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Abstract— The capacity of the biomechanics of human
limbs to absorb energy during physical human-robot inter-
action (pHRI) can play an imperative role in controlling the
performance of human-centered robotics systems. Using the
concept of “excess of passivity”, we have recently designed
passivity signature maps for elbow and wrist joints. We
have also shown that this knowledge can be exploited and
extrapolated during the interaction with a robotic system by
transparency-maximized algorithms. A major application is
in robotic rehabilitation systems and assistive technologies.
Here, for the first time, the nonlinear energy capacitance
of the hip joint and the affecting factors are decoded. This
can be critical for maximizing the performance of wearable
exoskeletons. Knowledge regarding energy absorption behavior
can significantly help to reduce the conservatism of control
algorithms. In this work, the energetic behavior is studied for
three different hip angles, while perturbations were provided
at three different interaction speeds. The results show that
the increase in agonist and antagonist muscle contractions
can consistently expand the margins of the passivity map.
Additionally, by separating the effects of agonist and antagonist
contractions, it was identified that the passivity margins have
a correlation with the subject’s posture during interaction
with the robot and the correlation depends on the type of
muscle contraction. A preliminary design of a stabilizer is also
formulated that takes into account variable passivity behavior
of the joint, in the energy domain, to enhance the performance
while guaranteeing pHRI stability.

I. INTRODUCTION

Human-centered robotics (HcR) systems have shown
great potential to enhance human sensorimotor capability.
The technology has been used for reaching beyond the
natural competence of humans and for relaxing physiologi-
cal and pathological barriers [1]. HcR technology has also
been used for studying human sensorimotor function and
the corresponding learning-based characteristics [2], [3], [4],
[5]. Examples of HcR systems are rehabilitation robotic

This study was supported in part by European Commission under grant
H2020-ICT-23-2017-779982 EXTEND, and by grant H2020 ICT 871767
REHYB, and in part by National Science Foundation Award Number:
2031594.

∗ Atashzar and Huang share the first authorship.
1Atashzar (corresponding author) is with the Department of Mechanical

and Aerospace Engineering and Electrical and Computer Engineering, New
York University (NYU), USA. Atashzar is also with NYU WIRELESS.
f.atashzar@nyu.edu

2Huang, Burdet, and Farina are with the Department of Bioengineering,
Imperial College London, UK.

3Del Duca is with the Department of Electrical and Computer Engineer-
ing, Technical University of Munich, Germany.

modules and rehabilitative exoskeletons [1], [6], [7]. Medi-
cal HcR (M-HcR) technology for rehabilitation (in particular
for upper-limb rehabilitation) comprises robotic systems that
are connected to the patients’ body to generate and deliver
assistive (and in some cases resistive) force fields while
the patient performs tasks in a virtual reality environment.
Arguably, the quality of the force field is critical for realizing
an efficient therapeutic regimen. Force fields are designed
to promote active participation and maximizing engagement
[8], [9]. To achieve this goal, robotic systems should respond
promptly to the patient’s voluntary motions [10], [11] while
inhibiting involuntary actions [12], [13], [14], [15], [16].
This imposes the need for a large bandwidth for the response
to voluntary actions. The technical challenge is that realizing
a high bandwidth of kinesthetic assistance can increase
the possibility of approaching instability for human robot
interaction. This is caused by the fact that the assistive
behavior of robotic systems does not follow conventional
(and conservative) energy passivity assumptions. Based on
the weak passivity theorem [17], [18], [19] from nonlinear
control theory, a cascade interconnected system (the output
of one subsystem activates the input of the other subsystem
and vice versa) remains stable if the two subsystems (e.g.
human biomechanics and robotic force field) are passive. A
system with input vector x(t), output vector y(t), and initial
energy β0 is passive [18], [19], [20], [21], [22] if there exists
a constant β0 such that for all t ≥ 0∫ t

0

x(τ)T · y(τ) dτ ≥ β0. (1)

Conventionally the operator’s limb is assumed to be pas-
sive, considering force-velocity coupling [20], [23], [24].
The weak passivity theorem has been used for dynamic
analysis of haptics-enabled telerobotics systems and haptics
rendering technology in which one terminal (subsystem) is
the human biomechanics, and one terminal is the simulated
(or remote) environment which generates the repulsive force
field, and on which the actions of the user are applied. In
many cases, for example, in haptics-simulators or haptics-
enabled telerobotic systems, the environment has been as-
sumed to be passive and often modeled using passive linear
dynamics (e.g., mass-spring-damper models) [25], [26].

The communication and digitization time delays can
result in the non-passive behavior of a terminal [23], [25],
[27], [28]. Time delays can result in the accumulation
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of energy in closed-loop systems during the interaction,
which can violate the passivity assumption and result in
instability and exponential growth of force and velocity.
Such a situation, during human-robot interaction, is a serious
safety concern and can result in soft tissue injuries and bone
fractions [29].

Several techniques and controllers have been proposed
to stabilize the behavior of interconnected systems that
include time delay, e.g. [25], [28], [30], [31], [32], [33], [34].
In this regard, passivity-based controllers, such as energy-
based and power-based time-domain passivity approaches
(TDPA) [28], [30], [31], [32], inject an adaptive damping
factor to dissipate energy and guarantee the passivity of the
interconnected system based on the weak passivity theorem
(1). The performance of these techniques has been supported
in several papers including our publications [33], [35]. On
the other hand, wave variables controllers [19], [25], [36],
[37] assume passivity of the terminals and strictly focus
on making the two-port communication network passive
(applied for telerobotics systems).

Although there exist several controllers and algorithms
to stabilize a non-passive interconnection of subsystems
with communication delay, in assistive technologies, the
therapy terminal is not (and cannot be converted to) a
passive component, since the programmed virtual therapist
has to inject energy in order to assist movements [34]. As
a result, implementing classical derivations of controllers,
such as TDPA, for assistive therapies will result in exces-
sively dampening of the assistance and compensating for the
assistive power generated by the robot [33], [34], [35].

II. PRELIMINARIES

It should be highlighted that the assistive force field
is indeed the critical factor needed to realize transparent
robotic assistance and dampening it is counterproductive.
As a result, the classical design of controllers cannot be
directly applied to guarantee the safety and stability of
assistive HcR technologies. This has resulted in conservative
precautions in the design of controllers, including limiting
the reactive behavior of assistive robots, along with the
assistive gains, force, velocity, and acceleration profiles.
The aforementioned limitations have saturated the expected
performance and potential benefits of the technology for
many patients, such as those who require high amplitude
forces to embrace assisted rehabilitative exercises, those
with hypertonia (a common stroke symptom), and those
with heavy biomechanics. A direct consequence is that,
despite significant advances in the mechatronic design of
rehabilitative robots and exoskeletons, users cannot take the
full advantage of a potentially agile and transparent assistive
force field produced using a robotic rehabilitation system
and exoskeletons.

We have recently investigated this issue and have con-
firmed that the nonpassive assistive behavior of robotic

systems could indeed result in energy accumulation and
instability, if and only if a particular computational stability
condition is violated [33], [35]. We have shown that the
stability condition of an assistive system depends on the
“extent” of the passivity of the user’s biomechanics and
the “aggressiveness” of the nonpassive assistive force field.
Taking advantage of the strong passivity theorem, we have
shown that if the excess of the passivity (EoP) of the
limb biomechanics is larger than the shortage of passivity
(SoP) of the assistive force field, the system remains stable
regardless of the absolute nonpassive behavior [33], [35]
(definitions of excess and shortage of passivity are given
below). However, if the user’s biomechanics does not guar-
antee sufficient EoP and/or if the assistive force field is
highly nonpassive (have a high SoP), the interconnection
of the two subsystems will tend to be unstable. In this case,
we have recently proposed novel stabilizing algorithms that
minimize the needed compensation considering the differ-
ence between energy absorption capacity and the delivered
energy [33], [35]. Mathematical definitions of EoP and SoP
are as follows.

For the system introduced in (1), if there is a constant β0
such that for all t ≥ 0 we have∫ t

0

x(τ)T · y(τ) dτ ≥ β0 + δ ·
∫ t

0

x(τ)T · x(τ) dτ, (2)

and if δ ≥ 0, the system is Input Strictly Passive (ISP) and
the EoP is δ. However, if δ < 0, the system is Input Non-
Passive (INP) and the SoP is δ [18], [21], [22].

In addition, for the same system if we have∫ t

0

x(τ)T · y(τ) dτ ≥ β0 + ξ ·
∫ t

0

y(τ)T · y(τ) dτ, (3)

for ξ ≥ 0, the system is Output Strictly Passive (OSP) and
the EoP is ξ. If ξ < 0, the system is Output Non-Passive
(ONP) and the SoP is ξ [18], [21], [22].

As a result, a HcR system with an INP assistive force field
(nonpassive therapeutic terminal) can still remain L2 stable
if the energy generated by the assistive force field is smaller
than the energy which can be absorbed by the impeding OSP
component of the patient’s limb. To guarantee this stability
condition, the EoP of the patient’s biomechanics should be
larger than the SoP of the therapy terminal.

Motivated by the above-given notion, we have recently
conducted a user study to evaluate the passivity of the wrist
and elbow joint. The focus was to investigate how the passiv-
ity of the wrist and elbow reactive dynamics changes during
different levels of co-contraction and if this information
can be used in the design of a nonlinear control system
that can take into account the patient’s EoP and changes
in the corresponding EoP to enhance the stability of HcR
systems while minimizing the conservatism. Thus, a control
framework was formulated to monitor the energy capacity
of the user’s biomechanics in real time and modify the



reflected interactive energy, enough to guarantee the safety
while avoiding excessive damping of the assistive energy,
to maximize realizable transparency [33]. The framework
allows for achieving a unique performance of HcR systems,
by modifying the corresponding stabilizing behavior based
on the user-specific energy signature.

In the literature, the passivity behavior of biomechanics
has been also studied using other techniques for the ankle
joint [38]. In [38], it is shown that the ankle joint repre-
sents a predominant dissipative behavior in young, healthy
subjects, which can be potentially used as a “quantitative
knowledge of human interactive dynamics” for realizing a
“less conservative design” of control systems.

This paper evaluates the passivity signature of the hip
joint while considering the effect of the hip rotation angle
through three interaction velocities. This allows us to gener-
ate an energy signature map of the hip joints of two subjects
participating in this study, and to enable predicting the
energy absorption capacity during human-robot interaction.
For this purpose, we have utilized a particular design of a
perturbation system to collect the interactive profiles and
compute the signature map. Due to the complexity of the
hip joint biomechanics and the corresponding significant
role in gait, we also evaluated the passivity behavior in
different joint angles to understand whether this information
(potential dependency on the angle) should be incorporated
in the design of a controller which takes into account the
energy behavior of the hip joint (see the appendix). For this,
at each joint angle, we applied limb perturbations with three
velocities, which is critical considering the large variation
of hip velocity during different paces of gait. It should be
noted that the mathematical foundation for the current study
does not assume any linearity in the energetic behavior of
the hip joint.

III. METHODS

A. Experimental Setup

In order to calculate the EoP of the hip joint, force
and velocity information should be collected during several
iterations of an identification trial. For this purpose, we used
the dedicated Neuromechanics Evaluation Device (NED)
that we have recently developed (please see Fig.1, and [39],
[40] for more details). NED is a versatile robotic interface
that enables controlled leg position perturbations while the
subject is seated and maintained in an upright posture. A
locking knee brace was used to maintain the knee joint
straight throughout the experiment to isolate the hip joint
biomechanics for the study. The motor, which is securely
bolted to the floor, will apply controlled motions to the leg
just above the ankle joint via the steel cable loop and the
ankle fixture. During the experiment, the robotic interface
will record the interaction force (using two load-cells located
on both sides of the ankle fixture and connected to the
cables), in addition to hip angle and rotational velocity,

Fig. 1. Sketch of the Neuromechanics Evaluation Device (NED)
and sample measurements. (a, b) the experiment setup. Visual
feedback is provided to the subjects based on their muscle activities
and interactive forces. While the subject tunes the interactive
forces, NED provides position-domain oscillatory perturbations. (c)
A sample of position, velocity, and torque recording.

and muscle activity (through electromyography recordings)
simultaneously. The pulley mechanism of the NED system
is adjustable to the participant’s leg length, and also to the
desired experiment hip angle. This allows the robot to exert
accurate normal force, also enabling accurate evaluation
of the energy signature of the joint at different angles.
The developed interface includes various safety features to
track and protect the participant’s safety throughout the
experiment. This includes software limitations (velocity,
acceleration and jerk), optical systems to define the max-
imum leg displacement and emergency buttons for both the
participant and the experimenters.

B. Experiment Design

The experimental protocol was approved by the Imperial
College Research Ethics Committee. Two healthy subjects
without known history of neurological or musculoskeletal
injury were recruited, who were informed about the robotic
interface and experimental procedure, and provided a signed
consent prior to participating. Demographic subjects data are
provided in Table I. The leg length was measured from the
anterior superior iliac spine to the lateral malleolus.

Bipolar electromyography (EMG) electrodes were posi-
tioned on the Rectus Femoris (RF) and Biceps Femoris



(BF) muscles. The EMG electrodes were connected to a
signal amplifier (EMG-USB2+, OT Bioelettronica) to mon-
itor muscle activation. EMG signals were baseline corrected,
filtered with a [5,500]Hz bandpass 2nd order Butterworth
filter, rectified, and processed for extraction of the envelope.
A locking knee brace was used to maintain the knee joint
straight throughout the experiment (Fig.1), and to isolate
the hip joint biomechanics for the study. The participants
were asked to sit in the NED system with the leg re-
laxed while supporting their body weight using the handle
(Fig.1). A harness was placed around the ankle, and was
connected to the cable-driven perturbation system providing
the oscillatory motions for identification. To calibrate the
safety, the software limitations and optical safety system
were tuned while the subject’s leg was slowly moved around
the allowable workspace. An emergency button was always
within the subject’s reach in case of discomfort.

TABLE I
BIOGRAPHICAL INFORMATION OF THE SUBJECTS

no weight [kg] height [m] leg length [m] age sex
1 71 1.81 0.97 24 M
2 70 1.74 0.92 24 M

C. Maximum Voluntary Contraction (MVC) Phase

Each experiment cycle at a given hip angle started with
an MVC test to benchmark the maximum force and EMG
values at the tested posture. The participant was verbally
encouraged to pull the cable with the maximum comfortable
leg strength for approximately three seconds. Then ten
seconds of rest were given, and the MVC test was conducted
again. This sequence was repeated twice for both flexion and
extension of the hip joint. The maximum EMG magnitude
of both muscle groups was then used to define the 15%
MVC level for conducting the rest of the experiment.

D. Posture Perturbation Phase

After the MVC test and a five minute break, for one
chosen hip angle, the subject was randomly assigned to one
of the following tests: relax, leg flexion (with a 15% MVC
muscle contraction level), and leg extension (with a 15%
MVC muscle contraction level). The participant controlled
the EMG activity based on the provided visualization of
the commanded target and realtime feedback. The cable-
driven system then provided a cyclic leg displacement at
a specified speed for 2 min. Measurement was repeated at
three speeds 70, 150, 230 mm/s, and in combination with
three muscle contraction levels relaxed, flexion 15% MVC,
extension 15% MVC. After testing the above-mentioned 9
combinations of tests, the participant was given a ten minute
rest, and then the same protocol was repeated for another hip
angle. The three tested initial angles were {15◦,35◦,55◦}.
EMG data collection was at 2048 Hz, and the force and
kinematics were measured at 1000 Hz.

E. Data analysis and EoP Estimation Phase

Given the definition of EoP in the OSP model of reactive
dynamics (3), the general equation to estimate the EoP of
the hip (at a given condition of hip joint angle of θ, muscle
contraction level of i, and perturbation speed of s) is:

ξθ,i,s =

∫ Te

Ts

τT (t) · ω(t)

ωT (t) · ω(t)
dt. (4)

In (4), ξθ,i,s is the identified EoP value at the respective
conditions (θ, i and s), τ the interaction torque, ω the hip
joint angular velocity, Ts and Te the start and ending time of
the oscillation stimulation. The linear displacement velocity
measured by sensors was converted to the angular velocity
of the hip joint (ω). Also, the interaction torque (τ ) measured
at the ankle was calculated from the difference between the
force measurements of two load-cells placed on both sides
of the ankle fixture.

In order to extract the EoP, we should isolate the reactive
and active components of dynamics and force generation by
the user during interaction with the robot [33]. The reactive
component, which is responsible for absorbing mechanical
energy during the interaction, is part of the dynamics that
results in impeding force regardless of the direction of inter-
action. It is generated in response to the external perturbation
and plays a critical role in the stability condition of the
interaction between human and robot. However, the active
component of force, which results in targeting and motion, is
mainly generated voluntarily to promote/ initiate/ continue
motion in a particular direction and should be treated as
an external input to the system (in the context of strong
passivity theory). The active dynamical component does not
affect the closed-loop behavior of the system and energy
absorption capacity. This isolation of the reactive dynamics
is straightforward when working on upper limb due to
the simpler actions of biomechanics. In our previous work
which was conducted on the upper-limb energy behavior,
we have isolated the reactive component by asking the
participants not to initiate motions during perturbation and
to allow the robot to perturb their limb while they generated
various levels of co-contraction through various grasping
levels. The corresponding co-contraction changes the im-
peding behavior of the biomechanics, which modulates the
reactive dynamics. This, however, is not as straightforward
for the hip joint, since voluntary co-contraction of muscles
activating the hip is not intuitive for all. As a result, a
different protocol was needed to assess the capacity of
energy absorption of the hip joint and the changes in the
impeding reactive dynamics by flexion and extension of the
joint.

In this study, to generate different levels of consistent
muscle activation, while studying the nonlinear and asym-
metric impeding energetic behavior, we have asked the
subjects to keep a particular flexion/extension level of force
and muscle activation, while the robot perturbed their limb.



For this, participants were asked to “push” at an instructed
direction in order to activate different hip muscle groups.
This was intuitive for participants. During this period, we
collected data to evaluate the corresponding effect of the
particular muscle contraction on the energetic behavior of
the joint.

As a result, to isolate reactive and active dynamics, in
the calculation, we extracted and evaluated parts of data
that were related to the impeding/opposing periods during
which the contraction generated by the user opposes the
direction of perturbation. During the mentioned periods of
time, the reactive component plays the major role in the
interaction dynamics. However, during the period in which
the robot skips away from the user’s current position (which
means that the motion of the robot and the user are in the
same direction), the interactive dynamics is more activated
by its active (not reactive) component since the user should
also execute controlled motion for keeping the prescribed
flexion or extension level. In order to incorporate this into
the calculation, Eq. (4) was modified as follows:

ξθ,i,s =

∫ Te

Ts

τT (t) · ω(t)

ωT (t) · ω(t)
· Z (t)dt (5)

In (5), Z (t) is an additional imposed condition that turns
the integral on and off during the cycle of perturbation
for proper calculation of EoP, depending on the contraction
state, and to isolate active and reactive components of dy-
namics. The Z(t) condition is imposed with considering the
relationship between the direction of displacement pθ,i,s(t)
and the direction of contraction kpθ,i,s(t), at each time
instant t as given below.

Z(t) =


1, if pθ,i,s(t) 6= kpθ,i,s
1, ∀t if kpθ,i,s = 2

0, otherwise.
(6)

where kpθ,i,s is an integer number indicating the leg con-
traction direction, where k = 1 during muscle flexion state,
k = −1 during extension state and k = 2 during relaxed
state. Also pθ,i,s(t) is an integer which is equal to 1 if the
leg is displaced by the robot into hip flexion, and is −1 if
the leg is displaced into hip extension. In other words, the
imposed condition Z(t) allows us to compare the direction
of contraction and direction of motion to activate the integral
in a way that extracts the component of interaction which
is mainly influenced by reactive component of dynamics.

To analyze the results, data from all three speeds were
concatenated at each condition {hip angle and contraction
level}, and the concatenated data was used to estimate the
EoP, this time not for one single perturbation velocity but
for a larger range of perturbation frequencies.

IV. RESULTS

Fig.2 shows representative EMG recordings measured at
different contraction levels. As expected, in most experi-
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Fig. 2. Sample EMG recording. The muscle activities at the relaxed
condition show a low contraction, while both at the hip flexion
and extension cases they oscillate around the targeted contraction
at respective muscle groups.
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Fig. 3. Sample EoP measured at three different speeds.

ments both subjects were able to follow the target muscle
activation level. Additionally, the average antagonist muscle
contraction levels were lower than 5% MVC value, which
indicates the subjects’ consistency in independent control of
flexion versus extension during the course of the experiment.
The average agonist contraction and the antagonist opposite-
contraction levels of all subjects of different experiment
conditions are listed in Table.II. In an ideal case the targeted
muscle contraction level should be 15% and the opposite
muscle contraction level should be 0%. The results in
Table.II show a good agreement with this ideal case.

TABLE II
AVERAGE MUSCLE CONTRACTION LEVELS

subject angle contraction
direction

targeted muscle
contraction
(%MVC)

opposite mus-
cle contraction
level (%MVC)

1 55 forward 9 2
1 55 backward 37 2
1 35 forward 8 2
1 35 backward 13 5
1 15 forward 13 0.8
1 15 backward 14 0.7
2 55 forward 17 0.6
2 55 backward 14 5
2 35 forward 17 2
2 35 backward 15 2
2 15 forward 13 0.4
2 15 backward 22 4
Fig.3 shows an example of estimated EoP during the

three different perturbation speeds, before concatenating the
corresponding data. As can be seen in the figure, the EoP
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Fig. 4. Panel (a) shows the estimated EOP values of both subjects
at different contraction level and hip angle. The distance from
the center to the corners of the triangular radar plot indicates the
magnitude of the estimated EOP values. Each corner of the radar
plots represents the estimation at a different hip angle. The color
blue shows the EOP values identified in the relaxed condition,
while the hip flexion and extension are represented by red and
green, respectively. Panel (b) shows the posture dependency of the
EOP values. By linear regressing the estimated EOP values, it is
found that the EoP value increases with posture while performing
hip extension (with a slope of 0.0082/deg, R2 = 0.89) and decrease
when conducting hip flexion (with a slope of -0.01/deg, R2=0.75).

value may also change depending on the perturbation speeds
and frequencies. In order to estimate the most representative
energetic behavior, we utilize the concatenating approach
for the three perturbation speeds to enhance the richness of
information for the estimation process. Fig.4 illustrates the
estimated EOP values of both subjects at different postures
and different contraction levels and at different perturbation
angles, after concatenating the data. The estimated EoP
values related to both flexion and extension are compared
individually with the relaxed condition using a radar plot
(Fig.4a). It is shown that both leg flexion and extension
resulted in a significant increase in the EoP value in all
posture angles, in comparison to the relaxed condition.
Additionally, after normalization (Fig.4b), the EoP values
are found to correlate with changes in the hip posture.
By linear regressing the estimated EOP values, it is found
that the EOP value increases with posture while performing

hip extension (with a slope of 0.0082/deg, R2 = 0.89) and
decrease when conducting hip flexion (with a slope of -
0.01/deg, R2=0.75). In the case of a forward contraction
(flexion), the highest EoP was found at 15◦ hip angle and
the lowest EoP is observed at 55◦ hip angle. Inversely, the
backward contraction (extension) resulted in a highest EoP
value at the hip angle 55◦ and the lowest value at 15◦.

Results above show that the energy absorption ability of
the hip joint consistently changes by muscle contractions,
geometry and posture of interaction. The aforementioned
dependencies can be computationally identified and mod-
eled using energetic passivity maps. The results show that
the passivity maps are (a) asymmetric (varies in different
directions and posture), (b) muscle group dependent, (c)
posture-dependent, and (d) user-dependent. Indeed, the radar
plots show the “signature” of the hip joint in terms of the
absorption capacity for interactive energy.

The map may be directly used to assess changes in
dynamical behavior of the joint biomechanics with respect
to energy absorption ability. In addition, identifying the map
and then extrapolating it during interaction with a robotic
system (based on the measured contraction level, type of
contracted muscle, current posture, and the direction of
contraction) can allow an intelligent controller/stabilizer to
provide the minimum needed damping for stabilizing the
system. In other words, the controller of the robot can
adaptively tune the stabilizing behavior (which defines the
performance and system transparency) based on the current
states of the interaction (mentioned above) and the pre-
identified knowledge of the hip joint regarding the energetic
passivity behavior. Thus, the stabilizer (see the appendix)
can take advantage of energy reservoirs in human biome-
chanics to minimize performance distortion and maximize
transparency. Thus, if a user shows a significant increase in
the energy absorption ability at one specific direction, one
specific muscle contraction level and type, the controller will
not distort the delivered assistive energy.

V. CONCLUSION

This paper evaluates the energy absorption capacity of
the human hip joint during interaction with robotic systems.
The outcome is critical for wearable robotic technologies,
including exoskeletons. In this paper, for the first time,
we have decoded the energetic signature of the human
hip and have shown if and how it changes based on
muscle contraction, depending on muscle groups, direction,
and posture of interactions. The results show a consistent
energetic behavior of hip with respect to the posture of
perturbation. The results also show that the EoP can sig-
nificantly change by increasing muscle contraction and that
the change is asymmetric depending on the direction of
interaction, posture, and muscle group. These results can be
directly used to (a) design a nonlinear controller ensuring
“minimal stability” based on strong passivity control theory



(see Appendix) and (b) to design a representative atlas
of energy signature maps of the hip joint by collecting
data from more participants, to allow for predicting the
passivity behavior, based on minimum available knowledge.
In this paper, the result of experimental validation on two
participants is provided. A clinical direction of the future
work of this study will be focused on the evaluation of
the passivity-based signature of human biomechanics (in
particular the hip joint) for a larger population, as a new tool
to objectively characterize the lower-limb neuromechanical
impairments caused by neurological diseases and muscu-
loskeletal disorders.

VI. APPENDIX: ENERGY DOMAIN STABILITY USING A
VARIABLE STRUCTURE PASSIVITY CONTROLLER

In this Appendix, we provide a new design of a nonlinear
controller, which can guarantee the stability of physical
human-robot interaction using variable excess of the pas-
sivity of the limb and can be used in various robotic
interfaces. The particular design allows for incorporating the
“variability of EoP” in the design of the variable structure
controller. As explained earlier, there are several factors
(contraction level of different muscle groups, the direction of
interaction, posture angle) that result in the variation of EoP
of the hip joint. Measuring those factors, we can estimate the
EoP in realtime. In this Appendix, we answer this question:
“how the estimated EoP can be encoded in the design of a
nonlinear controller that can utilize the knowledge on EoP.”

The theoretical developments are based on our recent
work [33] for the upper limb, in which we have designed
a power-domain stabilizer considering the grasp condition.
Such a stabilizer may be conservative, in general, since it
does not consider the energetic history of interaction and
aim for guaranteeing passivity at the power level. This can
result in excessive modification of the reflected force dur-
ing human-robot interaction since any non-positive power
packet will be treated as a potential source of instability.
However, to guarantee the passivity, the integral should
be positive. In other words, although the positiveness of
every interactional power packet is a sufficient condition
for the positiveness of the corresponding integral (energy
of interaction), this is not a necessary condition. In this
appendix, our recently designed power-domain stabilization
[33] is modified to take into account the passivity behavior
of the biomechanics in the energy domain. In [33] we
have shown that for physical human-robot interaction, the
interconnected system will be passive (and thus stable) if
the following condition is held.∫ t

0

freact(τ)T · vp(τ) + fp(τ)T · vp(τ) dτ ≥ 0. (7)

In (7), freact is the reactive response (force/torque) of the
user’s biomechanics, vp is the velocity of the user’s limb,
and fp is the therapeutic force to be delivered to the patient’s

limb (for assistance or rehabilitation). In the presence of a
stabilizer which adaptively modulates the reflected forces to
the patient’s limb, the new stability condition is as follows,
in which fp−mod is the modified reflected force.∫ t

0

freact(τ)T · vp(τ) + fp−mod(τ)T · vp(τ) dτ ≥ 0. (8)

The above stability condition can be rewritten as

Ep−react(t) ≥ −Ep−mod(t). (9)

In (9), Ep−react =
∫ t
0
freact(τ)T · vp(τ) dτ is the energy

that can be absorbed by the biomechanics of the patient’s
limb, while Ep−mod(t) =

∫ t
0
fp−mod(τ)T · vp(τ) dτ is the

therapeutic energy delivered to the patient’s limb after the
modification (explained below) by the nonlinear stabilizer.

In order to design the stabilizer, the question is how
to induce the modification into fp to satisfy the given
passivity condition. For this, the main challenge is that
freact would be needed. However, freact is neither accessi-
ble nor measurable because the measurable force is mixed
with the voluntary exogenous force generated by the user’s
muscles for producing motion. This has been shown in the
literature [35], [33] by decomposing the human force into
exogenous component f∗p (t) and reactive component of the
biomechanics, freact(t), as shown in (10) (details can be
found in [33]):

fp(t) = f∗p (t)− freact(t), where freact = zp(vp, t) (10)

In (10) zp(vp, t) is the generalized nonlinear impedance
model of the reactive dynamics of the user’s biomechanics.
Thus a force/torque sensor at the interaction point dur-
ing human-robot interactions can measure fp(t). However,
freact(t) is needed for calculating

∫ t
0
freact(τ)T vp(τ) dτ

to be used in a power modification or energy modification
scheme through force modulation for guaranteeing passivity.
The answer is the use of excess of passivity in realtime
considering the corresponding variability as discussed. This
is to estimate and utilize a variable lower bound for the
amount of energy which can be absorbed by the user biome-
chanics during interaction, i.e.,

∫ t
0
ξp(τ)vp(τ)T vp(τ)dτ . The

proposed controller will work as follows:

fp−mod(t) =

 fp(t) if
∫ t

0

fτ (t)T · vp(τ) dτ ≥ 0,

Ψ(t) otherwise.
(11)

In (11), we have

Ψ(t) =


fp(t) if

∫ t
0
ξp(τ)vp(τ)T vp(τ) dτ ≥

−
∫ t
0
fp(τ)T · vp(τ) dτ,

||ξp(t)vp(t)||2 ·
fp(t)

||fp(t)||2
otherwise.

(12)
As can be seen in Eqs. (11) and (12), the variable excess
of passivity is used in the design of a nonlinear controller



which scales down the force (a) when the energy cannot be
absorbed by the patients’ limb biomechanics, and (b) just
enough to normalize the reflected force in the range which
can be absorbed by the biomechanical passivity to satisfy
the passivity condition and guarantee stability.
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