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Abstract— Developing intelligent prosthetic controllers to
recognize user intent across users is a challenge. Machine
learning algorithms present an opportunity to develop meth-
ods for predicting user’s locomotion mode. Currently, linear
discriminant analysis (LDA) offers the standard solution in
the state-of-the-art for subject dependent models and has been
used in the development of subject independent applications.
However, the performance of subject independent models differ
radically from their dependent counterpart. Furthermore, most
of the studies limit the evaluation to a fixed terrain with
individual stair height and ramp inclination. In this study, we
investigated the use of the XGBoost algorithm for developing
a subject independent model across 8 individuals with trans-
femoral amputation. We evaluated the performance of XGBoost
across different stair heights and inclination angles and found
that it generalizes well across preset conditions. Our findings
suggest that XGBoost offers a potential benefit for both subject
independent and subject dependent algorithms outperforming
LDA and NN (DEP SS Error: 2.93% ± 0.49%, DEP TS Error:
7.03% ± 0.74%, IND SS Error: 10.12% ± 3.16%, and IND TS
Error: 15.78% ± 2.39%)(p<0.05). We were also able to show
that with the inclusion of extra sensors the model performance
could continually be improved in both user dependent and
independent models (p<0.05). Our study provides valuable
information for future intent recognition systems to make them
more reliable across different users and common community
ambulation modes.
Index Terms — Prosthetics and exoskeletons, wearable robots,
human performance augmentation, robotic prosthesis, mode
classification, transfemoral amputation

I. INTRODUCTION

Over the last two decades there have been many advance-
ments in powered prosthetic technology that can aid users
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with lower-limb amputation and restore their locomotive
abilities [1]–[3]. However, best practices for effectively cou-
pling powered prostheses to individual users remain elusive.
A recent challenge in creating smarter controllers is under-
standing how to recognize and adapt to user intent. Con-
trollers which seamlessly decipher user intent and provide
appropriate assistance will have greater viability in clinical
scenarios.

Recent projections indicate that the number of individuals
with lower-limb loss will increase significantly over the
next several decades [4]. The steady increase of lower-limb
amputations warrants the need to develop more advanced
technology to allow users to ambulate more naturally and
over terrains that they would often encounter in the com-
munity, such as stairs and ramps. Current solutions are
mainly passive, which lack the ability to generate net positive
work over a gait cycle. Hence, users develop compensatory
strategies to walk which include having higher intact limb-
joint moments that may lead to joint degradation, pain, and
osteoarthritis [5]–[8]. Powered prostheses may help to reduce
some of these compensatory strategies, but still require more
advanced and reliable controller designs [9].

Recent advances on the integration of microprocessors,
microcontrollers, sensors, and actuators coupled with inno-
vative mechanical design have paved the way toward further
advancing smarter prosthetic technology. These powered
devices show promise in being able to help lower-limb
amputees function at higher levels in their daily lives because
of their ability to accommodate and provide appropriate
assistance on different terrain which may in turn improve
overall quality of life [10]. Robust and reliable implementa-
tion of controllers capable of accurate intent recognition (i.e.
recognizing the desire to change between ambulation modes)
is a non-trivial requirement given the high variability that
frequently presents itself within given clinical populations.

Prosthetic control strategies have been explored to under-
stand what techniques can be utilized to develop smarter
algorithms [11]. Many research groups have focused on
single lower-limb joint devices, and the lower limb prosthetic
market to date only includes single joint (knee or ankle)
powered technology [12], [13]. However, when more than
one biological joint is missing, such as in a transfemoral
amputation, an additional challenge is to ensure that two
independently powered prosthetic joints can be controlled
in a synchronous and stable manner. The most common
prosthetic control strategies typically employ a three-tier con-
troller paradigm: high-level, mid-level and low-level control
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[11], [14].
The high-level controller is responsible for detecting and

deciphering user intent (i.e. determining locomotion mode or
estimating environmental variables). The mid-level controller
generates a desired profile at each joint throughout the gait
cycle using either torque or position laws. The low-level
controller’s responsibility is to ensure that the actual torque
output from the motor and transmission matches the desired
torque. The focus of this study was to enhance the high-level
controller as it is critical that these predictions have high ac-
curacy given their direct impact on the behavior of the other
two tiers, triggering actions of the prosthesis that depend
on ambulation mode. Hence, the complete response of the
powered prosthesis heavily depends on the determination of
the user’s ambulation mode. Manual triggers to transition
between different locomotion modes are non-intuitive and
presents a cognitive burden to the user while walking.

Machine learning or pattern recognition techniques have
been shown to classify the ambulation mode in powered
prostheses from mechanical sensors [15]–[19] and neuro-
muscular signals [20]. These techniques have shown levels
of accuracy that demonstrate potential for the application
in intelligent control of detecting ambulation modes. Simon
et al. implemented a mode-specific classifier that utilized a
delayed mode transition decision of 90 ms while achieving
an error of less than 0.5% [21]. However, as has been
demonstrated in stability and error recovery studies, the
response of such a system is highly sensitive to classification
errors [22]. Traditionally, these implementations use methods
that are relatively simple such as linear discriminant analysis
(LDA) based on Bayesian theory [16], [17], [23], [24]. This
offers the advantage of ease of use and fast training but are
limited in capturing complex data dependencies. In addition,
most of the methods have been used in a subject dependent
setting, where they require training for everyone that wears
the device, failing to capture patterns that are generalized
across different users. Overcoming this challenge could re-
duce the burden of gathering lots of training data and may
facilitate the adoption of smarter prostheses. In a previous
study we proposed one of the first attempts of a method
to produce subject independent classification that reduced
the error levels to a range that allowed its use to control a
prosthetic device [24]. However, we consider that additional
development is needed to improve such systems, in particular
with respect to a limitation that is consistently found in
the literature: which is that all the training data is collected
on a single ramp grade/stair height and tested on the same
conditions. Furthermore, in most prior studies, classification
accuracy have only been reported for a single height/incline
in the training set. For real-world applications, these methods
do not adequately represent community ambulation which
has a larger variation in terrain, and as such, an intent
recognition system must have the capability of adapting to
different stair heights and inclination angles. However, this
is a much more complex problem for a machine learning
algorithm and is still an under-explored area of research.

Recent results in machine learning literature show the

practical advantage of the gradient tree boosting method
in classification problems with tabular data in complex
classification scenarios [25]–[29]. Amongst different imple-
mentations, the open source package XGBoost [30] has
been established as a robust solution in a wide range of
problems, dominating competitions such as Kaggle [31].
XGBoost is a supervised machine learning algorithm based
on gradient boosting and ensemble learning techniques. This
method allows representation of the learning problem as
gradient descent on an arbitrary differentiable loss function.
This technique uses clever penalization of individual trees
by including an additional regularization term in the loss
function to combat overfitting and to improve the classifica-
tion or regression output compared to its predecessors. This
algorithm was selected for multiple reasons which include: 1)
additive tree models that can be seen to adaptively determine
the size of local neighborhoods (i.e. improves the flexibility
of the fit to the data), 2) weight functions are updated at
each subsequent iteration of creating the tree while taking
the bias-variance tradeoff into consideration during fitting,
and 3) approximating complex functional relationships using
additive tree models [25], [30], [32] . In addition, this model
is easily usable and efficient when training on different tasks.
This decision tree boosting algorithm also allows us not to
be constrained with the assumptions of Bayesian classifiers
in which a certain covariance structure is specified. In the
realm of exoskeletons and prostheses, several groups have
implemented ensemble algorithms in gait classification tasks
[33]–[36]. To the authors’ knowledge, this is a new algorithm
that has not been implemented in the field of lower-limb
powered prostheses.

One novel aspect of this study compared to prior literature
is having an expanded mechanical sensor set embedded on
the prosthesis which includes 6-axis IMUs on the foot, shank
and thigh, a 6-axis load cell, and joint encoders at the
knee and ankle. Furthermore, our experimental paradigm
allows for a unique data set to test generalizability across
multiple stair heights and ramp inclination angles, and lastly
exploring the use of a new algorithm for wearable robotics
(XGBoost) on classifier performance. Thus, our first hypoth-
esis is that more complex algorithms like XGBoost will
improve the accuracy of the classification and scale across
different grades of terrain by learning patterns that are not
described by more simple methods, especially when using
inputs from multiple sensors. Secondly, we hypothesized
that adding extra mechanical sensors can help to improve
the performance of the user-independent classifiers compared
to its dependent counterparts. This study will help provide
meaningful information for future development of user-intent
recognition systems that can be clinically relevant.

II. METHODS
A. Powered Knee & Ankle Device

Our study utilized a powered knee and ankle prosthesis
that features two independently controlled joints at the knee
and ankle, providing powered assistance in the sagittal plane;
a more detailed presentation of the prosthesis can be found



Fig. 1. Experimental setting in which one individual with transfemoral
amputation is completing a stair ambulation trial across our custom-built
terrain park. The terrain park is adjustable and can be modified between
different stair heights and inclination angles. Embedded sensors on the
prosthesis which include two joint encoders, one 6-DOF load cell, and three
6-axis inertial measurement units are useful in deciphering user intent.

in a previous paper [37], [38]. Briefly, the prosthesis includes
six embedded mechanical sensors: two joint incremental en-
coders (US Digital E5) to measure knee and ankle kinemat-
ics, a 6-DOF (degree of freedom) load cell (SRI M3714C2)
to measure ground reaction forces and moments, and three 6-
axis (accelerometer & gyroscope) inertial measurement units
(YOST 3-Space LX embedded) (IMUs). All sensors were
collected at 100 Hz except for IMUs, which were sampled
at 250 Hz. A three-tier control paradigm was implemented in
this study. The low-level controller was responsible for min-
imizing error between the desired and actual torque profiles.
The mid-level controller was an impedance controller paired
with a finite state machine. Furthermore, the gait cycle was
discretized into four states (early stance, late stance, swing
flexion, and swing extension) for each ambulation mode
[14]. Detailed approaches of how impedance parameters
were tuned were based on previous literature [14], [39]. The
high-level controller is responsible for predicting transitions
between different ambulation modes (i.e. user intent) and
estimating features of different terrain. The focus of this
paper was to demonstrate a method of developing a user
intent recognition system that could be utilized on wearable
robotic devices.

B. Experimental Design

Eight individuals (7 males/1 female, age: 49.63 ± 13.68
years, height: 1.77 ± 0.07 m, mass: 87.31 ± 16.47 kg)
with unilateral transfemoral amputation (4R/4L) were re-
cruited and provided informed consent in accordance with
the Georgia Institute of Technology Institutional Review
Board. The prosthetic device was configured to each user by
a certified prosthetist for appropriate comfort and alignment.
The prosthetist guided the subjects in adjusting their gait
to overcome any exaggerated or over-compensatory move-
ments. When the prosthetist was satisfied with the tuning

process, we conducted our collection of ambulation circuits.
Users were asked to complete 2 types of ambulation circuits
(ramp circuit: level walking (LW), ramp ascent (RA), & ramp
descent (RD), stair circuit: level walking (LW), stair ascent
(SA), & stair descent (SD)) of each preset condition in our
in-lab terrain park area using our powered prosthesis. Our
custom built terrain park was adjusted and set to 4 different
presets for which 4 ramp trials occurred at 7.8◦, 9.2◦, 11.0◦,
and 12.4◦and 4 stair trials at 10.2 cm, 12.7 cm, 15.2 cm,
and 17.8 cm. Hence a total of 32 trials were collected from
each subject across all the different modes. Ambulation mode
labels were generated using our finite state machine. Steady
state steps (SS) were identified if the previous gait event
(heel contact or toe-off) remained in the same event. While
transitional steps (TS) were identified if the previous gait
event on the previous mode was different on the next mode
(e.g. LW LateStance to SA SwingFlexion – was labeled as
SA).

C. Data Processing and Feature Extraction

To ensure an appropriate input of data to train our mode
classifiers, a general workflow was implemented to investi-
gate and compare multiple machine learning algorithms for
predicting locomotion mode. We had 6 embedded sensors
on the prosthesis (2 encoders, 3 IMUs, and 1 load cell).
We had 2 channels from each encoder and 6 channels from
each IMU and the loadcell. We extracted 5 feature types
(minimum, maximum, mean, standard deviation, and ending
value) resulting in a total of 140 features (28 channels x 5
feature types = 140 total features) for a given window [15],
[17], [20]. We ran two sequential forward simulations to see
if certain feature types and channels were needed. It was
found that removing any given feature type did not result in
a decrease in classification error. Similar results were seen
in the channel simulation. Hence, to be conservative, all the
features were kept, since there was no evidence of overfitting
from these simulations. The experimental data was neither
based on timing or % gait cycle, but rather the 6-DOF
loadcell to transition between phases of each ambulation
mode as seen in previous studies [14]. Gait decisions were
made at toe off (weight under a threshold) and heel contact
(weight exceeding a threshold) to create reliable time points
for transitioning the device between ambulation modes. A
normalization scheme was applied first at the sensor level
by dividing the load cell signal by each subject’s respective
weight. Furthermore, a z-score normalization was explored
across all sensors on the feature level, with the load cell
showing the best improvement compared to non-normalized
data.

D. Locomotion Mode Classifiers

Initially, five algorithms were chosen for performance
comparison in mode classification. These algorithms were
linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), Naive Bayes (NB), neural networks (NN),
and XGBoost. The Bayesian classifiers were selected as
being the current standard in the field of low-error classifiers.



Fig. 2. The machine learning workflow used to predict user locomotion mode is shown. Users were asked to perform ambulation circuits which involved
walking in 5 locomotion modes - LW, RA, RD, SA, and SD. Joint encoders that measured angular position and velocity, 6-DOF loadcell that measured
ground reaction forces & moments, and IMUs that measured acceleration and rotational velocities were first segmented into two phases - heel contact and
toe-off. The next algorithm consisted of transforming the data into several features (minimum, maximum, mean, standard deviation, and ending value) for
a fixed window size. Next, a window size sweep was performed to find optimal window length to predict locomotion mode based on transitional error.
The features were then passed through each machine learning algorithm (LDA, NN, and XGBoost) to predict locomotion mode. NN and XGBoost had to
undergo an extra step of hyper-parameter tuning. In NN, layers, nodes, optimizer, learning rate, activation function, and batch size were swept. In XGBoost,
learning rate, maximum tree depth, regularization term, and minimum gain were swept. After an optimized set of parameters were chosen, models were
trained for our 6 different case studies to predict locomotion mode.

We ran a performance comparison across these Bayesian
techniques in which LDA showed the lowest error. LDA
has also been seen in prior work to be the gold standard
to compare against [40]. Hence, the model comparison was
reduced to 3 models: LDA, NN, and XGBoost. For each
phase, a specific classifier was trained to capture the optimal
transition point. Depending on the gait mode transition, the
time during the gait cycle in which the classifier must make
its decision is inherently gait phase specific. This strategy
of transitioning is not unique and many groups have used
a similar phase dependent scheme to change between gait
modes based on gait events, and we adopt a similar approach
here [2], [14], [17], [21].

E. Algorithm Optimization
Hyperparameter optimization of NN and XGBoost was

completed to ensure model architectures were appropriate for
generalizing our mechanical sensor information for the task
of mode classification; LDA did not require any additional
tuning. Scripts were written for all models and case studies
(dependent, independent, remove-one-height/incline) and an
initial window size of 250 ms was selected. We started
with a directed search of unique hyperparameters for each
algorithm. The subset of parameters resulting in the lowest
average error between steady state and transitional error
was selected until all of the parameters were swept. In
XGBoost, the set of hyperparameters explored included: the
learning rate used to influence the convergence to a solution,
the maximum allowable tree depth, the regularization term
to control the sensitivity, and minimum gain required to
further split on a node in the tree. In the NN, the set of
hyperparameters included: layers and nodes to determine
adequate size of the network needed, optimizer and learning
rate to influence the convergence to a solution, and activation
function and batch size to limit model complexity.

After model optimization, a window size sweep was
performed from 50 ms to 500 ms in increments of 50 ms,
with the evaluation metric of taking the average of the steady
state and transitional error together. The optimal window
size was found to be 250 ms. Specifically, the transitional
error had a minimum at 250 ms, with larger error associated

TABLE I
FINAL OPTIMIZED PARAMETERS

NN XGBoost

DEP

Layers: 1
Nodes: 50
Optimizer: Adam
Learning rate: 0.001
Activation function: relu
Batch size: 32

Max depth: 1
Lambda: 0.5
Min split loss: 0
Learning rate: 0.3

IND

Layers: 3
Nodes: 10
Optimizer: Adam
Learning rate: 0.001
Activation function: tanh
Batch size: 128

Max depth: 3
Lambda: 1
Min split loss: 0.1
Learning rate: 0.3

with smaller or larger windows; while steady-state error was
reduced the most at 250 ms and held approximately constant
with larger window sizes.

F. Model Evaluation

Several steps were taken to prevent overfitting of each
model. First, six different case studies were explored: depen-
dent (DEP), independent (IND), remove-one-height depen-
dent (RM-1-H-DEP), remove-one-height independent (RM-
1-H-IND), remove-one-incline dependent (RM-1-I-DEP),
and remove-one-incline independent (RM-1-I-IND). The
DEP case study was similar to previous literature where data
was trained on each individual subject and evaluated using
a remove-one-trial cross validation. The IND case study was
also taken as a traditional method of training on all users
except for one which in turn became the test set. Thus, in
these first two cases, both the train and test set had examples
from the same stair height and ramp incline conditions.
The RM-1-H-DEP and RM-1-I-DEP conditions were trained
with all of the ramps and stairs conditions except for the
unknown height or incline that served as the test set. This
procedure was repeated until each height or incline was
included in the test set. Lastly, the RM-1-H-IND and RM-
1-I-IND conditions were trained with all the data except for
all of the subjects’ data at a specific height or incline and



Fig. 3. Three different models (LDA/NN/XGBoost) were compared for the classification of ambulation mode in ramps, stairs and level-ground, resulting in
XGBoost outperforming other models. The y-axis shows the performance metric, consisting of the error in classification during steady state walking within
a mode and the error of transitioning between modes. The x-axis show the six conditions of evaluation: subject dependent (i.e. training and testing on the
same subject), subject independent (i.e. training on all subjects but the testing subject), and remove-1 condition for the stair height and ramp inclination
for both a) dependent and b) independent. Error bars represent ± standard error of the mean. Asterisks indicate statistical significance (p<0.05).

the removed subject’s data. These were then tested on the
removed subject’s specific height or incline that was not in
the train set. Similar to the RM-1-DEP cases, this procedure
was repeated until each height or incline was swept. Our
error criteria for evaluating the model’s performance can be
seen in the following equations, where SS is steady state
steps, TS is transitional steps, HC is heel contact, and TO
is toe off. This error was then averaged across subjects for
both the steady state and transitional errors.

SS error = 1− SS correct HC + SS correct TO

SS total HC + SS total TO
(1)

TS error = 1− TS correct HC + TS correct TO

TS total HC + TS total TO
(2)

sensor error = 1− SS error + TS error

2
(3)

G. Statistical Analysis

We conducted a one-way repeated measures analysis
of variance (ANOVA) to compare the model performance
across only the DEP and IND conditions (α = 0.05).
The independent variable was the machine learning model
(LDA/NN/XGBoost). A Dunn–Bonferroni post-hoc correc-
tion was used to compute the statistical differences between
each condition (Minitab 19.0, USA).

III. RESULTS

A. Model Comparison

In the DEP case for steady state error, XGBoost (2.93%
± 0.49%) was found to be the best model compared to
LDA (5.20% ± 0.85%) and NN (7.01% ± 0.73%)(p<0.05).
Similar results were found in the transitional error case,
where XGBoost (7.03% ± 0.74%) had the lowest error
compared to LDA (10.26% ± 1.36%) and NN (14.66% ±

1.02%)(p<0.05). In the IND case for steady state error, XG-
Boost (10.12% ± 3.16%) was found only to be statistically
different than NN (17.89% ± 2.19%). Similar trend was seen
in the transitional error, where XGBoost (15.78% ± 2.39%)
was found to be only statistically different than NN (28.65%
± 2.48%).

B. Remove-One-Preset Comparison

From the model comparison above, XGBoost was selected
as our best model, and the results for Fig. 4 are only
displayed for this model. Across all of the remove-one-
incline conditions, the transitional and steady state error rates
were consistent across incline rates. However, for remove-
one-stair height conditions, the transitional and steady-state
error rate decreased with large stair heights. The average
steady error for user-dependent classifiers across both preset
conditions was 4.59% ± 2.05%, while the transitional error
was 7.60% ± 2.57%. The average steady error for user-
independent classifiers across both preset conditions was
6.54% ± 1.92%, while the transitional error was 17.26%
± 4.92%.

C. Sensor Contribution

A sequential forward sensor selection using the XGBoost
algorithm revealed that in both DEP and IND cases, the
inclusion of all sensors yielded the lowest error (p<0.05).
In this analysis, each sensor’s features were independently
tested. In the first iteration, we took one of the sensors and its
features (6 total sensors, 140 total features: 6-DOF loadcell
– 30 features, foot IMU - 30 features, shank IMU – 30
features, thigh IMU – 30 features, and joint encoders – 20
features) and determined which sensor, when removed from
the training set of the model, would yield the highest test
error implying that this was the most useful sensor needed
for the mode classifier. If selected, the sensor was kept in
the feature space, while the remaining sensors were tested



Fig. 4. XGBoost showed the best performance across all case studies. It
can be seen that this model can generalize to different stair heights and
inclination angles with relatively low error. The y-axes show the error for
each condition - a) RM-1-H-DEP, b) RM-1-I-DEP, c) RM-1-H-IND, and d)
RM-1-I-IND, while the x-axes show the 4 preset conditions for the 2 types
of ambulation circuits. Results are presented for both DEP and IND cases to
show how well the algorithm behaves under different validation strategies.
Error bars represent the ± 1 standard error of the mean.

Fig. 5. The XGBoost algorithm was evaluated incrementally for each sensor
that was selected on a sequential forward feature selection process. This
was implemented for both a) subject dependent and b) subject independent
models. In both cases, the loadcell was the most favorable sensor for
locomotion mode classification. For example, in a) the first bars show the
model trained with only the features of the loadcell (6 channels x 5 feature
types = 30 features), the second bars show adding the foot IMU (30 previous
features from loadcell + 30 new features, and so on until all the features
were trained upon - 140 total features). The y-axes show the error for each
condition, while the x-axes show the added sensor to the pool on each
iteration. Error bars represent the ± standard error of the mean.

again in another iteration; this continued until all sensors
were swept. The error metric used was the average of the
steady state (SS) and transitional (TS) errors to determine
what combination of sensors would yield the lowest error
(Eq. 3). Across both steady state and transitional errors, the
forward sensor selection algorithm chose the load cell as the
best sensor that contributed the lowest error across both test
(DEP and IND) cases. (Fig. 5).

D. XGBoost Confusion Matrices

We created several confusion matrices to show how the
model performed across individual modes. Note LW data
was present in both classifier types. We concatenated across

Fig. 6. Confusion matrices for our best model (XGBoost) to show
individual classification accuracies for each mode and phase type - a) DEP
HC classifier, b) DEP TO classifier, c) IND HC classifier, and d:) IND TO
classifier). The results show that in the DEP case, XGBoost had a 96.19%
classification accuracy and that in the IND case, XGBoost had a 89.89%
classification accuracy. The y-axes show the true label while the x-axes
show the predicted label.

subjects and combined steady state and transitional errors
to show how XGBoost performed in classifying each mode.
In the DEP case, XGBoost correctly classified 3170/3227
(98.23%) level walking (LW) steps, 592/633 (93.52%) ramp
ascent (RA) steps, 594/643 (93.84%) ramp descent (RD)
steps, 400/421 (95.01%) stair ascent (SA) steps, and 268/299
(89.63%) stair descent (SD) steps. Overall, across all modes
in the DEP case, XGBoost correctly classified 5024/5223
steps (96.19%). In the IND case, XGBoost correctly classi-
fied 3098/3227 (96.00%) level walking (LW) steps, 516/633
(81.52%) ramp ascent (RA) steps, 457/643 (71.07%) ramp
descent (RD) steps, 391/421 (92.87%) stair ascent (SA)
steps, and 233/299 (77.93%) stair descent (SD) steps. Over-
all, across all modes in the IND case, XGBoost correctly
classified 4695/5223 steps (89.89%).

IV. DISCUSSION

Our study explored two key features in enhancing the
locomotion mode classification performance by 1) comparing
different model complexities of current state-of-the-art mod-
els to XGBoost and evaluating the performance of these algo-
rithms across users and different stair heights and inclination
angles, and 2) understanding whether the user-independent
classifiers with the addition of extra sensors could achieve
similar performance to the dependent classifiers.

As we explored the effect of model complexity across
different case studies, XGBoost outperformed both LDA
and NN in the steady state error across independent and
dependent models (p<0.05), while only outperforming NN in
the transitional case (p<0.05). Therefore, our first hypothesis



was partially accepted in that the most complex algorithm
(XGBoost) performed the best, but simply adding complexity
did not yield benefits as LDA still outperformed more
complex NN in certain situations, and is rejected that more
complex algorithms are better for improving performance.
Thus, an optimal level in complexity can reduce classification
error. Across all case studies performed, XGBoost showed
best performance which is one step closer to creating algo-
rithms that can generalize across multiple grades of terrain.
Note that RM-1-cases were generally more difficult for a
machine learning algorithm to predict modes compared to
a DEP or IND setup. This is because the classifier must
generalize to a ramp incline or stair height that does not
exist in the training data. Our goal was to understand if
these algorithms could learn on limited data and generalize
to unknown environmental conditions.

Although sensor (Fig. 5), channel (not shown) and fea-
ture type (not shown) selection were analyzed, no sen-
sors/channels or feature types all were useful for reducing
user-independent classification errors. Our second hypothesis
on the addition of sensor information was accepted. It was
shown that the inclusion of sensors continually improved
model performance across both DEP and IND cases. Results
indicated that the 6-DOF loadcell was the most essential
sensor. Additional analysis could be performed to determine
the influence of specific feature components from each sensor
to minimize the amount of information that is extracted from
the sensors while maintaining model performance.

We believe that direct comparisons cannot be made to prior
literature due to our dataset’s unique inclusion of multiple
stair heights and inclination angles which do not exist in
previous studies. Hence, we found other literature methods
that created intent recognition systems; LDA and NN was
commonly used as a baseline and we applied that same
method to make an equal comparison to our dataset. The
results indicate that XGBoost shows potential in generalizing
across subjects when employing a user independent intent
recognition system. We observed that XGBoost had some
difficulty in differentiating between LW and RA (Fig. 6).
Future work should look into combining these modes as one
label as seen in prior work to see if there is an improvement
in model performance [21], [24]. Similar results were seen
in Young et al., where steady state and transitional errors of
8% and 13% were achieved but required more complicated
dynamic bayesian networks (DBN - useful methods that
incorporate time history information using current observa-
tions and prior probabilities) and mode specific architectures
which are much more challenging to implement than the
methods presented here [16], [24].

One limitation of our study is the small number of subjects
(N=8) especially when trying to create a user independent
system. The purpose of each ambulation circuit was to
capture the behavior of traversing different terrain types from
level walking to allow for inclusion of both steady state and
mode transitional steps. However, the amount of training
data is relatively small. For every ambulation circuit, there
are only 4 transitional steps compared to 12-16 steady state

steps. Future work is still required to address the issue of
achieving smaller transitional errors with a small training
dataset. Lastly, our study was limited in that it was just an
offline analysis. Previous studies have indicated that imple-
menting these models in real-time must be done properly in
order to avoid the dangerous outcomes of misclassification
errors [10], [15], [22]. To make these algorithms prevalent
in prosthetic controllers for clinical applications, real-time
validation of these models is imperative.

V. CONCLUSIONS

Our study investigated machine learning models for im-
proving user independent and dependent locomotion mode
classification. We found that XGBoost had the lowest errors
compared to our other models (DEP SS Error: 2.93% ±
0.49%, DEP TS Error: 7.03% ± 0.74%, IND SS Error:
10.12% ± 3.16%, and IND TS Error: 15.78% ± 2.39%). Our
approach showed that finding an optimal model complexity
could improve model performance and generalize across dif-
ferent stair heights and inclination angles. Future work will
continue to explore enhancing these classification models for
them to be used in real-time applications and progress the
long-term goal of promoting this technology into clinical
settings.
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