
Perceptive Locomotion in Rough Terrain –
Online Foothold Optimization

Fabian Jenelten1, Takahiro Miki1, Aravind E Vijayan2, Marko Bjelonic1, Marco Hutter1

Abstract— Compared to wheeled vehicles, legged systems
have a vast potential to traverse challenging terrain. To exploit
the full potential, it is crucial to tightly integrate terrain
perception for foothold planning. We present a hierarchical
locomotion planner together with a foothold optimizer that finds
locally optimal footholds within an elevation map. The map is
generated in real-time from on-board depth sensors. We further
propose a terrain-aware contact schedule to deal with actuator
velocity limits. We validate the combined locomotion pipeline
on our quadrupedal robot ANYmal with a variety of simulated
and real-world experiments. We show that our method can cope
with stairs and obstacles of heights up to 33 % of the robot’s
leg length.

I. INTRODUCTION

Currently, legged robots are majorly deployed on mildly
rough ground, an environment where their wheeled coun-
terparts outperform them in terms of energy efficiency and
speed. However, when it comes to cluttered terrains, the
adaptation of footsteps and foot clearance make legged
locomotion potentially a highly successful concept.

Kolter et al. [1] presented one of the first terrain-aware
control pipelines, which was applied to LittleDog using
a statically stable gait. A linear combination of features
extracted from height maps with different resolutions is
used to generate a foot-cost map. Footholds are found by
a greedy search. Kalakrishnan et al. [2] proposed several
improvements to this approach. In particular, a foothold
ranking function learned from expert demonstration is used
for foothold selection. Both methods are based on accurately
pre-scanned environments, pre-processed height maps, and
motion capture systems. Relying on statically stable gaits,
Fankhauser et al. [3] introduced a rough terrain locomotion
planner where a foothold is selected from a binary foothold-
score map. Results were presented with the robot ANYmal.

Mastalli et al. [4] presented an approach that simulta-
neously optimizes for center of mass (COM) pose and
foothold locations, where footholds are subject to a terrain-
cost map. Optimization duration is in the range of several
minutes, hence requiring off-line pre-processing. Results

This research was supported by the Swiss National Science Foundation
(SNSF) as part of project No.188596. This research was supported by
the Swiss National Science Foundation through the National Centre of
Competence in Research Robotics (NCCR Robotics). This project has
received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 780883.

1Authors are with the Robotic Systems Lab, ETH
Zurich, 8092 Zurich, Switzerland. {fabian.jenelten,
marko.bjelonic}@mavt.ethz.ch, {tamiki,
mahutter}@ethz.ch

2Author is with ANYbotics AG, 8050 Oerlikon, Switzerland.
avijayan@anybotics.com

Fig. 1. ANYmal is equipped with a depth camera in the front of the
torso to map the local terrain. A batch search optimization finds locally
optimal footholds in an elevation map, allowing for agile locomotion in
rough terrain.

have been shown on HyQ with a crawling gait. Using the
same platform, Magaña et al. [5] introduced a self-supervised
foothold classifier based on a convolutional neural network
(CNN). The network learns a correction step based on a
nominal foothold, a processed height map, and simplified
kinematics of the robot. Other works [6] [7] have focused on
footstep planners that lay out a complete pattern of footholds
connecting the robot’s current state with a target location.
As these approaches require comparably large computation
times, we are concentrating on local foothold adaptation only.

The major contribution of this paper is a batch search
approach that selects optimal footholds from a heightmap in
the proximity of a nominal foothold. We compute a foothold-
score similar to [3] and include the kinematics similar to
[5]. The difference to the former is that we do not constrain
locomotion to static gaits. Compared to the latter one, we
achieve a sufficiently small computation time, rendering the
training of a CNN obsolete. In the second part of this paper,
we propose terrain-based gait adaption to overcome large
obstacles. Finally, we demonstrate the success of our control
architecture with ANYmal (Fig. 1), a rugged fully torque
controllable quadruped robot.

II. ARCHITECTURAL OVERVIEW

The locomotion pipeline is following a hierarchical struc-
ture consisting of interacting modules, as illustrated in Fig 2.
A key module is the batch search that, given a set of nominal
footholds, computes a set of terrain aware footholds. On flat

IEEE Robotics and Automation Letters (RAL) paper presented at the
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

Copyright ©2020 IEEE

Fig. 2. Illustration of the perceptive locomotion pipeline. Blocks in red
represent modules of the locomotion stack while blue and green blocks
indicate purely sensor driven modules.

ground, the optimal foothold location is majorly affected by
the contact timing and the desired velocity twist, while on
rough ground, the gradient of the terrain pushes the footholds
away from potential edges. The terrain is modeled as a
discrete grid where each grid cell is associated with a height
value (forming a so-called elevation map).

The lift-off sequence and the desired contact durations are
determined by a contact schedule. A torso optimizer plans a
2d COM trajectory through the planned footholds, subject to
a planar Zero-Moment Point (ZMP) stability criterion [8]. A
swing leg trajectory is obtained by fitting conjoined splines
through the desired foothold and the previous stance foot
location [9].

At each time step, the desired torso and end-effector states
are extracted from the associated trajectories. The refer-
ence signals are tracked through a hierarchical whole-body
controller (WBC) [8], which takes into account the plane
normals to ensure the contact forces remain within the local
friction cones. An impedance control law runs in parallel to
robustify locomotion close to singular configurations and to
stiffen the motion in case of slippage.

III. MAPPING

The terrain in the local vicinity of the robot is represented
by an elevation map [10], which is obtained online by
projecting measurement points from any depth camera(s) into
a grid map [11].

A typical problem observed in mapping is the odometry
drift, causing artifacts in the map and a position drift between
the map and the robot. Fankhauser et al. [10] proposed a
sensor fusion strategy to build a robot-centric map. We found,
however, the fusion step computationally too expensive to be
deployed on a highly dynamic platform. We also do not want

to rely on external motion capture systems [2] since those
are not available in real-world scenarios.

We implement a drift compensation filter for the height.1

The mismatch between the robot state and the map is reduced
by adjusting the current map height to be consistent with
the latest sensor scan. Additionally, we integrate other filters
used for edge sharpening, visibility cleanup, terrain normal
computation, and in-painting (obstacle occlusion). A detailed
presentation of the elevation mapping is out of the scope of
this paper and will be discussed in our future work.

The drift compensation filter allows us to update mapping
and state estimation without any correction step, e.g. map
fusion. This also means that the forward kinematics is
computed using only the robot’s estimated state and does
not account for any height mismatch relative to the map.

While walking down, the end-effectors of the front legs are
likely to enter the field of view of the depth camera, leading
to spikes in the elevation map. We tackle this problem by
rejecting depth measurements located on the feet.

IV. FOOTHOLD OPTIMIZATION

The task of finding a set of optimal footholds is split into
N independent batch-search optimizations, where N is the
number of legs. Since we only consider robots with point
feet, the orientation of the feet is not taken into account.

A. Notations

For a quadrupedal robot, we use LF, RF, LH, RH to denote
the left-front, right-front, left-hind, and right-hind leg. We
define a foothold pi of leg i ∈ {LF, RF, LH, RH} by the
location of a single grid cell and the associated height. An
optimal foothold is indicated by writing p∗i .

If not stated differently, all vectors are given in the world
frame. For some tasks, we use the control frame C. The
x-axis of the control frame is aligned with the robot’s
heading direction while roll and pitch follow from the local
terrain plane P(nplane), characterized by the terrain normal
nplane [12]. The terrain plane is obtained by fitting a plane
through the current (if grounded) and previous (if swinging)
stance foot positions {pi,stance}i=1,...N .

In the following, p̂i,thigh will refer to the ith measured
limb-thigh position defined as the rotation center of the
hip-flexion joint. We further use the notation pi,thigh,lift-off
and pi,thigh,touch-down for the predicted limb-thigh position
at lift-off and touch-down time, respectively. As a rough
estimate, it can be computed with a velocity projection
p̂i,thigh + RWCv

C
desti,lift-off/touch-down with vCdes the desired

linear velocity in control frame, RWC the rotation matrix
control to world frame and ti,lift-off/touch-down the time duration
extracted from the contact schedule

ti,lift-off =

{
t until swing i grounded
t until stance + stance duration i swinging

ti,touch-down = t until stance.
(1)

1We note that the odometry drift is significantly larger along z of the
world frame compared to x and y. We thus only consider a height correction.

Fig. 3. Illustration of the batch-search approach for leg i = LF. Each cell
of the grid map contains a value for the height (represented by different
colors). We seek for an optimal foothold p∗

i within the search space Si (or
submap) centered about the nominal foothold pi,nom.

In our previous work [13], we introduced a path regularizer
computed from a desired velocity twist. We use this high-
level trajectory to extract the associated thigh positions.

B. Batch Search Approach

For each foot i, we iterate through the search area Si,
a submap of the grid map (see Fig. 3). The grid-map has
dimensions 1.6 m× 1.6 m and consists of square cells with
dimensions 0.035 m × 0.035 m, each holding a value for
the height. The search space Si is limited by a circle with
radius 0.35 m centered around a nominal foothold pi,nom. For
each grid cell in the search area, we check for feasibility
and compute an objective value. The optimal foothold p∗i is
found as the feasible grid cell with smallest cost.

Unlike [7], the search space is not restricted to convex
patches and hence does not require surface segmentation. As
opposed to similar approaches [3] [5], we use the nominal
foothold only for the search-space selection but disregard it
afterward. In fact, we want to avoid biasing the optimization
towards a foothold location selected under blind conditions.

C. Objectives

For each grid cell, we compute an objective function value
as the sum of weighted objectives. The various contributing
objectives are detailed below, listed in descending order
according to their weighting (importance).

1) Default Leg Configuration: A core task is to find
footholds that realize a desired velocity twist while being
able to react to external disturbances. We suggest to enforce
a default foothold pattern by writing

min
pi∈Si

||pi,thigh,lift-off + pi,thigh→foot − pi||2+

||pi,thigh,touch-down + pi,thigh→foot − pi||2,
(2)

where pi,thigh→foot is a vector pointing from the limb thigh to
a default foot location. For many gaits, the following choice
results in satisfactory results

pi,thigh→foot = −lnom ·
(
κ · nz,world + (1− κ) · nplane

)
, (3)

with lnom the nominal leg extension, nz,world the z-axis of
the world frame, nplane the normal of the local terrain plane

and κ ∈ [0, 1]. Choosing κ < 1 will make the robot lean
back when climbing up which helps to avoid knee joint
collisions with obstacles. This problem is farther explained
in Section VI-E.

For the sake of disturbance rejection we slightly modify
the objective (2) by replacing pi,thigh,lift-off with

p̃i,thigh,lift-off = pi,thigh,lift-off + kv · ei, (4)

where ei = v̂i,thigh − vdes is the thigh velocity error, v̂i,thigh
the measured velocity of the limb thigh and kv > 0 the
corresponding gain for weighting the velocity feedback. The
same applies also for the predicted limb touch-down location.

2) Foothold Score: The foothold score sf (h) ∈ [0, 1]
is an additional layer in the grid map computed from the
heightmap h. A value close to 0 corresponds to flat ground
which is considered a “safe” foot location while a value close
to 1 indicates edges, slopes, or roughness.

Similar to [3], we compute the foothold score as a linear
combination of quality measures, in our case

sf = λ1 · σ(s(h))︸ ︷︷ ︸
edges

+λ2 · s̄(h)2︸ ︷︷ ︸
slopes

+λ3 · |h− h̄|︸ ︷︷ ︸
roughness

, (5)

with the weights λ1 + λ2 + λ3 = 1, the slope s(h) of
the elevation (angle between gravity vector and normal), the
standard deviation σ(s(h)), the mean s̄(h) of the slope, and
the mean h̄ of the height. All quantities are normalized to the
unit interval using the maximum slope π/2 and the maximum
allowed step height.

3) Push Over: Compared to [5], we update the footholds
continuously even beyond the point where a swing leg
reaches the height apex. This greatly improves reactive
behavior. Unfortunately, jumps in the foothold location
of swinging legs can cause aggressive end-effector mo-
tions. Those jumps can be particularly severe if the search
space contains many edges. A possible solution is to mini-
mize the maximum foothold-score between two consecutive
foothold updates. Let sf,max(p∗i,prev,pi) denote the maximum
foothold-score on a line connecting the optimal previous
foothold p∗i,prev with pi, then:

min
pi∈Si

{
sf,max(p∗i,prev,pi) i swinging
0 i grounded.

(6)

4) Support Area: To increase the support area, we define
the following objective function

min
pi∈Si

{∑
j 6=i

||p̂j − pi||2
}−1

. (7)

The vector p̂j is the measured end-effector location of a
neighboring leg j. Since we also enforce hard constraints
IV-D.2, the objective is well defined for all feasible cases.

5) Previous Foothold: The collision avoidance constraint
outlined in Section IV-D.2 can cause a foothold to jump from
one to the other side of a neighboring end-effector within two
consecutive updates. We address this issue by invoking

min
pi∈Si

||p∗i,prev − pi||2. (8)

6) Leg Over-Extension: The following objective is used
to slightly regularize the optimization towards footholds that
minimize leg extension

min
pi∈Si

||pi,thigh,lift-off − pi||2 + ||pi,thigh,touch-down − pi||2. (9)

D. Constraints

Grid cells that violate one of the constraints presented
below will be discarded.

1) Max Step Height: Taking high steps increases the
possibility of operating the joints at large torques and close
to singular configurations. Let hobstacle(pi,pi,stance) be the
largest obstacle height on a line between the foothold pi

and the current or previous stance foot location pi,stance. We
impose a hard constraints on the step height by enforcing

hobstacle(pi,pi,stance)− pi,z < hmax

hobstacle(pi,pi,stance)− pi,stance,z < hmax.
(10)

2) Leg Collision: To avoid end-effector collision, which
typically occur during side-stepping, we reject footholds
close to neighboring end-effectors

||p̂j − pi||2 > dmin, ∀i 6= j. (11)

3) Leg Over-Extension: The prediction of the limb thigh
IV-C.1 is not very accurate, and therefore, hard constraints on
leg over-extension are typically too conservative. We accept
the occurrence of kinematically unfeasible footholds and deal
with over-extension by impedance control V-B.

E. Nominal Foothold

The computation of the nominal foothold, used to define
the search region, is derived as the analytical solution of the
objective (2)

pi,nom = 0.5 · (p̃i,thigh,lift-off + p̃i,thigh,touch-down)

+ pi,thigh→foot.
(12)

F. Optimization Times and Implementation Details

Each grid cell is checked for feasibility before calculating
the objectives. By designing all objectives globally positive,
we can skip a grid cell as soon as the local objective exceeds
the minimum value found so far.

The batch search takes on average 1.8 ms to find a set of
four footholds. The maximum duration is approximate twice
the average and is reached if all objectives have to be eval-
uated. Compared to the CNN framework [5], computation
times are up to 12.5 times larger. The optimization duration
is in the range of the control sampling time 2.5 ms, but could
be further improved using a CNN.2

If the nominal foothold is not within the grid map, e.g.,
because the robot moved faster than the heightmap was
updated, it is treated as an optimal foothold.

2We note that optimization times increase quadratically with the resolu-
tion of the grid.

Fig. 4. The top image shows a trotting gait in time domain for one stride.
The bottom image shows the perturbed gait after LF leg exhibits a large
step. The swing time for LF is increased by delaying the touch-down event.
Since phase events with three supporting legs are preferred over one, the
lift-off events for RF and LF are delayed by the same amount of time.

V. PLANNING AND CONTROL

The locomotion controller is split across several modules
from which one is the foothold optimizer. In the following,
we will further highlight some modules introduced in Fig. 2
that have been adapted to the elevation map or that are of
special importance for perceptive locomotion.

A. Contact Schedule

We use a contact schedule that produces lift-off and touch-
down timings for a variety of periodic gaits. On rough terrain,
a fixed periodic gait may not be the best choice. For example,
joint velocities of a high stepping leg are much larger than
those that take a nominal step. Following the observation that
the stride duration increases with the step-height in human
gaits [14], we adapt gait parameters to the local terrain.

Let hobstacle(p1,p2) be the highest point on a line connect-
ing two position vectors p1 and p2. We define the height
above the previous stance foot and the height above the
desired foothold as

hi,stance = hobstacle(pi,stance,p
∗
i)− pi,z,stance

h∗i = hobstacle(pi,stance,p
∗
i)− p∗i,z.

(13)

We use the swing-over step height hi,max = hi,stance + h∗i to
increase the swing phase ti,swing according to

t̃i,swing = ti,swing + ko · hi,max, (14)

with ko > 0 the obstacle gain. To preserve the lift-off order,
stance durations are adjusted accordingly. The approach is
further exemplified in Fig. 4.

B. Impedance Control

Given the desired torso pose, the desired end-effector
position and velocity for leg i are transformed into joint space
through inverse (differential) kinematics, yielding desired
joint positions qi,des and velocities q̇i,des. For the inverse
kinematics, we use an analytical approach that selects the
solution that preserves the leg configuration. The pseudo-
inverse of the contact Jacobian used in the inverse differential
kinematics is based on the damped least-squares method. The
joint space references are used in an impedance control law
of the form

τ i,des = τ i,wbc +Kp · (qi−qi,des) +Kd · (q̇i− q̇i,des), (15)

whereby the desired joint torques τ i,wbc are computed by
the WBC i.e. inverse dynamics, and the impedance gain
matrices Kp,Kd are diagonal positive definite. Joint level
impedance control is a particularly useful tool to handle
leg over-extension as the inverse kinematics can avoid the
singularity. It further allows to stiffen the joints in case of
slip events, as discussed in our previous work [15].

C. Torso Orientation

The locomotion controller will align the torso with the
control frame C. To adapt torso orientation based on the
elevation map, we fit the local terrain plane through current
and desired (instead of previous stance) foot positions.

VI. EXPERIMENTS

We have tested the perceptive locomotion pipeline on
ANYmal [16], a fully torque controllable quadruped robot,
designed for harsh in- and outdoor environments. For this
work, the robot is equipped with an Intel RealSense d435
which publishes a point cloud at 6 Hz. Control and state
estimation runs on an on-board PC (Intel i7-7600U, 3.5 Ghz,
dual-core 64-bit) at a frequency of 400 Hz.

A. GPU Based Map Representation

Using a CPU implementation, we found that the updating
rate of the map3 is too slow to be paired with a fast-walking
robot. We, therefore, developed a GPU-based grid map using
CuPy [17], resulting in 14 times faster map updates.

We measured the on-board calculation time of our map-
ping pipeline. From the depth camera, we get around 61 624
points per cloud at 6 Hz. The whole calculation time (from
receiving the point cloud to copying from GPU memory and
publishing the processed map) is 28.9 ms on average while
the processing time inside GPU is around 8.4 ms. In our case,
elevation mapping runs on an on-board Jetson AGX Xavier
which updates the map at the same frequency as the point
cloud.

B. Stair Gap Climbing (Simulation)

Inspired by the experimental setup presented in [5], we
build a simulated world consisting of 5 beams with depth
0.12 m equally distributed along the x-axis of the world
frame. Each beam is shifted by 0.24 m and enlarged in
height by 0.05 m relative to its precursor, forming a stair-gap
scenario (see Fig. 5). The depth of the last beam is widened
to form a supporting platform. To demonstrate reliability, we
consider data collected from a total of 12 trials with varying
heading velocities, climbing directions and initial positions,
executed with a trotting gait. We report the overall success
rate as 100 %.

In the first experiment outlined in Fig. 5, the stair-gaps are
crossed in ascending climbing direction with two different
commanded heading velocities {0.3 m/s, 0.5 m/s}. For the
low-speed experiments (0.3 m/s), the nominal step length
is shorter than the distance between two beams. Hence, for
maintaining a constant average torso velocity, the robot is

3update rate on CPU (without map fusion) is ≈ 2.5Hz.

0.4

0.5

0.6

0.7

0.8

slow

fast

0

0.2

0.4

0.6

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

LF

LH

RF

RH

Fig. 5. Illustration of the bar-balancing experiment in planar xz plane for
the ascending climbing direction. Top: measured torso height. Middle: mea-
sured torso horizontal velocity. Bottom: Measured end-effector trajectories
for 0.3m/s. The experiment was repeated 3 times each with 0.3m/s and
0.5m/s commanded heading velocity.

required to step in place on several beams. This implies that
there is an optimal heading velocity for which each foot
touches down on each bar exactly once. We let such terrain
depending input modulation left for our future work. Exper-
iments executed with blind trot4 always failed to overcome
the second beam.

In Fig 6 we repeat the same experiments using the
descending climbing direction. For the high-speed runs
(0.5 m/s), the nominal step length is larger than the distance
between two beams. Hence, the end-effectors do not step on
each beam but rather over-swing some of them. Experiments
simulated with blind trot always failed as the legs get stuck
in between two beams.

C. Perceptive Locomotion over Rough Terrain

We demonstrate ANYmal’s capability to traverse highly
rough terrain. Fig. 7 contains some snapshots of the parkour
run that was recorded over a period of 2 min continuous
walking. The bricks were passed three, the slope two, and
the platform four times.

0.4

0.5

0.6

0.7
slow

fast

0

0.2

0.4

0.6

-3 -2.5 -2 -1.5 -1 -0.5 0

0

0.1

0.2

0.3

0.4
LF

LH

RF

RH

Fig. 6. Illustration of the bar-balancing experiment in planar xz plane
for the descending climbing direction. Top: measured torso height. Middle:
measured torso horizontal velocity. Bottom: Measured end-effector trajecto-
ries for 0.5m/s. The experiment was repeated 3 times each with 0.3m/s
and 0.5m/s commanded heading velocity.

TABLE I
SUCCESS RATE FOR STAIR CLIMBING.

climbing impedance success rate for stairs
direction control moderate steep

up enabled 18/18 10/18
disabled 18/18 3/18

down enabled 18/18 14/18
disabled 18/18 12/18

D. Climbing Up and Down Stairs (Simulation)

In the simulation environment, we set up a two straight
stairways (moderate and steep) consisting of 12 steps with
depth 0.29 m and height 0.17 m (steep) or 0.10 m (moderate).
An experiment starts with a varying heading position on the
bottom/top floor and ends as soon as the robot falls or reaches
the top/bottom floor. The commanded heading velocity is
always 0.3 m/s. We repeat each experiment 18 times for
the steep and moderate staircase, for the ascending and
descending climbing direction as well as with and without
impedance control, yielding a total of 144 trials.

As table I implies, the success rate is higher for the
descending direction when using the steep stairway. This

4The blind trotting controller is equivalent to the perceptive controller,
but excluding gait adaption and elevation map depending tasks.

observation can be explained by the absence of knee-joint
collisions which mainly appear while climbing up. For the
descending direction, failures were mostly due to leg over-
extension of swinging legs. The results show that impedance
control generally increases the success rate. Since it helps to
avoid a leg entering the singular configuration, the evidence
is particularly significant for the ascending climbing direc-
tion. In the case of stair climbing with moderate inclination,
the robot never encounters knee joint collisions nor leg over-
extension and consequently, the success rate is 100 %.

E. Climbing Up Stairs

In a final experiment associated to Fig 8, we show dynamic
stair climbing with stair parameters identical to the simulated
“steep” experiment of section VI-D. Each experiment starts
on a flat platform and ends if the robot falls. Across three
experiments, failure was detected on average after 18 steps.
Consistent with our simulations, failures were mostly due to
knee-joint collisions.

VII. CONCLUSION AND FUTURE WORK

The presented foothold generation, which plans a sin-
gle footstep ahead, has been shown to be applicable in
various uneven environments. Swing phase adaptation was
introduced as a useful concept to overcome large obstacles
and impedance control was shown to robustify locomotion
in the presence of knee-joint collisions. We validated the
combined locomotion controller on ANYmal, demonstrating
locomotion over high platforms, slopes, and movable bricks.

The stability criterion used in the COM planner is valid
on flat ground only, and torso orientation and height are
assumed to be constant over the prediction horizon. These
are, in fact, very limiting assumptions. Moreover, the lack of
a guarantee for kinematic feasibility together with potential
knee joint collisions render especially stair climbing a tough
problem. Nevertheless, we have shown that we can achieve
reliable stair climbing by choosing stair parameters conser-
vative enough to not provoke knee-joint collisions or leg
over-extension. Experiments performed with stair parameters
found in daily life highlight the potential of our method,
but also reveal the disadvantage of omitting kinematic con-
straints. In order to generalize locomotion to even more
challenging terrains, we plan to replace the ZMP-constraints
of the COM planner with a dynamic stability criterion valid
in rough environments. Motivated by our results, we also
would like to address the problem of kinematic unfeasible
footholds.

REFERENCES

[1] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, “A control architecture for
quadruped locomotion over rough terrain,” in 2008 IEEE International
Conference on Robotics and Automation, May 2008, pp. 811–818.

[2] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Fast,
robust quadruped locomotion over challenging terrain,” in 2010 IEEE
International Conference on Robotics and Automation, May 2010, pp.
2665–2670.

[3] P. Fankhauser, M. Bjelonic, C. Dario Bellicoso, T. Miki, and M. Hutter,
“Robust rough-terrain locomotion with a quadrupedal robot,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
May 2018, pp. 5761–5768.

Fig. 7. The operator manually commands a heading velocity of 0.3m/s and adjusts yaw velocity to navigate the robot into the most difficult parts of
the obstacle parkour. The height of the platform is 0.22m which corresponds to 33% of the robot’s maximum leg length. The slope and the bricks are
not fixed and eventually move when stepping on it.

Fig. 8. ANYmal climbing up one floor on a stair case using perceptive trot.
Each step is 0.17m high and 0.29m deep (36 degrees). The commanded
heading velocity was 0.25m/s.

[4] C. Mastalli, M. Focchi, I. Havoutis, A. Radulescu, S. Calinon,
J. Buchli, D. G. Caldwell, and C. Semini, “Trajectory and foothold
optimization using low-dimensional models for rough terrain loco-
motion,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 1096–1103.

[5] O. Magaña, V. Barasuol, M. Camurri, L. Franceschi, M. Focchi,
M. Pontil, D. Caldwell, and C. Semini, “Fast and continuous foothold
adaptation for dynamic locomotion through cnns,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2140–2147, April 2019.

[6] Y. Hong and B. Lee, “Real-time feasible footstep planning for bipedal

robots in three-dimensional environments using particle swarm opti-
mization,” IEEE/ASME Transactions on Mechatronics, pp. 1–1, 2019.

[7] R. J. Griffin, G. Wiedebach, S. McCrory, S. Bertrand, I. Lee, and
J. Pratt, “Footstep planning for autonomous walking over rough ter-
rain,” in 2019 IEEE-RAS 19th International Conference on Humanoid
Robots (Humanoids), 2019, pp. 9–16.

[8] C. D. Bellicoso, F. Jenelten, P. Fankhauser, C. Gehring, J. Hwangbo,
and M. Hutter, “Dynamic locomotion and whole-body control for
quadrupedal robots,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Sep. 2017, pp. 3359–3365.

[9] C. Gehring, S. Coros, M. Hutler, C. D. Bellicoso, H. Heijnen, R. Di-
ethelm, M. Bloesch, P. Fankhauser, J. Hwangbo, M. Hoepflinger, and
R. Siegwart, “Practice makes perfect: An optimization-based approach
to controlling agile motions for a quadruped robot,” IEEE Robotics
Automation Magazine, vol. 23, no. 1, pp. 34–43, March 2016.

[10] P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, and R. Siegwart,
“Robot-centric elevation mapping with uncertainty estimates,” in In-
ternational Conference on Climbing and Walking Robots, 2014, pp.
433–440.

[11] P. Fankhauser and M. Hutter, “A Universal Grid Map Library:
Implementation and Use Case for Rough Terrain Navigation,” in
Robot Operating System (ROS) – The Complete Reference (Volume
1), A. Koubaa, Ed. Springer, 2016, ch. 5. [Online]. Available:
http://www.springer.com/de/book/9783319260525

[12] C. Gehring, C. D. Bellicoso, S. Coros, M. Bloesch, P. Fankhauser,
M. Hutter, and R. Siegwart, “Dynamic trotting on slopes for
quadrupedal robots,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Sep. 2015, pp. 5129–5135.

[13] C. D. Bellicoso, F. Jenelten, C. Gehring, and M. Hutter, “Dy-
namic locomotion through online nonlinear motion optimization for
quadrupedal robots,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 2261–2268, July 2018.

[14] R. Riener, M. Rabuffetti, and C. Frigo, “Stair ascent and descent at
different inclinations,” Gait and posture, vol. 15, pp. 32–44, 03 2002.

[15] F. Jenelten, J. Hwangbo, F. Tresoldi, C. D. Bellicoso, and M. Hut-
ter, “Dynamic locomotion on slippery ground,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 4170–4176, Oct 2019.

[16] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm,
S. Bachmann, A. Melzer, and M. Hoepflinger, “Anymal - a highly
mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Oct 2016,
pp. 38–44.

[17] R. Nishino and S. H. C. Loomis, “Cupy: A numpy-compatible library
for nvidia gpu calculations,” 31st confernce on neural information
processing systems, p. 151, 2017.

