repeatability, and providing deep insight into
the design. However, it can only optimize continuous design
parameters, which poses a problem should the designer face
a discrete set of available hardware.
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Alternatively, the optimization may be formulated as a shortest
path problem, where the solution is the simplest combination
of modular library components that permits motion tracking
[18]. Although it is both efficient and robust, opposite to the
continuous approach, it can only optimize discrete design
parameters. While the above works are promising, their
adoption and application by the research community are
ultimately hindered by their closed-source nature.

In this paper, we present the open-source Matlab toolbox
Vitruvio∗. Named after the ancient Roman architect who
studied perfect proportion, Vitruvio streamlines the design
process by empowering the designer to: i) gain an insight on
the robot’s performance, ii) compare the effects of different
design choices, iii) optimize selected leg design parameters,
and iv) visualize the robot. Our framework is versatile
from the system to the leg levels. At the former, it can
accommodate and analyse a variety of motions and robot
designs, such as varying gait patterns, challenging 3D terrains,
and a different number of legs. At the latter, the user has
full control over the leg’s morphology. Example design
features include number of links, actuation method (direct
or remote using particular actuators), and the integration of
elasticities. Unlike previous works, our framework strives
to be a realistic and practical tool for the design of a wide
variety of robots and motions. Given that the toolbox is
open-source, we kept the trajectory input interface generic so
that the designer is free to use either a trajectory generation
and optimization framework or experimental data from a
physical robot. Concerning the optimization, we implemented
a simpler derivative-free approach as opposed to a continuous
one because our framework is intended for design studies not
significantly constrained by computation time, and to allow
for the easy integration of additional models. Our framework
has been experimentally validated and is relatively accurate
(average error per gait cycle of≈8% in cumulative torque for a
0.36m/s trot for ANYmal). With these, Vitruvio presents itself
as a highly viable and flexible tool for the design of walking
robots, be it for the improvement of existing leg designs with
constrained design spaces, or for the free exploration of leg
designs for the next generation of walking robots.

II. METHOD

A. Overview

We employ a three-step approach to find optimal leg
designs. First, we generate a trajectory for a baseline robot,
followed by an analysis of the motion, before finally opti-
mizing the leg with the help of a genetic algorithm (Figure
2).

As we aim for high versatility, our toolbox is independent of
the trajectory generation framework to allow for the analysis
of motion plans from alternative sources. This separation of
the trajectory and design optimization stages requires that
the parameters which define the trajectory model are not
actively updated in the design optimization loop. As such, the
allowable change in mass and inertia of the legs is limited,

∗Made available at: https://github.com/leggedrobotics/vitruvio

Fig. 2: Overview of the trajectory generation and design
optimization method.

and we are not able to observe parameter changes such as
robot height, width, length, and range of motion. However,
our method allows us to quickly model and analyse a broad
range of design parameters and tasks for consideration of
vastly different potential designs early in the development
phase, while also guiding the more detailed design aspects
of the leg.

B. Motion generation

We utilise the single rigid body dynamics (SRBD) trajectory
generation framework TOWR to generate motion plans for
the robots described in this paper. The framework allows us
to abstract the task for the user by simply using computer-
aided design (CAD) model of the robot, a desired (complex)
terrain and preferred gait parameters. A SRBD model is
a dynamic model used in trajectory optimization, which is
based on centroidal dynamics. Here, the individual rigid
bodies of the robot are lumped together into a SRBD model
with constant inertia anchored at the center of mass (COM),
which is controlled by the contact forces at the end-effectors
(EE) [19]. It has been demonstrated in [20] that trajectories
generated with this method for the ANYmal quadruped could
be tracked in simulation as well as directly on the robot.
TOWR is very versatile as it allows for the generation of
highly dynamic motions for a diverse set of legged robots
(i.e. monopod, biped, quadruped) on complex terrain.

As inputs to TOWR, we provide the robot kinematic model
defined by the nominal COM and EE positions and their range
of motion; the dynamic model defined by the lumped mass and



Fig. 3: A set of example robots that can be analysed in
Vitruvio, shown alongside ANYmal for scale.

centroidal inertia tensor; and the task parameters consisting of
the terrain, goal position, duration, gait pattern and the number
of phases per leg. Executing the optimization, we obtain the
COM and EE trajectories as well as EE forces that satisfy the
kinematic and dynamic constraints. However, the following
assumptions as stated in [19] have to be met in order to obtain
feasible solutions: i) the links are considered as rigid bodies,
ii) the momentums of the limbs produced by joint velocities
are negligible, and iii) the robot’s full body inertia experiences
only minor deviations from its nominal value throughout the
motion. These assumptions are justified for highly dynamic
motions for robots whose limb mass is negligible relative to
that of their body. For robots with non-negligible limb mass,
the assumptions hold when the movement is very slow or
when the limbs experience only a small deviation from their
nominal positions [19]. Many existing robots are encompassed
by these assumptions including ANYmal [5], MIT Cheetah
[2], Cassie [21] and HuboDog [22].

We extend this set of justifiable cases to also include small
changes to the leg design, so long as these changes result in
small deviations from the robot’s nominal mass and inertia.
This enables us to modify leg design parameters such as link
lengths within a window about the nominal design. Design
parameters with a small effect on the robot’s mass and inertia,
such as transmission ratios and spring parameters, can be
freely altered without violating any assumptions of the model.

C. Motion analysis

Once the motion has been generated, we analyse the initial
guess of the leg which we call the nominal design.

1) Trajectory refinement: First, we apply a series of
operations to refine the EE trajectory. To do so, we extract
the position of each EE relative to the leg’s Hip Abduc-
tion/Adduction (HAA) joint. For highly cyclical motions
such as trotting on flat ground, we can average multiple steps
to create a closed-loop trajectory about the HAA, shown
in Figure 4, which reduces computation time. For highly
dynamic motions, we interpolate additional points to reduce
the gaps between adjacent points due to high EE velocity.

2) Defining leg kinematics: We include the number of
links, link lengths, and leg configuration of the initial design
to completely describe the model. Using numerical inverse
kinematics (IK), we solve for the joint angles required to track
the generated EE trajectories with sub-millimeter precision.
For a two-link leg, it is sufficient to specify only the link

Fig. 4: The motion of an EE relative to its hip attachment.
Individual steps (points) are averaged to obtain the EE
trajectory over a single step cycle (solid line). Top to bottom:
a robot platform with two links, mammal, X-configuration;
two links, spider, M-configuration; three links, mammal, M-
configuration.

lengths and desired leg configuration (X or M) in order to
have a fully defined system. For link quantities greater than
two, we can choose to constrain the IK further using heuristics
which help to maintain feasibility or allow the algorithm to
implicitly minimize joint velocities. Some of the candidate
design configurations are illustrated in Figure 4.

3) Joint torque calculation: The final step in the motion
analysis is to compute the joint torques necessary to track the
motion. We solve for joint torque τ in stance and swing phase
independently,and the case separation is performed based on
the ground contact force vector Fc as seen in Eq.(1). The
stance and swing phase models are shown in Figure 5.

τ =

{
τstance for ‖Fc‖ > 0

τswing for ‖Fc‖ = 0
(1)

The simplification has the benefit of allowing us to isolate
individual legs for analysis and to change the leg mass without
the need to solve the full floating base equations of motion,
which would introduce a controller/tracking problem.

The stance phase torque is computed with the assumption
that dynamic effects are negligible (q̇, q̈ = 0). This is a rea-
sonable assumption when the motion of the leg is sufficiently
slow such that the torque associated with the dynamics is
minor relative to the torque due to EE forces. For a trotting
motion on the ANYmal robot, we find this dynamic torque
contribution in stance to be an order of magnitude smaller
than the static contribution. For robots with fast-moving,
heavy legs, this assumption begins to break down. However,
these types of robots are also poorly captured by the set of
SRBD assumptions and are thus outside of the scope of this
work.

Using a kinetostatic analysis, the stance phase torque is
the sum of the joint torque due to the ground reaction forces
calculated in TOWR and the gravitational forces due to the
weight of the leg components. The torque is computed by
projecting the contact forces from TOWR and the gravitational
forces from each of the n components onto the space
of generalized coordinates using their respective Jacobians
(Eq.(2)).
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Fig. 5: Stance and swing phase torque contribution model.

Ground reaction forces, Fc are applied at each EE, and
gravitational forces Fgrav are applied at the COM of each
actuator, link, and EE.

τstance = JT
c Fc −

n∑
j=1

JT
j Fgrav,j (2)

During swing phase, the relatively high velocity and
acceleration motion requires that the momentum of the
leg components can no longer be neglected. To accurately
compute the torque for tracking the desired EE position in
the swing phase, a rigid body tree is created, which connects
the hip attachment frame (HA) to the EE by a series of fixed
and revolute joints. We apply a linear mass density along
each link as well as along the transmission if the joints are
remotely actuated. We justify this assumption by the fact that
leg links are designed to be lightweight, and the mass of
commonly used materials, such as tubes and profiles, scales
linearly with length. Point masses are placed at each actuator
location and at the EE position to model the weight of the
actuators and foot. The joint torques necessary to track the
motion are computed using the ID solver from the Matlab
Robotics System Toolbox† which solves for joint torques using
the fixed base dynamics formulation:

τswing = M(q)q̈ + b(q, q̇) + g(q) (3)

Where M(q) is the leg’s mass matrix, b(q, q̇) covering
the nonlinear terms (Coriolis, centrifugal) and g(q) the
gravitational terms of the leg.

4) Accounting for changing link mass: During the design
optimization stage, described in Sec. II-D, link lengths are
continuously changed for each individual i, and the mass
of the legs can deviate from the nominal design which was
previously used to generate the trajectories. To account for
this change in mass ∆m during the stance phase, we scale
the nominal EE force Fc,nom in relation to the total robot
mass M :

Fc,i =

(
1 +

∆m

M

)
· Fc,nom (4)

During the swing phase, the change in leg mass and inertia
are simply reflected in an updated leg’s mass matrix.

†https://ch.mathworks.com/products/robotics.html

5) Model validation: A comparison of the joint torques
calculated using this model and using the full ID was
conducted for the ANYmal robot trotting at 0.1 m/s. The
error in cumulative joint torque over the twelve actuators is
2.3% for this motion and there is no significant deviation in
the torque shapes for any of the actuators.

Given the instantaneous velocity and torque, we can readily
compute the mechanical power as their product and integrate
to solve for the mechanical energy.

6) Elasticity, transmission, and motor efficiency models:
Having computed the joint level requirements to track the
trajectory, we can now optionally apply additional models to
propagate the results from joint to actuator and motor levels.

First, we introduce a parallel elasticities model to rep-
resent torsional springs in parallel with the actuators. The
model is based on Hooke’s Law and we define each spring
such that its deformation angle is equal to that of the joint
while assuming this never exceeds the spring’s elastic limit.
The total joint torque required in tracking the trajectory is the
sum of an active torque term τactive provided by the actuator,
and a passive torque term τspring due to spring deformation.
This model introduces two additional optimization parameters:
the spring constant k and the spring setpoint q0 (i.e. the joint
position when the spring is at its equilibrium position).

τjoint = τactive + τspring and τspring = −k · (qjoint − q0)
(5)

Next, we introduce a transmission model which allows the
optimization of the transmission ratio γ. The transmission
corresponds to an integrated belt or ball screw drive, between
the joint and actuator. The transmission is generally applied
at the Knee Flexion/Extension (KFE) joint where it has the
additional benefit of reducing the leg inertia.

τactuator =
τactive
γ

and q̇actuator = γ · q̇joint (6)

This decouples the 1:1 relationship between the actuator and
joint velocity and torque and can be included in the optimiza-
tion to provide an additional degree of freedom, which aids
in meeting the joint velocity and torque requirements without
exceeding the actuator limits.

Finally, we included a motor efficiency model which
relates mechanical and electrical power, allowing us to
estimate the electrical power and energy consumption of
the design. These are factors of particular interest due to their
direct influence on the robot’s autonomous operating time.
Following the method demonstrated in [23], we included a
model for generating lookup tables based on motor torque
and speed. From those tables, we can obtain the instantaneous
operating efficiency and electrical power input to the motors.
While integrated, the model has not been validated and
is excluded from the current analysis. However, as the
toolbox is open-sourced, we hope to extend the database of
validated motor efficiency data with the help of the community.
Generally, the framework is designed in a modular fashion,
where additional modules can be added and toggled on or
off depending on the user needs.



D. Leg design optimization

As the formulated problem is both non-linear and non-
smooth (because of the possibility to integrate lookup tables),
we implement an evolutionary strategy that does not require
gradient information to optimize the design parameters. Using
this method, an initial set of individuals each with candidate
design parameters is created, and their performance is
evaluated through a cost function which we seek to minimize.
The design parameters of the individuals are modified by the
operations of selection, crossover, and mutation over many
generations to obtain the design parameters which minimize
cost [24]. We isolate a single leg, create the first generation
of individuals to uniformly span the design space, and solve
for the joint requirements for the current leg design. Each
individual is evaluated using a cost function consisting of
soft constraints, which help to ensure the physical feasibility
of the design, and the user-defined optimization goal. As
such, we consider a variety of optimization metrics, such
as the minimization of cumulative joint torque, energy, and
mechanical cost of transport (MCOT). Note that the total
cost of transport (COT) is a measure derived from the
average electrical power Pelec required to move a robot at
constant velocity v at earth gravity g and is widely used for
comparing efficiency among robots [25]. Here we consider
the mechanical power contribution Pelec since the motor
efficiency model has not yet been validated:

MCOT =
Pmech

mgv
(7)

Because we optimize each leg independently, we can only
approximate the overall MCOT in the cost function for an
individual leg. We estimate this cost using a mass term m
that approximates the mass supported by the leg as a function
of the leg’s mass mleg , trunk mass mtrunk, and the number
of legs n:

m = mleg +
mtrunk

n
(8)

We select these as optimization metrics due to the high
utility of improvements in these areas (e.g. additional payload
capacity, longer autonomous operating time). During the
optimization, we do not enforce any symmetry requirements,
but due to the nature of the robots and motions that we
consider, the optimizer generally finds designs with near
left-right symmetry. We allow the optimizer to modify the
selected legs within a user-defined range of values for each
design parameter. Table I contains the set of candidate
user design inputs, optimization parameters and penalty
terms that are available to the user. We implemented the
genetic algorithm using the Global Optimization Toolbox§

in Matlab and we speed up the computation using the
Parallel Computing Toolbox¶. The most time-consuming step
is solving the IK, which we speed up by preliminary screening
that the leg is long enough to reach the furthest point of
the trajectory. Otherwise, the individual is heavily penalized

§https://www.mathworks.com/products/global-optimization.html
¶https://ch.mathworks.com/products/parallel-computing.html

Robot design inputs
Property Options
Leg layout Spider, mammal
Leg configuration X, M
Number of links [2,4]
Actuator selection ANYdrive, Dynamixel, Neo‡

Actuation method Direct, remote
Parallel elasticities Included, excluded

Penalty terms
Soft constraints Optimization metrics
Limit allowable leg extension Min. joint/actuator velocity [rad/s]
Enforce actuator limits Min. joint/actuator torque [Nm]
Joints are above the ground Min. mech./elec. power [W]
Penalize tracking error Min. mech./elec. energy [J]
Prevent leg collisions Min. antagonistic power [W]

Min. mechanical COT
Max. motor operating efficiency

Optimization Parameters
Link lengths [m]
Transmission ratio [-]
Spring constant [Nm/rad]
Spring set point [rad]

TABLE I: Candidate inputs, constraints, penalties and param-
eters for the design optimization.

and the remaining steps for the individual are skipped. The
optimization is executed on four cores of Intel Core i7 2.5
GHz CPU with 16 GB RAM, and the evaluation of each
individual requires on average 0.3 s. The total computation
time is dependent on the hyper-parameters of population size
and the number of generations. The largest optimizations have
a computation time of 2.5 h, but we often get significant cost
reductions for smaller rollouts, which require just 15 minutes.
Due to the stochastic nature of evolutionary algorithms,
multiple optimization trials subject to the same conditions
do not always yield the same result. We find that consistent
results are obtained for population size and the number of
generations greater than 150 and 100, respectively. It is
important to note that the results of the optimization are
highly task-specific, meaning that the design is optimal for a
specific motion and may be sub-optimal or even infeasible
for other motions. We can guarantee versatility by providing
a longer trajectory which includes common obstacles such as
steps and test the ability of the task-specific design to navigate
this varied task. Alternatively, we can directly optimize the
design for the varied task to obtain a more well-rounded
design.

III. RESULTS AND DISCUSSION

A. Validation by comparison of simulated and measured data

We now seek to validate the Vitruvio pipeline from
simplified CAD model through to the joint torque and energy
calculation for the nominal design. For this comparison, we
consider constant trotting at 0.36 m/s on flat ground and
compare the simulated data with measured data captured on
ANYmal. By validating the feasibility of the pipeline for this
nominal case, we reason that similar topologies and motions
can be accurately simulated.



Joint Average RMSE Average Error Per Gait Cycle
Velocity
[rad/s]

Torque
[Nm]

Cumulative
Torque

Cumulative
Mech. Energy

Hip Abduction/Adduction (HAA) 0.66 6.84 -7.85% +1.07%
Hip Flexion/Extension (HFE) 1.45 10.86

Knee Flexion/Extension (KFE) 2.23 9.17

TABLE II: Comparison of the simulated and measured results.

To generate the kinematic and dynamic model of the robot,
we use the CAD model shown to the right of ANYmal in
Figure 3. The measured data is plotted against the simulated
data in Figure 6. Due to near left-right symmetry, only the
data for the right front (RF) and right hind (RH) legs are
displayed.

We compare the results of our simulation with the measured
data based on joint torque, velocity, cumulative joint torque,
and mechanical energy consumption of all twelve actuators.
The accuracy of the simulation is summarised in Table II
and shows a relatively low error of approximately 8% for
cumulative joint torque and 1% for the cumulative mechanical
energy.

B. Leg design optimization for an existing robot

Having verified the simulation framework for the nominal
design, we apply the optimization to redesign the ANYmal
legs. The lengths of the thighs and shanks are optimized
within a window about the nominal design defined by:

0.5 · Llink,nom ≤ Llink,opt ≤ 2 · Llink,nom (9)

The high-level design aspects are fixed for the ANYmal
platform, meaning that each leg consists of two links directly
actuated using three ANYdrive actuators. The leg layout
and configuration are set to mammal and X-configuration
respectively. Soft constraints listed in Table I ensure the
physical feasibility of the design, but hardware limits are not
imposed. We provide the same motion task as presented in
III-A and the optimization is run for each, the minimization of
cumulative joint torque, mechanical energy, and mechanical
cost of transport. The results of the design optimization for
mechanical energy minimization are plotted alongside the
measured data and nominal design simulation in Figure 6,
and the key results are compiled in Table III.

For the cumulative joint torque minimization case, the
optimized design experiences a significant reduction in thigh
lengths and increase in shank lengths causing a a decrease
in total robot mass of 1.7 kg or 4.4%. This trend, although
less significant, is also observed by [14]. The increased shank
length results in a torque reduction by decreasing the moment
arm at the KFE joint. While this change reduces peak torque,
it increases peak velocity. The overall result is a reduction
in cumulative joint torque of 10.3%. The optimal designs
for minimization of mechanical energy and MCOT are very
similar with a significant increase in thigh lengths and slight
decrease in shank lengths.

As a result, the total robot mass increases by 2.0-2.5 kg or
5-6% for these two optimized designs. This overall increase
in limb length results in two opposing phenomena. First, the
joint velocities decrease, which reduces the power requirement

Metric of Comparison Component
Thigh Shank

Link Lengths [mm] Front Hind Front Hind
Nominal design 250 250 330 330
Joint torque minimization 126 129 456 421
Mech. energy minimization 384 376 256 267
MCOT minimization 412 404 261 279

Robot Mass Entire Robot
Nominal design 38.8 kg
Joint torque minimization 37.1 kg
Mech. energy minimization 40.8 kg
MCOT minimization 41.3 kg

Improvement in Optimization Metric
Joint torque minimization 10.3%
Mech. energy minimization 5.0%
MCOT minimization 9.3%

TABLE III: Results of the ANYmal link length optimization.

and, therefore, the energy consumption of the legs. At the
same time, the joint torques increase, which acts to increase
the power and energy requirements. Here, the effect of the
joint velocity reduction is dominant and the optimization
results in a mechanical energy reduction of 5.0% and MCOT
reduction of 9.3% relative to the nominal design.

These examples show that a significant reduction in the
optimization goal metric is possible by optimization of the
link lengths, but this may have detrimental effects on other
performance metrics. In a general sense, choosing equal link
lengths offers a good balance for a ”universal” type platform
such as ANYmal.

C. Leg design optimization for new robot platforms

In addition to ANYmal, we also apply our framework
to the analysis and optimization of a set of virtual robots.
Trajectories are generated for tasks which include trotting,
hopping, pronking, and stair climbing. We create the nominal
design with equal link lengths and a transmission ratio of one.
When applicable, we make a first guess at the optimal spring
constant and we set the spring engagement point to the mean
joint position. The framework is then used to optimize the
set of design parameters to minimize cumulative mechanical
actuator energy and cumulative actuator torque. For the stair
climbing motion, the results for the left hind (LH) legs are also
displayed due to significant front-hind asymmetry. Otherwise,
only the LF leg is considered. The results are listed in Table
IV while the robots are visualized in Figure 8.

The key findings are the following. First, energy-minimized
designs prefer longer links with higher stiffness springs,
whereas actuator torque-minimized designs prefer short links
and lower spring stiffness. This is consistent with the trend
observed in the ANYmal optimization in Section III-B. Second,
the inclusion of the spring at the KFE joint allows for much
greater reduction in actuator torque and energy than is possible
with just link length optimization. Finally, the transmission
ratio parameter is effective in maintaining the operating region
within the actuator limits. This result is observed for the
actuator torque-optimized designs with γ < 1.



Cumulative Torque RF Total Cumulative Torque

Mechanical Energy RF

Mechanical Energy RH

Total Mechanical Energy

Joint Velocity RF, HAA

Joint Velocity RF, HFE

Joint Velocity RF, KFE

Joint Torque RF, HAA

Joint Torque RF, HFE

Joint Torque RF, KFE Joint Torque RH, KFE

Joint Torque RH, HAA

Joint Torque RH, HFE

Cumulative Torque RH

2.5 3 3.5 4 4.5
0

0.5

1

N
o

rm
a
liz

e
d

 J
o

in
t 

To
rq

u
e

2.5 3 3.5 4 4.5
0

0.5

1

N
o

rm
a
liz

e
d

 J
o

in
t 

To
rq

u
e

2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a
liz

e
d

 J
o

in
t 

To
rq

u
e

V
e
l 
[r

a
d

/s
]

V
e
l 
[r

a
d

/s
]

V
e
l 
[r

a
d

/s
]

2.5 3 3.5 4 4.5

-50

0

50

To
rq

u
e
 [
N

m
]

2.5 3 3.5 4 4.5

-50

0

50

2.5 3 3.5 4 4.5

-50

0

50

To
rq

u
e
 [
N

m
]

2.5 3 3.5 4 4.5

-50

0

50

2.5 3 3.5 4 4.5

Time [s]

-50

0

50

To
rq

u
e
 [
N

m
]

2.5 3 3.5 4 4.5

Time [s]

-50

0

50

2.5 3 3.5 4 4.5
0

10

20

30

40

M
e
c
h

a
n

ic
a
l 
E

n
e
rg

y
 [
J
]

2.5 3 3.5 4 4.5

Time [s]

0

10

20

30

40

M
e
c
h

a
n

ic
a
l 
E

n
e
rg

y
 [
J
]

2.5 3 3.5 4 4.5

Time [s]

0

20

40

60

80

100

120

140

160

180

M
e
c
h

a
n

ic
a
l 
E

n
e
rg

y
 [
J
]

Optimized

Nominal

Measured

Nominal

Optimized

-2

0

2

-10

0

10

-10

0

10

2.5 3 3.5 4 4.5

2.5 3 3.5 4 4.5

2.5 3 3.5 4 4.5

Joint Velocity RH, HAA

Joint Velocity RH, HFE

Joint Velocity RH, KFE

-2

0

2

-10

0

10

-10

0

10

2.5 3 3.5 4 4.5

2.5 3 3.5 4 4.5

2.5 3 3.5 4 4.5

Fig. 6: Comparison of the measured ANYmal data against the simulated results for the existing and energy-optimized designs.
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Fig. 7: Comparison of the nominal, actuator energy minimized
and actuator torque minimized designs of a 40kg monopod
robot.

Intuitively, the transmission ratio should be greater than one
to reduce the actuator torque for these cases, however, the
transmission ratio instead acts to increase the actuator torque
in order to reduce the actuator velocity below the hardware
limits. The results for optimized energy consumption and
torque reduction of the hopping monopod robot are plotted
in Figure 7.

IV. CONCLUSION

We have developed and open-sourced a robot leg design
toolbox for Matlab that guides designers from the initial
conception of a robot’s geometry and application, through
the analysis of high-level design choices, to the optimization
of leg designs. This toolbox is applicable to diverse robot
topologies as long as their motions fall within the assumptions
of the single rigid body dyanmics model. We can optimize
the leg design based on metrics such as torque and energy

Nominal Min. Torque

Fig. 8: Nominal and optimized designs for ANYmal and
hypothetical platforms. Top to bottom: ANYmal, trot; 40 kg
monopod, hop; 10 kg quadruped, pronk; 80 kg quadruped,
stair climb.

minimization while ensuring the feasibility of the generated
design, subject to hardware limitations imposed by the
actuators. Validation with measured data from ANYmal shows
that actuator requirements are forecasted relatively accurately
with respective errors in mechanical energy consumption and
cumulative joint torque of 1% and 8% per gait cycle for
a typical trot. Optimization of the ANYmal link lengths for
this motion indicates that it is possible to reduce cumulative
joint torque, mechanical energy, and MCOT by approximately
5-10%. When considering the design of novel robots, the
toolbox aids in generating feasible and optimized leg designs
taking into account link lengths, transmission ratios, and
spring parameters as design parameters.



Link Length [mm] Transmission KFE Spring KFE Optimization Metric
Thigh Shank γ k [Nm/rad] q0 [rad] ∆ Cum. Actuator Torque [%] ∆ Cum. Actuator Energy [%]

40kg monopod, hop
Nom 500 500 1.00 100 -1.89 - -
Min. Energy 561 414 0.99 369 -1.65 -46 -54
Min. Torque 301 621 0.75 199 -1.68 -65 -46

10kg quadruped, pronk
Nom LF 150 150 1.00 20 -1.59 - -
Min. Energy LF 260 207 1.00 46 -2.16 +45 -19
Min. Torque LF 153 168 0.81 17 -1.61 -9 -14

80kg quadruped, stairs
Nom LF (LH) 400 (400) 400 (400) 1.00 (1.00) - - - -
Min. Energy LF (LH) 428 (554) 348 (790) 1.00 (0.92) - - -5 (+14) -2 (-8)
Min. Torque LF (LH) 200 (336) 575 (455) 2.00 (2.00) - - -32 (-10) +18 (+6)

TABLE IV: Optimization results for hypothetical robot platforms.

While the leg optimization toolbox proved useful in the
development of optimized legged robots, it is limited in
the following ways: i) the optimized designs are tailored
to the given motion task which requires re-running the tool
multiple times should a number of tasks need to be fulfilled,
ii) the allowable change of the leg mass and inertia is limited
to prevent significant deviation from the values used in the
trajectory generation phase, iii) the actuator requirements
are sensitive to the nominal stance provided as input for
the trajectory generation, which is influenced by the design
but is also closely tied to the control of the robot, and iv)
when searching for the optimal design for a single metric
such as joint torque or mechanical energy, the optimal design
may be found to be on one extreme or the other and a well-
rounded, practical design likely exists somewhere in between.
Overcoming this requires tuning multiple weight terms against
one another in the cost function.

Future work should seek to extend the toolbox. The motor
efficiency model needs to be validated to enable the energetic
COT optimization. Additional discrete design parameters,
such as leg configuration and number of links, can also be
implemented as optimization parameters.
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