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Abstract— Lower-limb exoskeletons can reduce the thera-
pist’s burden and quantify repetitive gait training for patients
with gait impairments. For patient’s gait training, different
walking speeds are required at different rehabilitation stages.
However, due to the uniqueness of gait patterns, it is challenging
for lower limb exoskeletons to generate individualized gait
patterns for patients with different anthropometric parameters.
This paper proposed learning-based gait models to learn and
reconstruct gait patterns from healthy subject’s gait database,
including the Gait Parameters Model (GPM) and the Gait
Trajectory Model (GTM). The GPM employs Neural Networks
to predict gait parameters with a given desired walking speed
and the anthropometric parameters of the subject. The GTM
utilizes Kernelized Movement Primitives (KMP) to reconstruct
gait patterns with the predicted gait parameters. The proposed
approach has been tested on a lower limb exoskeleton named
AIDER. Experimental results indicate that the reconstructed
gait patterns are very similar to the subject’s actual gait
patterns for varying walking speeds.

Index Terms— Prosthetics and Exoskeletons, Learning from
Demonstration, Motion and Path Planning.

I. INTRODUCTION

Robotic lower-limb exoskeletons are designed for rehabil-
itation training for patients with gait impairments suffering
from post-stroke or Spinal Cord Injury (SCI). Significant
achievements have been made in last decades, such as
Lokomat [1], ReWalk [2], EKSO GT [3], Indego [4] and
HAL [5]. These robotic exoskeletons strap to the patient’s
legs and provide gait training for patients.

Walking speed is a key indicator for assessing a patient’s
physical condition [6] [7], numerous researchers consider
walking speed as a measurement of functional abilities [8].
Walking speed is a quick and easy test and often included in
clinical and epidemiological research studies [9], timed walk-
ing tests are increasingly performed as outcome measures
[10]. In the rehabilitation for patients with gait impairments
(e.g., hemiplegic patients), the most important thing is to
improve the walking speed and regain more mobility for
their social lives [11] [12]. Usually, in the early stage of
rehabilitation, a slow walking speed is required due to the
little motor function and muscle force of the patient. The
faster speed is required when patients regain basic mobility
with the improvement of muscle force and balance [13] [14].
Therefore different walking speeds are required at different
rehabilitation stages. As shown in Fig. 1, gait training with
the exoskeleton on a treadmill provides variable walking
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Fig. 1. A subject is gait training on the treadmill with a lower limb
exoskeleton. The walking speed of the treadmill is specified by the therapist,
how to generate gait patterns for the exoskeleton to match the speed?

speed training. As will be shown in this paper, walking
speed is highly correlated to gait patterns and affected by
anthropometric factors [15], predefined fixed gait patterns
are likely not suitable for all subjects. For different subjects
with varying anthropometric parameters, it is not physically
feasible to design all gait patterns to match all subjects with
any given walking speed.

In this paper, the gait pattern is represented by joint angles
of lower limbs. To generate natural gait patterns for the lower
limb exoskeleton, two critical issues need to be resolved. The
first one is to find the relationship between anthropometric
parameters and gait parameters, the second one is joint angles
generation based on the predicted gait parameters.

For gait parameters prediction, as the gait parameters are
related to many anthropometric factors such as age, gender,
height, and weight, the relationship between anthropometric
factors and gait parameters is nonlinear, which can not be
built with an accurate mathematical function. S. Ren et
al. [16] designed a random forest based algorithm to find
relationships between anthropometric features and gait pat-
terns, and employed minimal redundancy maximal relevance
criterion to find the optimal features [17]. F. Moissenet et
al. [18] analyzed relationships among age, gender, walking
speed, and body mass index. Lim et al. utilized multi-
layer perceptron neural networks to predict stride length and
cadence for different walking states (slow/natural/fast) based
on anthropometric parameters [19], but it can not predict gait
parameters with a given walking speed. In this paper, the
neural network is utilized to predict gait parameters based
on anthropometric parameters and a given walking speed.

For joint angles generation, many trajectory fitting meth-
ods were proposed such as the Spline interpolation, Fourier
series fitting, and Point-Velocity-Time (PVT) interpolation.
Fourier coefficient vector and Fourier series were used for
joint angles construction [20] [21]. In [20], joint angles
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Fig. 2. The framework of the individualized gait patterns generation approach. The anthropometric database is built by anthropometric measuring from
healthy subjects without gait impairments, the gait database can be built by collecting these subject’s joint angles. The Gait Trajectory Model and Gait
Parameters Model can be learned from these two databases. The individualized gait patters for new subjects can be generated based on their anthropometric
parameters the desired walking speed specified by the therapist.

were reconstructed at a few, fixed walking speeds based
on the subject’s height alone, which is undesirable as two
subjects may have the same height with different leg lengths.
In [21], the gait parameters (i.e. stride length, cadence)
were specified manually for joint angle generation, but a
convenient method for selecting joint angles for a given
walking speed is not provided. B. Koopman et al. utilized
Polynomial fitting to reconstruct joint angles based on the
maxima and minima of the joint angle, joint angular velocity,
and acceleration [22]. These approaches can not address the
problem with multiple demonstrated reference trajectories.
To obtain better performance for joint angles reconstruction,
learning from multiple demonstrated trajectories is nec-
essary, therefore probabilistic trajectory encoding methods
can be employed. Gaussian process regression [15] [23]
and Gaussian Mixture Model/Regression (GMM-GMR) [24]
were used to reproduce joint angles by learning from the
demonstrated database, meanwhile, joint trajectory distribu-
tion can be learned, but it is not intuitive to modify the
joint angles to satisfy local fitting, such as passing through
specific via-points/end-points. Probabilistic Movement Prim-
itives (ProMP) [25] [26] formulates the modulation of tra-
jectories as a Gaussian conditioning problem, and provides
an analytical solution to modify trajectories towards via-
points/end-points. Unfortunately, ProMP depends on explicit
basis functions that need expensive computing processes.
Huang et al. proposed Kernelized Movement Primitives
(KMP) [27] does not require an explicit basis function
definition, and allows for the creation of trajectories with
specific via-points/end-points.

In this paper, learning-based gait models are proposed for
gait patterns reconstruction, main contributions are threefold:

• The gait variations for different subjects with varying
walking speeds have been analyzed, some via-points

were extracted as gait parameters for varying speeds.
• Learning-based gait models combine the neural net-

works and KMP have been proposed to reconstruct
gait patterns for subjects with varying anthropometric
parameters for any given walking speed.

• The proposed approach was applied to a lower limb re-
habilitation exoskeleton named AIDER, the contribution
and the limitation of the approach were discussed.

This study is a preliminary stage in the development process
for exoskeletons and is shown valid for healthy individuals.

II. METHODS
A. The framework of the approach

As shown in Fig. 2, the overall framework consists of three
parts: database, learning, and prediction.

1) Database: The anthropometric database and gait
database for different walking speeds were collected from
healthy subjects. Note that P ∈ RH×S is the anthropometric
parameters database,

P = {ps,1, ps,2, · · · , ps,H}Ss=1, (1)

where H is the number of anthropometric parameters, S is
the number of subjects. Q ∈ RD×S×L is the collected joint
angles with different walking speeds,

Q = {{θhs,l,θ
k
s,l}Ss=1}Ll=1, (2)

where θhs,l,θ
k
s,l ∈ RN are hip and knee flexion/extension

joint angles. N is the data length for each demonstration, L
is an enumeration of the speeds assessed. G ∈ RC is gait
parameters, C is dimension of G, i.e., G = {g1, g2, · · · , gC}.

2) Learning for Gait Models: The Gait Parameters Model
(GPM) is based on the neural networks, the Gait Trajectory
Model (GTM) employs KMP for joint angles reconstruction.
The learning process of the GPM and GTM is off-line on
the gait database collected from healthy subjects.



3) Prediction: Prediction for a new subject X with the
anthropometric parameters Px. Vd is the desired walking
speed specified by the therapist, Qsub is the sub-database
associated with Vd of gait database, Qsub = {Q|V = Vd}.
Gx is the predicted gait parameters corresponding to Vd and
Px, the individualized joint angles θh,θk for subject X can
be generated by GTM based on Gx and Qsub. Note that Q is
collected with discrete walking speeds, and may not include
Vd. For instance, Vd = 1.3 km/h, the nearest speeds for Vd
are V1 = 1.0 km/h and V2 = 1.5 km/h in Q, thus the Qsub
is the union for both V1 and V2, Qsub = QV1

∪QV2
.

B. Gait Parameters Model

The GPM is based on a three-layer neural network for
building relationships between anthropometric parameters
and gait parameters, it is learned from the database P and
G. Based on the statistical analysis for gait trajectories from
many subjects [15] [23], anthropometric parameters that
affect gait patterns are chosen, as shown in Fig. 3 (a) and
Fig. 3 (b). The correlations between these anthropometric
parameters and gait parameters for different walking speeds
are analyzed in Section III-B.

Fig. 3. The anthropometric parameters and joint angles in Sagittal plane.

The gait patterns are represented by hip and knee flex-
ion/extension joint angles in the Sagittal plane, as shown
in Fig. 3(c). The joint angles vary from different subjects
and different walking speeds, as shown in Fig. 4(a) and
Fig. 4(b). The most significant differences of joint angles
among different subjects and walking speeds are ’shape’ (i.e.,
trajectory maxima, minima, and timing) and gait period (i.e.,
time for one gait cycle). We found that some key via-points
can be utilized as gait parameters G, e.g., start/end points and
some extreme values in red dots with the zero joint angular
velocity. Let us denote via-points as Θvia = {tviad ,θviad }Dd=1,
D is the number of via-points includes the start/end points
and a selection of extreme values in joint angles. For hip
joint angles, 4 via-points are selected as gait parameters,
D = 4. For knee joint angles, 5 via-points are selected as
gait parameters, D = 5. The gait parameters G = {Gh, Gk}
with hip and knee via-points can be described as

G=[Θh
via1, · · · ,Θ

h
via4,Θ

k
via1,Θ

k
via2, · · · ,Θ

k
via5]. (3)

Therefore, there are 18 parameters in total for G. Note that
the Gait Period (GP) is the time of the end-point of the
hip/knee joint angle, i.e., GP = tvia5 . The structure of the
GPM is shown in Fig. 5, the neural units for the input layer,
the hidden layer and the output layer are 13, 128, and 18,
respectively. Adam optimization [28] is adopted to find the
optimal neural network parameters.

C. Gait Trajectory Model

The GTM is built to encode and reproduce joint angles.
Two KMPs are employed to encode the hip and knee joint
trajectory separately, the performance of the GTM and PVT
interpolation method are compared in Section III. As the
knee joint trajectory model is similar to the hip joint, here
we only present the GTM for the hip joint. Assuming that
the hip joint angle is denoted as

θ = [θh, θ̇h]T , (4)

where θh and θ̇h represent the hip joint angle and angular
velocity. T indicates the transposition of the matrix.

Denote the set of joint angles by {{tn,m,θn,m}Nn=1}Mm=1,
where tn,m ∈ R1 is the time and θn,m ∈ R2 denotes joint
angles. M and N represent the number of demonstrations
and the length of the trajectory respectively. To estimate the
probabilistic distribution of the demonstrated joint angles,
GMM is employed to encode the demonstrated data and
estimate the joint probability distribution P (t,θ)[

t
θ

]
∼

K∑
k=1

πkN (µk,Σk), (5)

where K denotes the number of Gaussian components,
πk, µk and Σk represent the prior probability, mean and
covariance of the kth Gaussian component, respectively.
Thus a probabilistic reference trajectory {θ̂n}Nn=1 can be
retrieved by GMR [24]

θ̂n|tn ∼ N (µ̂n, Σ̂n), (6)

where each θ̂n associated with tn is described by a condi-
tional probability distribution with mean µ̂n and covariance
Σ̂n. Let us formulate a parametric hip joint trajectory com-
prising joint angle θ(t) and angular velocity θ̇(t) as[

θ(t), θ̇(t)
]T

= Φ(t)TΩ, (7)

where the matrix Φ(t) ∈ RBO×O and Φ(t) =
[
φ(t), φ̇(t)

]
,

here the output dimension O is 1, φ(t) is a B-dimensional
basis functions, φ̇(t) is the first-order derivative of the φ(t).
Note that we don’t explicitly define the basis function φ(t)
by using the kernel method proposed in [27]. Ω ∈ RBO is the
weight vector. Assuming that Ω is normally distributed with
mean µω and covariance Σω as follows Ω ∼ N (µω,Σω).
Therefore, the hip joint parametric trajectory satisfies

Pp(θ|t) = N (θ|Φ(t)Tµω,Φ(t)TΣωΦ(t)). (8)

Assuming that θviad |tviad ∼ N (µd,Σd), then

Pd(θ|td) = N (θ|Φ(td)
Tµd,Φ(td)

TΣdΦ(td)). (9)



(a) Gait patterns for one subject with different speeds. (b) Gait patterns of one speed across different subjects.

Fig. 4. Gait patterns comparison with different subjects via varying walking speeds: (a) Joint angles from a healthy subject (176 cm, 65 kg) with different
walking speeds from 1.0 kph to 6.0 kph. These joint angles can be reconstructed with the start/end points and selected extreme points (via-points in red
dot); (b) Joint angles for different subjects with 3 km/h speed, the maxima, minima, and timing of hip and knee joint angles are different across subjects.

Fig. 5. The structure of the GPM, the inputs are anthropometric features
and the desired walking speed, the outputs are gait parameters for the GTM.

the reference trajectory retrieved by GMR is Pr(θ|t) =
N (θ|µ̂, Σ̂). To match the reference trajectory formulated
by (6) with the parametric trajectory and the desired via-
points, and derive optimal solutions for both µω and Σω ,
the Kullback-Leibler divergence is employed to construct
the cost function and formulate the minimization of the cost
function [27] as

J(µω,Σω) =

N∑
n=1

DKL(Pp(θ|tn)||Pr(θ|tn))

+

D∑
d=1

DKL(Pp(θ|td)||Pd(θ|td))

(10)

The minimization of the cost function is decomposed into
two sub-problems and summarized in Algorithm 1, where λ
is an additional factor for J(µω,Σω) optimization, E(θ(t∗))
is the reproduction of GTM, Σ is the covariance matrix. Σ
and µ can be described as

Σ = blockdiag(Σ̂1, Σ̂2, . . . , Σ̂N+D), (11)

µ = [µ̂T1 µ̂T2 · · · µ̂TN+D]T . (12)

K and k∗ are the kernel matrix for GTM, see Appendix.

Algorithm 1 Trajectory modeling using GTM
1: Initialization

- Choose kernel k(ti, tj) = e−h(ti−tj)
2

, set the factor λ.
2: Learning from Demonstrations with GMM-GMR

- Collect demonstrations {{tn,m,θn,m}Nn=1}Mm=1.
- Estimate the reference trajectory{tn, µ̂n, Σ̂n}Nn=1.

3: Learning and prediction with via-points
- Given desired via points {td, µ̂d, Σ̂d}Dd=1.
- Input : query t∗.
- Calculate Σ, µ,K and k∗ using (11) (14) and (15).
- Output :E(θ(t∗)) = k∗(K + λΣ)−1µ and
D(θ(t∗)) = N+D

λ

(
k(t∗, t∗)− k∗(K + λΣ)−1k∗T

)
.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Collection

An experiment was designed to collect gait patterns and
gait parameters from healthy subjects without gait impair-
ments. Thirty subjects (males, ages are between 20 and
41) were invited to participate in the experiment. For each
subject, twelve anthropometric parameters were measured,
as shown in Fig 3. Means and standard deviations of the
anthropometric parameters are shown in Table I.

Subjects were instructed to walk on a treadmill with speeds
from 1.0 kph to 6.0 kph at 0.5 kph increments, the duration
is more than 5 minutes. As shown in Fig. 6 (a) and (b),
the joint angles were recorded by Noitom Axis Neuron (an
IMU based wearable Motion Capture System). To obtain the
’best fitted’ gait patterns for the specified walking speeds,
the gait patterns for the first and last three steps in each
time were discarded. Since the gait pattern is periodic, the



TABLE I
MEANS AND STD. OF SUBJECT’S ANTHROPOMETRIC PARAMETERS.

Anthropometric parameters Mean Std.
1. Body height (cm) 172.91 6.41
2. Leg length (cm) 90.58 4.24
3. Thigh length (cm) 42.9 2.34
4. Shank length (cm) 41.13 1.96
5. Ankle height (cm) 6.82 0.83
6. Foot length (cm) 25.0 0.89
7. Foot width (cm) 9.23 0.42
8. Waist circumference (cm) 82.8 6.47
9. Bi-trochanteric width (cm) 36.35 2.64
10. Maximum thigh circumference (cm) 48.72 3.81
11. Maximum shank circumference (cm) 35.81 2.04
12. Body weight (kg) 65.18 8.53

Fig. 6. (a) Noitom Axis Neuron; (b) Data collection from healthy subjects.

gait patterns were segmented to multiple gait cycles to build
the gait database Q. For the evaluation of the GPM and
GTM, twenty-four subject’s anthropometric parameters and
gait patterns were randomly chosen as the training dataset,
and the remaining six subject’s anthropometric parameters
and gait patterns were chosen as the testing dataset.

B. Evaluation of the reconstructed gait patterns

The proposed approach has been tested on a lower limb
exoskeleton named AIDER, which provides gait training on
the treadmill. As shown in Fig. 7, AIDER is strapped to
the patient’s legs for movement assistance and comprises a
backpack, two legs, and two shoes. For each leg, the hip
flexion/extension joint and knee flexion/extension joint are
actuated by DC servo motors (Maxon EC 90flat, 160 Watt,
nominal speed is 2640 rpm, nominal torque is 460 mNm) in
the control of high gains PID controllers, the ankle joint is an
energy-storage mechanism with a spring inside that provides
passive abduction/adduction and plantarflexion/dorsiflexion
movement. There is an embedded computer with a real-time
operating system in the backpack of the AIDER, which has
a high computation speed to run algorithms. The learning of
the GPM and GTM was off-line, then the GPM and GTM
were imported into the embedded computer and used for gait
generation for new subjects. In addition to this, the desired
walking speed was specified by the therapist and sent to
AIDER with anthropometric parameters via data bus before
the gait training, and the reconstructed joint angles were
utilized as reference joint angles for the AIDER. Subjects
can maintain balance with their upper limbs and handrails
while walking on the treadmill.

Fig. 7. Gait training on the treadmill with AIDER.

1) Gait parameters prediction: To find the anthropometric
parameters that mainly affect the gait patterns, the Pearson’s
correlation coefficient [29] [30] is utilized to analyze the cor-
relations between the twelve anthropometric parameters and
gait parameters, e.g., the GP, the hip amplitude (maximum
hip angle), the knee amplitude (maximum knee angle). As
shown in Fig. 8, the results indicate that the anthropometric
parameters that mainly affect gait parameters with high
Pearson’s correlation coefficients are slightly different for
different walking speeds. For instance, given a walking speed
at 4.0 kph, GP is positively correlated with height, hip
amplitude is negatively correlated with height, and knee
amplitude is negatively correlated with thigh circumference
and shank circumference. This again shows the relationship
between anthropometric parameters and gait parameters is
complicated. Fortunately, the GPM address the problem well.
As shown in Fig. 9, the GP for different subjects with
varying walking speeds can be predicted with few prediction
errors, as shown in Table II. Other gait parameters for
different subjects and varying walking speeds can also be
well predicted, as will be shown in the following section.

TABLE II
ERRORS BETWEEN REFERENCE GP AND PREDICTED GP.

1.0 kph 2.0 kph 3.0 kph 4.0 kph 5.0 kph 6.0 kph

S1 -0.0560 0.0084 -0.0083 -0.0121 -0.0026 0.0114
S2 0.0639 -0.0270 0.0074 0.0051 -0.0078 -0.0021
S3 0.0501 -0.0033 -0.0160 -0.0093 -0.0047 -0.0019
S4 -0.0776 0.0096 0.0212 -0.0180 0.0097 -0.0003

2) Joint angles reconstruction: The joint angles learning
and reproduction for different given via-points are shown in
Fig. 10. The distribution of joint angles can be learned by
GMM with 10 Gaussian components, the reference trajectory
can be reproduced by GMR. The GTM can reconstruct
hip/knee joint angles with the demonstrated angles and dif-
ferent given via-points. PVT is widely used for smooth and
continuous trajectory generation with given via-points, thus
we compared the performance of GTM with the PVT inter-
polation. As shown in Fig. 11, joint trajectories reconstructed
by GTM and PVT can pass through the predicted via-points.
However, for the knee angle prediction for 3 kph and 4
kph walking speed, the PVT lost the ’shape’ information
and can not reconstruct joint angles well compared with the



(a) Pearson’s correlation coefficients between anthropometric parameters and gait period.

(b) Pearson’s correlation coefficients between anthropometric parameters and hip amplitude (maximum hip joint angle).

(c) Pearson’s correlation coefficients between anthropometric parameters and knee amplitude (maximum knee joint angle).

Fig. 8. Pearson’s correlation coefficients between anthropometric parameters and gait parameters, where ’circ’ represents circumference.

1.0 2.0 3.0 4.0 5.0 6.0

walking speed (km/h)

1

1.5

2

2.5

3

3.5

4

g
ai

t 
p
er

io
d
 (

s)

distribution of reference GP

reference GP for S1

predicted GP for S1

reference GP for S2

predicted GP for S2

reference GP for S3

predicted GP for S3

reference GP for S4

predicted GP for S4

Fig. 9. Gait period prediction for different subjects with different walking
speeds, the gait period is reduced with the increase of the walking speed.
The dashed curves represent reference gait periods in the database, solid
curves represent predicted gait periods, where subject S1 (162 cm, 58 kg),
S2 (169 cm, 65 kg), S3 (176 cm, 72 kg) and S4 (183 cm, 78 kg).

Fig. 10. GTM learning and reproduce joint angles from gait database with
3 km/h walking speed, the reference joint angles are retrieved by GMM-
GMR, and joint angles with different given via-points are reconstructed by
GTM, where GTM2 and GTM3 are with different given via-points.



Fig. 11. Comparison of joint angles reconstruction by GTM and PVT with different walking speeds for a subject (male, 176 cm, 65 kg) from the training
dataset, where the reference trajectory (i.e., the ground truth), GTM reproduction and PVT interpolation based trajectories are presented.

Fig. 12. Joint angles reconstruction for three subjects S1, S2, S3 from the testing dataset and four new given different walking speeds, the dashed lines
represent the actual reference joint angles for each subject, the solid lines represent the predicted joint angles by the GTM.

reference joint angles, while the GTM can well reconstruct
joint angles for both 3 kph and 4 kph walking speeds.
The reconstruction errors were calculated by Mean Absolute
Error (MAE) between reference and predicted joint angles

MAE =
1

N

N∑
i

|θi − θ̂i|, (13)

where θi and θ̂i are reference joint angles and predicted joint
angles respectively, N is the number of the data point. As
shown in Fig. 13, the GTM can reconstruct both hip and
knee joint angles with fewer errors than the PVT, especially
at low walking speeds. As shown in Fig. 12, given three
subjects from testing dataset with different anthropometric
parameters, the GTM can reconstruct their individualized
joint angles adapt to variable speeds.
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Fig. 13. MAE for hip and knee joint angles with GTM and PVT.

Although the performance of GPM and GTM is well, there
is still a limitation of the work for the examination of age
and gender that influence gait patterns. We only studied the
anthropometric parameters for the gait patterns generation
due to the limitation of the database. As the ankle joint
of the AIDER is passive, we did not study the ankle joint
angle reconstruction in this work. However, the framework
proposed in this paper that combines neural networks and
KMP is robust and generic, which can be used in future for
more complicated tasks. Just add/reduce input units, output
units, and network layers of the GPM if some other features
are considered, the GPM and GTM also allow for secondary
development with other optimization algorithms.

IV. CONCLUSIONS AND FUTURE WORKS

This paper proposed a learning-based gait planning ap-
proach for lower limb exoskeletons, which generates indi-
vidualized gait patterns for different speeds. The proposed
approach combines the Neural Networks and KMP for gait
parameters prediction and joint angles reconstruction, the
reconstructed joint angles adapt to subjects with different
anthropometric parameters and varying walking speeds. The
efficiency of the proposed approach has been evaluated on a
lower limb exoskeleton and the experimental results indicate
that the approach can generate individualized gait patterns
for different subjects. In future work, we plan to expand our



database to enhance gait models, address the limitation, and
incorporate gait analysis methods to apply to more scenarios.

APPENDIX
In Algorithm 1, K is a matrix which can be described as

K =


k(t1, t1) k(t1, t2) · · · k(t1, tN+D)
k(t2, t1) k(t2, t2) · · · k(t2, tN+D)

...
...

. . .
...

k(tN+D, t1) k(tN , t2) · · · k(tN , tN+D)

 , (14)

and the kernel matrix k∗ can be described as

k∗ = [k(t∗, t1) k(t∗, t2) · · · k(t∗, tN+D)]. (15)

Note that the kernel k(ti, tj) = φ(ti)
T
φ(tj), and the kernel

matrix can be determined by

k(ti, tj) = Φ(ti)
T Φ(tj) =

[
ktt(i, j)IO ktd(i, j)IO
kdt(i, j)IO kdd(i, j)IO

]
, (16)

where
ktt(i, j)= k(ti, tj),

ktd(i, j)=
k(ti, tj+δ)−k(ti, tj)

δ
,

kdt(i, j)=
k(ti+δ, tj)−k(ti, tj)

δ
,

kdd(i, j)=
k(ti+δ, tj+δ)−k(ti+δ, tj)−k(ti, tj+δ)+k(ti, tj)

δ2
.
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