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Abstract— Dual-use of magnetic resonance imaging (MRI)
devices for robot tracking and actuation has transformed them
into potential medical robotics platforms for targeted therapies
and minimally invasive surgeries. In this paper, we present the
dynamic simulations of an MRI-based tracking and actuation
scheme, which performs intra-operational imaging while con-
trolling untethered magnetic robots. In our realistic rigid-body
simulation, we show that the robot could be controlled with a
1D projection-based position feedback while performing intra-
operational echo-planar imaging (EPI). From the simulations,
we observe that the velocity estimation error is the main
source of the controller instability for low MRI sequence
frequencies. To minimize the velocity estimation errors, we
constrain the controller gains according to maximum closed-
loop rates achievable for different sequence durations. Using
the constrained controller in simulations, we confirm that EPI
imaging could be introduced to the sequence as an intra-
operational imaging method. Although the intro-operational
imaging increases the position estimation error to 2.0 mm for a
simulated MRI-based position sensing with a 0.6 mm Gaussian
noise, it does not cause controller instability up to 128 k-space
lines. With the presented approach, continuous physiological
images could be acquired during medical operations while a
magnetic robot is actuated and tracked inside an MRI device.

I. INTRODUCTION

Performing medical operations, such as targeted therapies
and minimally invasive surgeries, with robots require medical
systems that are capable of localizing and manipulating the
robot while being able to visualize the anatomical structure
of the patient’s body [1], [2]. The MRI scanners have been
proposed as a promising medical imaging platform that
can localize and actuate magnetic robots using specialized
tracking and actuation sequences [3]–[7]. While some of
these sequences are capable of performing high-bandwidth
tracking and actuation [4]–[6] without imaging, others are
capable of imaging without high-bandwidth tracking and
actuation [7], [8]. Minimally invasive medical operations
inside MRI scanners, such as targeted drug delivery and local
hyperthermia, in hard-to-access and high health-risk areas
of the human body, requires both high-bandwidth position
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Fig. 1: Experimental MRI images of a circular phantom filled with agarose
gel with a 250 µm-radius chrome steel bead at the center and three Plexiglas
reference markers around it. The volumetric saturation magnetization of
the steel bead is measured as 9.19× 105 A/m using vibrating sample
magnetometer (EZ7, MicroSense, Massachusetts, USA). Red and green axes
of images are frequency and phase encoding direction, respectively. The
samples are imaged by a 7-Tesla MRI BioSpec 70/30 (Bruker, Ettlingen,
Germany). All images have 3 mm slice thickness, 102×102 field of view,
and 96 resolution in frequency encoding direction, and they are oriented
in the axial plan. a-d) Images are taken by single-shot Cartesian spin-echo
EPI with k-space line number in alphabetic order {32,64,96,128} in phase
encoding directions, 90◦ flip angle TE = 20.12 ms, and TR given on the
images. e) Image is taken by FLASH with flip angle 15◦, TE/TR= 1.79/5.0
ms, and total acquisition duration: 480 ms. f) Experimental image is taken by
multi-shot EPI with 4 segmentation with 128 k-space line in phase encoding
direction, 90◦ flip angle TE = 20.12 ms, TR = 32 ms per segment, and total
acquisition duration: 128 ms.

feedback for robot control and continuous image of the
surrounding tissue for precise and safe operation. [2].

In order to combine the advantages of two approaches,
we present an MRI sequence with intra-operational echo-
planar imaging (EPI) for magnetic robot control. A control
scheme composing of a linear Kalman filter estimating robot
position and velocity, and a proportional-derivative (PD) con-
troller are implemented for a broad range of MRI sequence
parameters for buoyant operating conditions in the water.
We study the effect of the MRI sequence parameters on
state estimation and controller performance using dynamic
robot simulations. For the first time, we simulate the MRI
actuation and position feedback mechanism with realistic
timings and gradients. In the simulation, the robot position
is assumed to be obtained by a 1D projection-based tracking
method. We investigate the closed-loop system rate through
state-space representation. We demonstrated the effect of the
actuation duration on state estimation and controller perfor-
mance without intra-operational imaging. Then, we quantify
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the trajectory-following performance of the controller with
different durations of intra-operational imaging introduced
into the tracking and actuation sequence. We also report
example EPI images of a ferromagnetic bead in an agarose
gel phantom in Fig. 1, which are acquired with different EPI
sequence durations.

II. RELATED WORK

The majority of MRI tracking and actuation sequences
use magnetic gradient forces to actuate untethered magnetic
robots. However, they have different tracking methods [5]–
[7]. There are two main techniques to localize magnetic
robots under MRI. The first technique is localization by
performing a special 1D-projection imaging method called
magnetic signature selective excitation tracking (MS-SET)
[4]. The selective excitation of the region around the mag-
netic robot enables MS-SET to obtain position information
for each axis within a relatively short duration, such as ∼5.5
ms [6]. Such tracking speed results in a 60 Hz sampling
frequency for 3D position feedback in the absence of actua-
tion. Tamaz et al. [5] demonstrated control of a ferromagnetic
bead using MS-SET and 15 ms actuation duration, resulting
in an alternating tracking and actuation sequence at 33 Hz
bandwidth. Later in [6], Felfoul et al. proposed an approach
for steering ferromagnetic beads in constrained channels by
performing MS-SET only in the direction of the desired
actuation. This simultaneous tracking and actuation method
boosts overall actuation frequency up to 180 Hz. More-
over, they also reported that the average magnetic actuation
force could be much higher than the alternating tracking
and actuation approach. However, the simultaneous tracking
and actuation method is limited to motion in channel-like
structures and there is no controller scheme proposed for
more general operating conditions. While MS-SET has the
potential to provide the 3D position of a magnetic robot in the
patient’s body, it cannot provide any anatomical detail of the
body. Therefore, tracking and actuation sequences using MS-
SET should be accompanied by an inter-operational imaging
of anatomical structures. In other words, the alternating
tracking and actuation sequence should be interrupted during
operation to perform traditional MR physiological imaging,
which leaves the robot uncontrolled during such imaging.

The second technique for magnetic robot localization is
MR image-based visual-servoing approach, which uses intra-
operational imaging while actuating the magnetic robots [7],
[8]. The main handicap of these proof-of-concept studies are
the long imaging duration of 960 ms [8], which also leaves
the robots virtually uncontrolled during such imaging, as in
the inter-operational imaging case. Such an extended imaging
and actuation scheme is prohibitively slow for MRI-based
visual-servoing of magnetic robots. As an alternative, MRI
literature offers rich options for ultra-fast imaging sequences,
such as single-shot radio frequency (RF) excitation EPI
sequences [9], which could be used in tracking and actuation
sequences. Furthermore, using parallel imaging techniques
[10], [11] and MR image acceleration algorithms [12]–[15]
reconstructing images with under-sampled k-space data, the

Fig. 2: a) Top block shows two tracking and actuation sequence repetitions
with single-shot EPI as the intra-operational imaging method. The tracking
gradients are shown with three green blocks representing three orthogonal
projection directions. The direction is reversed in each repetition. The
dark purple pulse represents the average of slice selection and refocusing
gradients of single-shot spin echo EPI sequence. Light blue and orange
pulses represent frequency encoding and phase encoding of zigzag k-space
trajectories, respectively. The dark blue is the actuation gradient. Bottom
block shows software structure for the robot controller scheme. Blue arrows
are the actuation magnetic fields calculated by the controller. Red arrow is
the MRI signal for robot position tracking. tt, ti, ta, td p, te, and tcont are the
durations for tracking, imaging, actuation, data processing, estimation, and
control, respectively. b) Block-diagram of the overall control scheme.

time allocated for intra-operational imaging can be further
decreased.

Besides the MRI sequence design, in order to evaluate the
overall performance of the MRI-based control schemes, the
simulation becomes an indispensable tool due to the low ac-
cessibility of MRI scanners. While there are a few simulation
studies, which captures different physical phenomena, such
as hydrodynamics and electrostatic forces on MRI-based
robots [16]–[21], these simulation works do not address some
of the most important aspects of MRI-based actuation and
feedback mechanisms. Arcese et al. [17], [18] include MRI’s
maximum magnetic gradient limitations in their simulations.
Belharet [19] and Eqtami [20] include the sampling time
of MRI-based feedback as 100 ms and 20 ms, respectively.
In addition to the sampling rate, [20] also mentions the
delays due to the computation. Lastly, in our previous
work [22], we presented a Gazebo-based dynamic robotic
simulation that applies the actuation gradient considering
MRI sequence timing. However, this previous work does
not consider MRI-based tracking and imaging gradients and
does not realistically simulate MRI-based position feedback.
Therefore, to the best of our knowledge, there is no realistic
simulation environment in literature fully capturing the MRI-
based feedback and actuation.

III. SYSTEM DESCRIPTION

MRI devices operate through predefined pulse sequences.
Therefore, to control the magnetic robots, we present a



tracking and actuation sequence with intra-operational imag-
ing (Fig. 2). The MRI runs the sequence repeatedly while
communicating with an external controller software. In each
sequence repetition, the position information obtained from
the MRI system using MS-SET is fed to the state estimator
after a short data processing duration shown as td p in Fig. 2.
The state estimator passes the estimated robot state composed
of position and velocity to the controller. The calculated
control input is then sent to the MRI to be applied in
the upcoming sequence. The MRI sequence programming
systems do not allow any change in gradient values once a
sequence repetition starts. Therefore, if the total duration for
control signal calculation t̄cont = tdp+ te+ tcont is greater than
ti+ta, the control signal can only be applied in next sequence
repetition.

A. Magnetic Gradient-based Robot Actuation

Assuming a uniform magnetization, the magnetic pulling
force acting on a ferromagnetic bead in the MRI scanner is
calculated as

Fm =Vm(M ·∇)B. (1)

Here, Vm is the magnetic volume of the robot, which can
be written as Vm = γV , where γ is the magnetic volume
ratio and V is the volume of the robot. M ∈ R3 is the
volumetric magnetization vector of ferromagnetic core, and
B ∈ R3 is the magnetic field acting on the robot. Since the
main magnetic field of the MRI scanner1, B0 = B0x̂, where x̂
is the unit vector in x axis, is much larger than the magnetic
field generated by gradient coils, the magnetization of the
ferromagnetic core is always oriented in the direction of B0
[21]. Hence, (1) can be written as

Fm =VmMBx, (2)

where M is the scalar volumetric magnetization in the axial
direction, and Bx = ∇(x̂ · B) with ∇ being the gradient
operator [3].

In a tracking and actuation sequence, the average magnetic
gradient of the sequence is also important, and it is defined
as

B̄x = βaBx,a +βiBx,i +(1−βa−βi)Bx,t . (3)

βa and βi are the ratio of actuation and imaging to the
sequence length, and Bx,a, Bx,i, and Bx,t are actuation,
imaging and tracking gradients, respectively. Since we can
cancel the effect of the tracking gradients by reversing the
readout direction of the tracking projections in each sequence
repetition, as shown in Fig. 2 [4]. The resultant average
magnetic field for two sequence repetition can be written
as

B̃x = βaBx,a +βiBx,i. (4)

1In this paper, the axial direction (main field direction) of the MRI scanner
is chosen as x axis, and upward direction is chosen as z axis.

This equation can be further simplified if imaging se-
quences are used symmetrically. However, in a typical opera-
tion scenario, the imaging gradients might change depending
on the chosen image slice position and orientation; therefore,
we keep this term.

B. Robot Design

We use a symmetric spherical ferromagnetic chrome steel
bead as our magnetic robot to simplify the models. The
available magnetic force in the MRI scanner is not enough to
compensate for the weight of the robot in the water, and such
weight compensation would limit the controller performance
by constraining the controller gains. Therefore, we assumed
that the robot is covered with a light density spherical shell
resulting in a near buoyant design similar to [21] for a 750
µm-radius robot. The density of the overall robot is calculated
as

ρ = γρm +(1− γ)ρs (5)

where ρm and ρs are the density of the ferromagnetic core
and the density of the shell, respectively. In the ideal case,
the density of the robot should be equal to the density of
the fluid at operating temperatures, ρ f (T ). Therefore, we
can calculate the required shell density with respect to the
magnetic volume as

ρs =
ρ f (T )− γρm

1− γ
. (6)

From (6), we can see that γ should be strictly smaller than
ρ f (T )/ρm and the average density of the shell depends on
the magnetic volume ratio. On the other hand, decreasing the
magnetic volume ratio also decreases the available magnetic
force for control purposes.

C. Hydrodynamic Forces

There are two major hydrodynamic forces acting on the
robot. First one is buoyancy force,

Fb =V ρ f (T )gẑ, (7)

where g is the gravitational acceleration constant and ẑ is the
unit vector in z axis. In case of a density mismatch between
robot density and fluid density, δρ = ρ f (T )−ρ , the apparent
weight of the robot is calculated as

Fw =V δρgẑ. (8)

The second hydrodynamic forces acting on the robot is
the hydrodynamic drag forces. We calculated the drag forces
acting on the robot as

Fd =−1
2

Cdρ f A |vf−v|2 vf−v
|vf−v|

, (9)

where A is the cross-sectional area of the robot, and v ∈ R3

and vf ∈ R3 are the velocity of the robot and fluid in
the inertial frame, respectively. Since our robot operates in
Reynold’s number Re = 2rρf |vf−v|/µ < 10, where r is



the radius of the robot, µ is the dynamic viscosity of the
fluid, the drag coefficient Cd is calculated using laminar flow
assumption [23] as:

Cd =
24
Re

+
6

1+
√

Re
+0.4. (10)

D. State Estimation

The MRI-based tracking sequence only provides the 3D
position of the robot; therefore, in order to use velocity-
based controllers, the unmeasured robot velocity should be
estimated from the position data as in [17]. We used linear
Kalman filter to estimate the robot position and velocity for
3D motion using Stoke’s drag formula [1] Fst = 6πµr|vf−v|.
While the discrepancy between (9) and Stoke’s drag is small
for low velocities, the difference in drag forces reaches 35%
of laminar flow drag for the limit of our operation limits.

Since the assumed process model is linear, we can treat
each axis independent, and 1D dynamics of the system can
be as

xk+1 =

[
1 ∆t
0 1−α∆t

]
︸ ︷︷ ︸

Φ

xk +
1
m

[
∆t2/2

∆t

]
︸ ︷︷ ︸

Γ

(uk +wk) (11)

where the state, xk ∈ R2, is composed of position and
velocity of the robot. uk ∈ R is the acceleration due to the
magnetic force and the apparent weight, and wk is the process
noise in terms of uncorrelated acceleration noise with zero
mean. The linear deceleration due to the linear fluid drag is
α = 6πµr/m. ∆t is the total duration of an MRI sequence
repetition. The measurement for each dimension is

zk =
[
1 0

]︸ ︷︷ ︸
H

xk +νk, (12)

where νk is the measurement noise with zero mean. It is as-
sumed that the measurement is done at the end of the tracking
gradient. Then the standard Kalman filter formulation is used
for each direction [24]. The prediction step is

x̂p,k+1 = Φx̂m,k +Γuk (13)

Pp,k+1 = ΦPm,kΦ
T +ΓQΓ

T (14)

and the measurement step is

x̂m,k+1 = x̂p,k+1 +K(zk+1−Hx̂p,k+1) (15)
Pm,k+1 = (I−Kk+1H)Pp,k+1 (16)

where x̂p,k ∈ R2 and x̂m,k ∈ R2 are the predicted state and
measurement updated state at time step k, respectively. The
Kalman gain is Kk+1 = Pp,k+1HT(HPp,k+1HT + R)−1 and
I is 2×2 identity matrix. While calculating the prediction
step, we used the sequence average magnetic gradient. The
accuracy of the prediction can be increased by performing
the estimation with finer time-steps capturing the individual
effect of each gradient in the sequence. However, because of
the short time window for the state estimator and controller

before the next sequence starts, we avoid computationally
expensive prediction at the cost of lower accuracy.

E. Controller

Although different controllers were proposed for MRI-
based actuation [16]–[19], [25], we have used an acceleration
reference-based PD controller with apparent weight and
imaging gradient compensation to simplify our analysis. We
define the control law for the actuation gradient as

Bx,a =
1
βa

(
1

VmM
(mare f −Fw)−βiBx,i), (17)

where
are f = Kp(rd− r)+Kd(vd−v). (18)

Kp = kpdiag(1,1,1) and Kd = kddiag(1,1,1) are the diagonal
proportional and derivative gain matrices, respectively. r ∈
R3 is the robot position. rd ∈ R3 and vd ∈ R3 are desired
position and velocity, respectively. Formulating the control
law in this way, we can use the same controller parameters
for sequence with different actuation and intra-operation
imaging durations. In practice, an integrator term can also
be added to the acceleration reference in order to eliminate
small discrepancies in the model. Since our controller has
almost complete knowledge of the system, we do not use
the integrator term to facilitate the following analysis.

Sequences with different durations have different capaci-
ties to handle the closed-loop dynamics. In order to perform
a fair comparison among sequences with various durations,
we identify approximate closed-loop rates of the controller
or a sequence using a linear drag assumption. Using (17),
we can write the continuous closed-loop dynamics of each
direction in the following form

ẋ =

[
0 1
0 −α

]
x+
[

0
1

]
are f (19)

where x ∈R2 is the state composed of position and velocity
in one direction. By substituting (18) into (19), the eigen-
values of the continuous dynamics for each direction can be
calculated in terms of kp and kd, which are diagonal elements
of gain matrices, as

λ =−α + kd

2

(
1±

√
1−

4kp

(α + kd)2

)
. (20)

λ is a complex variable expressing damping and oscillations
rates of the continuous dynamics. We use (20) to obtain
a general relation between kp and kd and the maximum
allowable closed-loop rates, λ̄ , for different MRI sequence
frequencies, fseq = 1/(tt + ti + ta). We define following rate
constraint based on MRI sequence frequency:

fseq/N = λ̄ > |λ | (21)

where N ∈ R>0 defines the upper limit of the targeted
closed-loop rate, λ̄ , with respect to the MRI sequence
frequency, fseq. The higher λ̄ is, the faster the controller
react to errors. However, we are constrained by fseq due to



the limited position feedback rate. Using (20) and (21), after
considerable algebraic manipulations, we obtain maximum
k̄p value as a function of kd and targeted maximum closed-
loop rate,

k̄p(kd, λ̄ ) = λ̄
2− λ̄ (α + kd)+(α + kd)

2/2. (22)

kd values in [0,2λ̄ −α] satisfy the stability criteria [26] and
also (21). Depending on the desired damping ratio ζ = (α +
kd)/(2

√
kp) and N , we can choose kp and kd values for

different sequence frequencies.

F. Intra-operational Imaging

In addition to the robot tracking with MS-SET and
actuation with magnetic gradients, the third and arguably
the most important functionality of the MRI is to obtain
intra-operational images of the physiological operation en-
vironment during the robot actuation. MR imaging literature
offers vast options for fast imaging techniques. For instance,
Dahmen et al. [7] use half-Fourier acquisition single-shot
turbo spin-echo and fast low angle shot (FLASH). These are
examples of multiple excitation spin-echo and gradient-echo
imaging techniques, which acquires the k-space data of the
image line by line. In order to obtain high-resolution images,
these sequences excite the spins of the specimen before each
k-space line acquisition and contain long repetition duration
to separate signal received from different k-space lines.

Even with these high-resolution imaging techniques, imag-
ing a magnetic robot is still challenging. By altering the
Larmor frequency of the nearby protons, the magnetic robot
creates an image artifact obscuring a significant part of the
image. An example of an experimental FLASH image is
given in Fig. 1e. It can be seen that 250 µm-radius chrome
steel has created an imaging artifact approximately 20 times
of the robot’s size. Similar imaging artifacts are also reported
in [21], [27], [28]. Although there are techniques [29],
[30] proposed for reducing metal artifacts, these techniques
increase total imaging duration. Since we have limited time
for imaging, the high-resolution and low distortion images
are expensive in terms of time for control purposes.

On the other hand, the EPI sequence offers a relatively
short imaging duration at the cost of image quality. EPI

Properties Values
Robot radius (µm) 750
Robot density (g/cm3) 1.0
Magnetic volume ratio 0.064
Magnetization (A/m) 9.2e5
Temperature (◦C) 36
Fluid density (g/cm3) 0.993
Fluid viscosity (Pa·s) 7e-4
Fluid flow (mm/s) 0.0
Tracking duration (ms) 16.5
Average tracking gradient (mT/m) 0.453
Maximum allowable actuation gradient (mT/m) 66
Position sensor noise standard deviation (mm) 0.6
Simulation time step (ms) 1
Kalman filter Q 1.0e-11diag(1,1,1)
Kalman filter R 1.0e-3 diag(1,1,1)

TABLE I: Simulation parameters

Fig. 3: The simulation plots demonstrate average mean-square position and
velocity error of trajectory following (red) and estimation (blue) for 40
experiments for each N . The transparent region around data represents the
standart devitaion. The light green area shows the cases when closed-loop
rate of the system is above Nyquist’s rate. Higher N corresponds to lower
control gains and vice versa.

sequences are so-called ultrafast imaging sequences, which
applies single-shot RF excitation to collect multiple k-space
lines at once with a zigzag k-space trajectory coverage, rather
than applying RF excitation for each k-space line. Example
experimental EPI images of the ferromagnetic bead with
different resolutions are given in Fig. 1a-d. Although the
magnetic susceptibility creates a significantly larger artifact
in Fig. 1a-d, since EPI is superior to other techniques in
respect of speed, we use the k-space line acquisition time of
EPI as a reference in this study.

IV. SIMULATION RESULTS

In this study, we use the Gazebo [31] simulation en-
vironment to evaluate the effect of the MRI sequence to
the controller and the estimator performance. In addition
to the existing rigid-body dynamic framework of Gazebo,
we implement our own fluid and magnetic force modules.
The fluid module contains the drag force calculated by (9)
and buoyancy force (7) of the fluid. We used temperature-
depended empirical density and viscosity of the water [32],
[33].

The magnetic forces due to the MRI sequence is calculated
using (2). The magnetic gradients are assumed uniform in the
workspace with a maximum available amplitude of 66 mT/m
due to the MRI hardware limitations, and the rise time of
the gradient pulses are neglected. To capture the effect of
gradient pulses, which are shorter than the simulation time
step, we average all the magnetic forces lying within each
time step. For the realistic simulation of MRI actuation and
tracking conditions, the received actuation signal is applied
in upcoming sequence repetition, and the position data for
each axis is collected at the beginning of the corresponding
axis’ tracking gradient pulse. Then the collected data is
published to state estimator after a simulated computation
and communication duration. Although Felfoul et al. [6]



report this duration as 10 ms, we use our Biospec 70/30
MRI (Bruker, Etlingen, Germany) scanner’s Paravision soft-
ware’s communication duration and C++ fftw [34] library’s
computation duration as a reference, which results in an
approximately 4 ms delay. Our simulation does not explicitly
calculate the noise due to the consecutive RF excitation.
However, we use the experimentally measured position noise
of MS-SET in dynamic cases reported by [4], in order
to capture the effect of the measurement noise on control
performance.

In the simulations, the duration of the MS-SET-based
tracking pulses tt shown with the green gradients in Fig.
2 is set to 16.5 ms and average gradient for tracking pulses,
which is the average of dephasing, readout and rephasing
gradients, in each direction are set to 0.453 mT/m based
on data reported by Felfoul et al. [6]. The duration of
intra-operational imaging ti and gradient actuation ta are
kept variable in order to investigate their effect on control
performance. While ta should be always greater than zero, we
let ti to be zero, which indicates no intra-operational imaging,
to be a reference for comparison.

A. Actuation Duration
Due to the limitations of the MRI sequence duration on

sampling and actuation frequency, tracking and actuation
sequences have a maximum closed-loop rate capacity. To
quantify the effect of the closed-loop rates on control and
estimation performance, we carry out 40 trajectories follow-
ing simulations for various N value between 1 to 10. We
used 3D sinusoidal trajectories with a 10 s period, and the
amplitudes of each axis are independently drawn from [0, 5]
mm interval using a uniform distribution, which guarantees
the velocities to stay within laminar flow regime. kd and kp
gains calculated according to (22) and desired damping ratios
We calculate the average estimation and trajectory following
errors for position and velocity by

Ex,est =
1
N

N

∑
i=0

∥∥re,i,−rg,i
∥∥

2 , Ev,est =
1
N

N

∑
i=0

∥∥ve,i−vg,i
∥∥

2

Ex,tra =
1
N

N

∑
i=0

∥∥rd,i,−rg,i
∥∥

2 , Ev,tra =
1
N

N

∑
i=0

∥∥vd,i−vg,i
∥∥

2

where ‖·‖2 is the euclidean distance, N is number of data
points, and subscripts g, e and d represents ground truth,
estimated and desired trajectory values. We performed sim-
ulations with various damping ratios. However, due to the
space limitations, we only give the results for ζ = 1/

√
2.

Fig. 3 shows the estimation and trajectory following errors
for position and velocity with respect to N for tracking and
actuation sequence with 15 ms actuation. The transparent
regions around the data represent the standard deviation of
the simulations. The position sensor noise level is shown in
the top figure with the red dash line. The data for N < 1 is
not given since the controller becomes unstable.

After observing the effect of N , we perform the same
trajectory following experiments for varying actuation gradi-
ent durations for N = 4 and ζ = 1/

√
2. In addition to the

Fig. 4: The simulation plots show average mean-square tracking (red) and
estimation (blue) error for the position and velocity with respect to the
sequence frequency corresponding to different actuation gradient duration
for 40 simulations for each sequence frequency. N is chosen as N = 4
and damping ratio is chosen as ζ = 1/

√
2. Horizontal dashed line is the

standard deviation of the MS-SET base position sensor. The dark green
area represents the cases in which the position data is received in next
repetition.

previous analysis, we also add Gaussian noise on temperature
and fluid velocity with the standard deviation of 0.5 ◦C and 1
mm/s, respectively. The estimation and trajectory following
error results are given in Fig. 4 with respect to sequence
frequency corresponding to different actuation durations. The
transparent regions around the data represent the standard
deviation of 40 repetitions of simulation for each frequency.
Since the controller becomes unstable, the data corresponded
to low frequencies are not presented in the plot.

B. Intra-Operational Imaging Duration

Unlike changing actuation durations, changing inter-
operational imaging durations also decreases the sequence-
averaged actuation gradient, according to (4). Therefore, it
should be evaluated separately. In order to evaluate the effect
of the intra-operational imaging duration, we performed
the same trajectory following experiments 40 times for
each intra-operational imaging duration using the sequence
scheme shown in Fig. 2 with 15 ms actuation. We simulated
gradient pulses of the EPI image shown in Fig. 1.c by
approximating it in two parts. The first part is 16 ms long
slice selection gradient in the x-direction with 10 mT/m
magnitude; the second part is the incremental phase encoding
gradient in −y direction with 4.7 µT/m during the rest of
the EPI imaging duration. Since the frequency encoding
gradients of pulse trains are symmetric, we assume that they
cancel each other. We show the estimation and trajectory
following accuracy for the position with respect to the
number of k-space line contained by the EPI sequence in
Fig. 5. Furthermore, we also present example EPI images.
The images are matched with the corresponding k-space line
numbers in Fig. 5.



Fig. 5: The simulation plots show average mean tracking (red) and estima-
tion (blue) error of position with respect to different intra-operational image
k-space numbers for N = 4 and ζ = 1/

√
2. The experimental MR images

with different resolutions are matched with the k-space line numbers with
vertical dash lines.

V. DISCUSSION

By the nature of the MRI-based tracking and actuation,
the sampling and control frequencies of the MRI-based
robotic platforms are limited to sequence frequency. Fig. 3
clearly shows that the trajectory-following performance of
the control scheme depends on the capability of the estimator
to observe states of the system accurately. As N decreases,
the velocity estimation accuracy of Kalman filter decreases
since the sampling rate becomes insufficient compared to
the closed-loop rates. When N < 2, both position and
velocity estimation errors increases and result in instability.
On the other hand, as N increases, the system becomes
slow enough for Kalman filter to fully capture the dynamics
of the system. As foreseen by [24], the estimation accuracy
surpasses the accuracy of the position sensor. From Fig.
3, it can be seen that, for N > 2, the position and for
N > 4 velocity estimation converge a minimum error level.
Therefore, there is no need to further decrease the controller
gains to slow down the system. On the contrary, for N > 4,
controller gains become so less that despite the good state
estimation, the controller fails to track the trajectory. It is also
important to note that this drop-out in controller performance
depends on the chosen damping ratio.

Fig. 3 already shows that a sequence has a control gain
capacity, hence we compared sequences for the same N and
damping ratio, at which the state estimation error converges
to its minimum value for both position and velocity. It can
be seen from Fig. 4 that, as actuation duration decreases, the
position estimation accuracy also increases, and therefore,
the trajectory-following accuracy increases. In contrast, for
longer actuation duration corresponding to sequence fre-
quency less than 10 Hz, the control scheme cannot handle
the random disturbance and becomes oscillatory and even-
tually unstable for very long actuation durations. Hence, we
conclude that higher sequence frequencies are required for
robustness in general. Another important point is that the
delay in MRI feedback caused by simulated communication

and computation times do not drastically worsen the control
performance for sequence frequency falling in the dark
green region in Fig. 4. On the contrary, due to increasing
estimation accuracy, overall control performance improves
as the frequency increases.

The introduction of intra-operational imaging to sequence
has a similar effect on sequence frequency with actuation
duration. When the duration of imaging is increased the
estimation and trajectory following accuracy of the system
decreases. Results show that the controller can successfully
compensate for the effect of imaging sequences in simula-
tions. From Fig. 5, we can estimate the robot position with an
average error 2.0 mm for up to 128 k-space lines. Depending
on the application this error might be acceptable. However,
for higher precision applications, we should consider images
with less resolution, such as in Fig. 1a. Furthermore, although
it is hard to see from images due to the low resolution
in Fig. 1a-d, collecting a higher number of k-space lines
for single-shot EPI image creates more prominent warping
distortion. The reason for the warping distortion is the
accumulation of magnetic inhomogeneity effects throughout
the zigzag k-space trajectory. The more k-space lines are
collected, the longer the k-space trajectory become, hence
the more distortions are observed. The disturbances can be
decreased by using multi-shot EPI as in Fig. 1f, or similarly
by collecting less k-space lines and reconstructing images
using acceleration techniques [12]–[15]. The repetition of
EPI images can be further decreased; however, the images
become more distorted. In our analysis, we used the shortest
imaging duration that gives visually comprehensible images.

In this study, we use a symmetric spherical bead as a
robot; therefore, the effect of the rotational motion is ignored.
Due to the high main field of MRI, the results could be
generalized to any robot geometry with minor modifications
in the fluid drag calculation, unless the magnetic core is
freely rotating in the robot’s shell. Otherwise, the inertial
dynamics of the robot including fluid torques should be
considered as in [21]. The same controller and estimator
could control the translation motion of anisotropic robots
with a fixed ferromagnetic core. However, the robot would
freely rotate around the MRI’s axial direction. On the other
hand, an anisotropic body with non-fixed ferromagnetic core
requires a more sophisticated controller [21].

The developed control strategy paves the way for intra-
operational imaging by demonstrating the possibility of
controlling the robot during continuous imaging. When com-
bined with intra-operational imaging, the proposed approach
has the potential to eliminate the need for pre-operational po-
sition registration and to give the flexibility to move patients
during operations. While, the proposed scheme could control
the robot in applications like targetted drug delivery, local
hyperthermia, and active unclogging, the targetted operation
area is limited by the disturbances, such as fluid flow and sur-
face contacts. Our control strategy could navigate the robot
in areas like the gastrointestinal tract and urinary system,
which are composed of large cavities compared to robot size.
However, using the proposed approach in narrower cavities,



such as the spinal fluid and ventricular system, will lead
to position error since the state estimator does not include
the interaction with the surfaces. For such cases, nonlinear
state estimators may be exploited. Furthermore, predictive
controllers, which have access to additional information, such
as surface contact information obtained from 2D MR image,
would mitigate the trajectory-following error. However, the
feedback rate of the MRI-based tracking will determine the
upper bound of the trajectory-following performance in such
applications.

VI. CONCLUSION

In this paper, an MRI-based magnetic robot control
technique with intra-operational imaging is presented using
rigid-body simulations which simulates MRI-based gradient
actuation and feedback mechanism realistically. The state
estimation and controller performance of the overall system
is evaluated for various MRI sequence parameters using
dynamic robot simulations, which capture important char-
acteristics of MRI-based tracking and actuation. In simula-
tions, we show that due to the limitations in the sampling
frequency, the tracking and actuation sequence has an upper
limit in terms of the closed-loop system rate. The intra-
operational imaging capacity of the presented approach is
investigated in terms of number of k-space lines, which
can be collected without resulting in significant decrease
in the robot control performance. The implementation of
the proposed MRI tracking and actuation scheme in real
MRI device is a future work. The other future work will
be adapting nonlinear state estimators, which could handle
more general operating conditions and developing a real-
time reconstruction algorithms, which would visualize the
anatomy and robot during the actuation.
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