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Abstract— In this paper, we propose an efficient approach
to generate dynamic and versatile humanoid walking with
non-constant center of mass (COM) height. We exploit the
benefits of using reduced order models (ROMs) and stepping
control to generate dynamic and versatile walking motion.
Specifically, we apply the stepping controller based on the
Hybrid Linear Inverted Pendulum Model (H-LIP) to perturb
a periodic walking motion of a 3D actuated Spring Loaded
Inverted Pendulum (3D-aSLIP), which yields versatile walking
behaviors of the 3D-aSLIP, including various 3D periodic
walking, fixed location tracking, and global trajectory tracking.
The 3D-aSLIP walking is then embedded on the fully-actuated
humanoid via the task space control on the COM dynamics
and ground reaction forces. The proposed approach is realized
on the robot model of Atlas in simulation, wherein versatile
dynamic motions are generated.

I. INTRODUCTION
Planning dynamic and versatile humanoid walking is a

non-trivial task. Traditionally, a lot of research has been
focused on generating the desired center of mass (COM)
motion via the Linear Inverted Pendulum (LIP) model [1],
[2], where the zero moment point (ZMP) [3] inside the
support polygon describes the feasibility of the motion.
Additionally, centroidal momentum-based controls [4], [5]
have also been proposed to better capture the additional
rotational dynamics that contributes to the dynamics of the
ZMP. Those approaches oftentimes promote fast planning
but with relatively conservative COM dynamics, i.e., the
walking has to be with a constant COM height due to the
LIP assumption.

As a counterpart, researchers in the underactuated walking
community propose dynamic walking generation based on
the full-dimensional model of the robot [6], [7]. Large and
non-convex optimization problems [8] are formulated to op-
timize the desired motion subject to the physical constraints.
The generated walking motion can be dynamic in the sense
that there is no restriction on the COM height. However,
the optimization problems are computationally expensive
to solve, and their feasibilities (existence of solutions) are
subject to fine-tunings on the cost and constraint functions.

One approach to remove the COM height constraint is
embedding the COM dynamics [5], [9] of the walking of the
canonical Spring Loaded Inverted Pendulum (SLIP) model
[10], [11] on the humanoid via optimization-based control.
The periodic motion of the SLIP has to be numerically
identified via simulation, and non-periodic motion has not
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Fig. 1. Overview of the approach.

been well studied due to its nonlinear dynamics. Thus, it is
not efficient to generate versatile walking by this approach.

To efficiently generate dynamic and versatile walking,
we propose walking generation via a 3D actuated Spring
Loaded Inverted Pendulum (3D-aSLIP) with the application
of a stepping controller based on the Hybrid-Linear Inverted
Pendulum (H-LIP) model (Fig. 1). The 3D-aSLIP is an
extension of the planar aSLIP [12] to the 3D scenario. The
H-LIP with its stabilization [13] is a formal adaptation of the
LIP in [14], which is stabilized via changing the step size.

Desired walking behaviors are directly described on the
H-LIP, and the stepping controller is designed based on
the H-LIP to perturb the step size of a stepping-in-place
walking of the aSLIP to behave similarly to the H-LIP
walking. The mechanism behind the stepping is the treatment
of the step size as the control input to the step-to-step
(S2S) dynamics of the walking of the 3D-aSLIP; the S2S
of the H-LIP approximates the S2S of the 3D-aSLIP. The
stepping controller keeps the difference of the states of the
S2S between the 3D-aSLIP and the H-LIP in a minimum
disturbance invariant set. Thus, the walking of the 3D-aSLIP
behaves similarly to that of the H-LIP. The generated 3D-
aSLIP walking is embedded on the humanoid via a quadratic
program (QP) based controller.

The generated walking is first featured to be dynamic
(less conservative) with the variation on the COM height.
Compared to existing methods for generating the COM
height variation in [15], [16] via the kinematic structuring on
the leg extension, the aSLIP embedding provides coherent
trajectories at the dynamics level. Moreover, the versatile
motion generation via the H-LIP based stepping is highly
efficient. Trajectory optimization is only required to perform
once on the 3D-aSLIP to generate a periodic stepping-in-
place motion. The stepping controller is solved in closed-
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form for periodic walking or via fast solvable quadratic pro-
grams for versatile walking tasks. The computation request
is minimum at the planning level.

We use the robot model of Atlas to evaluate the proposed
approach for realizing versatile walking motions, includ-
ing periodic walking, fixed location tracking, and global
trajectory tracking. Those behaviors are generated on the
3D-aSLIP and then embedded on Atlas successfully. We
start by presenting the 3D-aSLIP in section II and the H-
LIP in section III. The versatile walking generation via
stepping is described in section IV. Section V describes the
embedding approach and walking results. Lastly, we finish
with discussions in section VI and conclude with section VII.

II. 3D ACTUATED SLIP MODEL

In this section, we present the model of the 3D actuated
Spring Loaded Inverted Pendulum (3D-aSLIP), the step-to-
step (S2S) dynamics formulation, and the overview of the
stepping controller based on the approximation of the S2S
dynamics for generating versatile walking behaviors.

A. Dynamics Model of Walking

The 3D-aSLIP is consisted by a point mass and two spring-
loaded legs (see Fig. 2 (a)). In the later, we drop the ’3D’
acronym for conciseness. Depending the number of contacts
with the ground, the walking is divided into two alternating
phases, i.e., Double Support Phase (DSP) and Single Support
Phase (SSP). The dynamics of the point mass is:

mP̈ =
∑

F +mg, (1)

where m is the mass of the aSLIP, P = [px, py, pz]
T is the

position of the point mass, F = FL/R are the leg forces on the
left and right legs, and g is the gravitational vector. The leg
force is zero when the leg is not in contact with the ground.
The magnitude of the leg force is: |FL/R| = Kss+Dsṡ, where
s is the spring deformation, and Ks and Ds are the stiffness
and damping of the leg spring, respectively.

Actuation: We add actuation on the leg to enable leg
extension and retraction. This is inspired by the physical
design of the bipedal robot Cassie [12]. Its leg has leaf
springs under-actuated by the actuation of the motor joints
which are above the springs. One can view the leg as a
serial-elastic actuator, where the springs compose the elastic
element at the output of the leg, and the actuation is changing
the uncompressed leg length L. Mathematically, as a result
of simplification, we define the actuation as τ L̈ = L̈. The
actual leg length is r = L − s. Additionally, the step size
u = [ux, uy]T is another input to the system. Since the
legs have no inertia, the step size can be set directly. In
the literature, this has also been equivalently referred to as
the touch-down angle control [17], [18] of the swing leg.

Comparison to the canonical SLIP: The canonical SLIP
[10] typically has no actuation or damping in the leg, thus the
system energy is conserved. The purpose of adding actuation
and damping is to create mechanisms to inject and dissipate
energy so that the system energy can be changed freely,
which facilities versatile walking generation.
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Fig. 2. The 3D-aSLIP model (a), planar illustration of the step-to-step
(S2S) dynamics of the aSLIP (b) and the S2S dynamics of the H-LIP (c).

Impact and Liftoff Model: When the swing leg strikes
the ground, the swing foot velocity has a discrete jump.
We assume the discrete jump is on the spring deformation
rate ṡ, whereas the velocity of the uncompressed leg L̇
remains unchanged. Due to the damping, the discontinuity
of ṡ creates a discontinuity on the leg force on the swing leg.
The stance leg lifts off from the ground when its leg force
crosses zero, and then the spring deformation is set to 0.

B. Trajectory Optimization for Periodic Walking

The periodic walking trajectory of the 3D-aSLIP can be
generated via trajectory optimization [8]. Generating versa-
tile dynamic behaviors of walking requires formulating and
solving individual optimizations. This process can be tedious.
Additionally, it typically requires careful tunings on the cost
and additional constraint functions to avoid infeasibility.

In the previous work [13] and this work, we only rely
on trajectory optimization to generate a single periodic
walking, e.g., a stepping-in-place walking, and then utilize
stepping control to generate a wide family of walking, which
eliminates the need of formulating and solving extensive tra-
jectory optimization problems on the aSLIP, or any trajectory
optimization on the robot model that embeds the aSLIP.

The trajectory optimization for generating the stepping-in-
place is formulated using direct collocation [8] as,

z∗ = argmin
z

N∑
i=1

∆t

2
(L̈i

2

L + L̈i
2

R ), (2)

s.t. cmin ≤ c(z) ≤ cmax,

where ∆t is the time discretization, N is the number
of nodes, z represents all the optimization variables, and
c(z) includes all the constraints: friction cone, non-negative
normal force, behavior specifications, etc. The leg length is
controlled by:

τ L̈ = L̈des(t) +Kp(L− Ldes(t)) +Kd(L̇− L̇des(t)), (3)

where Ldes is the optimized periodic trajectory of the leg
length, and Kp,Kd are the feedback gains. Periodically
actuating the leg length to the desired trajectory, the aSLIP
performs the optimized periodic stepping-in-place. If the
step size is perturbed, the aSLIP may fall over or evolve
to different behaviors [13]. In the following, we explain at
the high-level the approach of stepping control on the step-
to-step (S2S) dynamics with the integration of the periodic
leg length actuation, which perturbs the stepping-in-place to



versatile walking behaviors. Note that the same leg length
trajectory drives the walking to have same step frequency,
thus the feasible walking velocity is finite and bounded by
its feasible step size1.

C. S2S Dynamics:

Assuming an existing periodic walking, the hybrid dynam-
ics of the aSLIP can be described by a discrete dynamical
system. Considering the instant when the swing toe strikes
the ground, the system state transverses the switching sur-
face, defined by:

S = {(q, q̇) ∈ Rn|pzswing(q, q̇) = 0, vzswing(q, q̇) < 0},

where (q, q̇) describes all the states of the system, and
pzswing, v

z
swing are the vertical position and velocity of the

swing toe, respectively. This happens at the end of the SSP.
Let (qk, q̇k) denote the pre-impact state at the step indexed
by k. Then the state at next step (qk+1, q̇k+1) at the switching
surface can be represented by:

(qk+1, q̇k+1) = P(qk, q̇k, τ
L̈, uk). (4)

In the literature of nonlinear dynamics [19], Eq. (4) is
typically referred as the Poincaré return map. Here we denote
it as the step-to-step (S2S) dynamics, i.e., the dynamics at
the discrete step level. The intuitive description of Eq. (4) is
that the final state at the current step is affected by the state
at the previous step and the actuation applied at the previous
step. In terms of walking, it is important to make sure
that the horizontal state xaSLIP = [px, ṗx, py, ṗy]T behaves
appropriately. For an existing walking with the leg length
trajectory remaining unchanged, perturbing the step size u
can potentially regulate the behavior of the horizontal states
during walking. The same philosophy has also appeared in
the capture point approach [20] and the Raibert controller
[17] where the step location is used for controlling robot
balancing. Thus, the problem left here is how to control the
horizontal states to exert desired behaviors by the changes
of step size via the S2S dynamics.

D. Stepping Control via S2S Approximation

Now we explain the stepping control via the approxi-
mation of the S2S dynamics in the integration with the
periodic leg length actuation. By viewing the difference
between the actual S2S dynamics and the approximation as
the disturbance to the approximation dynamics, the system
state x can be controlled so that the difference between x and
the state of the approximation dynamics becomes bounded.

The S2S dynamics of the horizontal states is given by,

xaSLIP
k+1 = Px(qk, q̇k, τ

L̈, uk), (5)

where xaSLIP
k+1 is the horizontal state, and Px is the corre-

sponding rows of the P in Eq. (4). The exact formulation of
the S2S can not be found in closed-form. Here we will use

1The average walking velocity is u
T

(T is the period of walking) and the
maximum step size is rL + rR.

the S2S dynamics of the H-LIP as the approximation (see
Fig. 2 (b,c)), which is a linear system:

xH-LIP
k+1 = AxH-LIP

k +BuH-LIP
k , (6)

where xH-LIP and uH-LIP
k are the horizontal state and the step

size of the H-LIP, respectively. The exact derivation of its
S2S dynamics will be illustrated in the next section. With
the approximation, Eq. (5) can be rewritten as:

xaSLIP
k+1 = AxaSLIP

k +Buk + w (7)

w := Px(qk, q̇k, τ
L̈, uk)−AxaSLIP

k −Buk, (8)

where w represents the difference of the S2S dynamics
between the aSLIP and the H-LIP. If xaSLIP

k = xH-LIP
k and

uk = uH-LIP
k , then xaSLIP

k+1 = xH-LIP
k+1 + w. As the leg length

of the aSLIP periodically retracts and extends, each step is
assumed to happen in finite time and thus the S2S dynamics
exists. The continuous dynamics of the aSLIP and the H-LIP
themselves are bounded for walking with finite velocities.
Thus w, the integration of the continuous dynamics error
between the two over the step, is assumed to be bounded,
i.e., w ∈W .

Suppose uH-LIP is designed to realize the desired walking
behaviors on the H-LIP. Let ek = xaSLIP

k − xH-LIP
k be the

difference on the discrete horizontal state between the aSLIP
and the H-LIP. The H-LIP based stepping controller:

uk = uH-LIP
k +K(xaSLIP

k − xH-LIP
k ) (9)

yields the closed-loop system of the aSLIP to be:

xaSLIP
k+1 = AxaSLIP

k +B(uH-LIP
k +K(xaSLIP

k −xH-LIP
k ))+w. (10)

Subtracting Eq. (10) by Eq. (6) on both sides of the equality
sign, we have the error dynamics:

ek+1 = (A+BK)ek + w := Aclek + w. (11)

The error dynamics has a minimum disturbance invariant set
E if Acl is stable:

AclE ⊕W ∈ E, (12)

where ⊕ is the Minkowski sum. This means that if ek ∈ E,
then ek+1 ∈ E. In other words, if the state difference
between the aSLIP and the H-LIP is initially bounded by E,
then the difference will be always bounded by E by applying
the stepping controller in Eq. (9). Therefore, to achieve
desired walking, we first design the nominal behavior xH-LIP,
uH-LIP on the H-LIP, and then apply the stepping controller
to find the desired step size on the aSLIP to generate an
approximate behavior. We will further describe this in the
next two sections, where we omit the superscript H-LIP when
we describe the calculation of the nominal behavior on the
H-LIP.

III. THE HYBRID LINEAR INVERTED PENDULUM MODEL

In this section, we briefly describe the Hybrid Linear
Inverted Pendulum (H-LIP) model, its periodic orbits, its
step-to-step (S2S) dynamics, and the feedback stabilization.
The purpose is to set up all the necessities for applying the
H-LIP based stepping controller of Eq. (9) in Section IV.
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Fig. 3. Examples of Period-1 (a) and Period-2 (b) orbits (indicated by red,
blue and grey trajectories) in the phase portrait of SSP of the H-LIP, where
the yellow lines are the characteristic lines.

A. Dynamics of walking

The H-LIP has a point mass on telescopic legs (Fig. 2 (c)).
The point mass has a constant center of mass (COM) height.
Its walking dynamics have two alternating parts:

p̈ = λ2p, (SSP)
p̈ = 0, (DSP)

where p is the mass forward position relative to the stance
foot, λ =

√
g
z0

, and z0 is the nominal height of the H-LIP.
The dynamics in SSP is a passive LIP model. In DSP, the
velocity of the mass is constant, which has also been assumed
in [14], [2]. Additionally, we assume that the walking has
constant domain durations, i.e., TSSP, TDSP are constants. The
transitions between the domains have no velocity jumps:

∆SSP→DSP :

{
v+ = v−

p+ = p−
, ∆DSP→SSP :

{
v+ = v−

p+ = p− − u

where the superscripts +/− indicate the beginning and the
end of the domain, and u is the step size.

B. Periodic Orbits:

Periodic walking of the H-LIP can be geometrically iden-
tified from its phase portrait in SSP in [13], where the
orbits are classified into Period-1 (P1) orbits and Period-
2 (P2) orbits (see Fig. 3). Moreover, periodic orbits can
be explicitly found in closed-form. Here we briefly present
the procedure of orbit identification to realize the desired
walking behaviors.

P1 orbits are the orbits that are realized via one single
step. It is proven in [13] that the boundary states of the SSP
of all P1 orbits are on the characteristic lines v = ±σ1p,
where σ1 = λcoth

(
TSSP
2 λ
)
. Given a desired velocity vd, the

realization with the P1 orbit is unique. The preimpact (final)
state of SSP and the nominal step size of the P1 orbit are:

[p∗, v∗] = [1, σ1]
vdT

2 + TDSPσ1
, u∗ = vdT, (13)

where vd is the desired net velocity, and T = TDSP + TSSP.
For P2 orbits, [13] proved that all boundary states of the

SSP are on the characteristic line v = ±σ2p+ d2, where

σ2 = λtanh
(
λ

2
TSSP

)
, d2 =

λ2sech2(λ2TSSP)vdT

λ2TDSP + 2σ2
. (14)

There are infinite number of equivalent P2 orbits to realize
the same desired velocity. The difference among all the P2

orbits is on the step size. As each P2 orbit has two alternating
step sizes, the sum of two consecutive ones is constant:

u∗L + u∗R = 2vdT, (15)

where u∗L/R is the step size when the left/right foot is the
original stance foot. Selecting either u∗L or u∗R determines the
P2 orbit. The boundary states of SSP are thus determined,

p∗L/R =
u∗L/R − TDSPd2

2 + TDSPσ2
, v∗L/R = σ2p

∗
L/R + d2. (16)

The P2 orbit is thus identified from its boundary states of
the SSP and its corresponding step sizes.

C. S2S Dynamics and Stabilization
The dynamics of the H-LIP is piece-wise linear. Since

the durations are fixed, we can derive the discrete step-to-
step (S2S) dynamics in closed-form where the step size u
becomes the control input. By selecting the final state of the
SSP as the state of the discrete S2S dynamics, we have:

xk+1 = Axk +Buk, (17)

where xk+1 = [pk+1, vk+1]T is the current, xk = [pk, vk]T

and uk are the state and the step size at previous step, and,

A =

[
cosh(TSSPλ) TDSPcosh(TSSPλ) + 1

λ sinh(TSSPλ)
λsinh(TSSPλ) cosh(TSSPλ) + TDSPsinh(TSSPλ)

]
,

B =

[
−cosh(TSSPλ)
−λsinh(TSSPλ)

]
.

Therefore, Eq. (17) is the S2S dynamics of the H-LIP.
In the discrete S2S dynamics formulation, individual P1

orbits are represented by the set point x∗ = [p∗, v∗]T ; P2
orbits are represented by the alternating set point x∗L/R =
[p∗L/R, v

∗
L/R]T . Orbit stabilization can be derived based on the

linear S2S dynamics in Eq. (17). Without further illustrations,
it can be easily proven that both P1 and P2 orbits can be
stabilized respectively using the controllers:

u1 = K(x− x∗) + u∗, u2 = K(x− x∗L/R) + u∗L/R, (18)

where K is the feedback gain to make the closed-loop matrix
Acl = A + BK stable. Note that the controllers are also in
the form of Eq. (9). One can view the orbit stabilization of
the H-LIP as stabilizing the H-LIP that is not on the orbit
yet to another H-LIP that is evolving on the orbit. Since the
dynamics difference is zero, the error will be driven to zero.

When K is the deadbeat gain, Eq. (18) can yield identical
stepping controllers in Theorem 2.1 and 2.2 in [13]. Since
the system has two states and one input, it requires two steps
to drive the error to zero. Thus the deadbeat gain Kdeadbeat is
calculated by solving: (A + BKdeadbeat)

2 = 0. Additionally,
the linear quadratic regulator (LQR) provides a family of
gains which minimizes a custom cost function:

JLQR =
∑∞
k=1(xTkQxk + uTkRuk + 2xTkNuk). (19)

The resultant optimal state feedback gain is:

KLQR = −(R+BTPB)−1(BTPA+NT ), (20)

where P is solved from the discrete-time algebraic Riccati
equation. Both Kdeadbeat and KLQR can be used in Eq. (18)
for stabilization and in Eq. (9) for controlling aSLIP walking.



IV. DYNAMIC WALKING GENERATION OF ASLIP VIA
H-LIP STEPPING

Now we apply the H-LIP based stepping (Eq. (9)) for
generating versatile walking on the aSLIP. The H-LIP was
described in the planar case, and 3D walking of the aSLIP is
realized via an orthogonal composition of two H-LIPs. We
describe the generation of periodic walking and the versatile
walking using constrained optimization on the H-LIP.

A. 3D Periodic Walking Generation

To realize 3D periodic walking on aSLIP, we first select
and compose P1 and P2 orbits of the H-LIP into 3D. Two
types of orbits in two planes (x− z and y− z) provide three
possible combinations, i.e., two P1 orbits in 3D (P1-P1), two
P2 orbits (P2-P2), and one P1 and one P2 orbit (P1-P2). One
important concern towards the embedding on the humanoid
is that the step sizes have to be larger than the foot sizes
to avoid kinematic violations. Thus P1-P1 is not possible to
realize; step sizes are 0 for zero speed walking, which creates
violations. P2-P2 and P1-P2 can be realized.

We illustrate the process by generating a forward walking
with a P1-P2 composition. A P1 orbit is selected in the x−z
plane with vd = 0.3m/s. The desired set point x∗ of the S2S
dynamics in x − z plane and the nominal step size u∗ are
calculated in Eq. (13). A P2 orbit is selected in the y − z
plane with vd = 0m/s. Then we select the step size u∗L to be
larger than the foot width of the humanoid for avoiding foot
collision, and u∗R is calculated using Eq. (15). The set point
x∗ in the y − z plane is calculated in Eq. (16). The desired
walking behaviors of the H-LIPs are thus identified, which
will be used in the stepping controller in Eq. (9).

Let the aSLIP start from stepping-in-place, The average
height of the aSLIP is selected as z0 for the H-LIP. The
spring parameters are selected as Ks = 24000N/m, and
Ds = 700Ns/m. The vertical oscillation of the mass is about
5cm, which can be tuned from the trajectory optimization.
The optimized leg length is selected as the desired periodical
leg length Ldes(t). Eq. (3) is applied to control the leg length.
Executing the step size from the stepping control in Eq. (9)
perturbs the stepping-in-place. Fig. 4 shows the simulation
result. The aSLIP is commanded to walk forward at t = 2s.
As indicated in the phase plot in Fig. 4 (c-xy), the horizontal
states of the aSLIP converge closely to the desired P1 and P2
orbits of the H-LIP in each plane. The 3D periodic walking
is thus generated on the aSLIP.

B. Versatile Walking via Constrained Optimal Control

The desired periodic walking behavior and corresponding
nominal step size of the H-LIP are in closed-form. For
other versatile walking behaviors, constrained optimization
problems can be formulated on the linear S2S dynamics of
the H-LIP to find the desired H-LIP state sequence and the
nominal step size sequence. Then the stepping controller can
be applied on the aSLIP to realize similar behaviors.

For non-periodic walking, it is desirable to define the
extended horizontal state x̃ in the S2S dynamics to include

(e-x) (e-y)
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Fig. 4. An example of the generated 3D periodic walking: (a-b) horizontal
trajectories of the mass vs time (the red indicates the velocities in DSP), (c)
the vertical trajectory of the mas, (d) the leg length tracking (the red and
blue are the desired and actual L, respectively), and (e) the phase portraits
of the mass (blue) in the x−z plane (e-x) and y−z plane (e-y) comparing
to the desired orbits of the H-LIP (black).

the global position x of the point mass. The planar S2S
dynamics of the H-LIP with x̃ can be described as:xk+1

pk+1

vk+1


︸ ︷︷ ︸

x̃k+1

=

1 A1,1 − 1 A1,2

0 A1,1 A1,2

0 A2,1 A2,2


︸ ︷︷ ︸

Ã

xkpk
vk


︸ ︷︷ ︸

x̃k

+

B1 + 1
B1

B2


︸ ︷︷ ︸

B̃

uk,

where the subscripts indicate the entries of A,B in Eq. (17).
The desired behavior can be directly described on the

states via the cost function or constraints in the formulation
of convex optimizations to optimize a sequence of step
sizes. Since the S2S dynamics is linear, the optimization is
formulated as a quadratic program (QP), which is fast to be
solved. The optimization is typically defined as:

u1,...,N , x̃1,...,N = argmin
{u1,...,N ,x̃1,...,N}∈R4×N

JQP (21)

s.t. x̃k+1 = Ãx̃k + B̃uk, k = {1, . . . , N − 1}
|uk| < umax, k = {1, . . . , N}
x̃1 = x̃0

where JQP is the task-dependent cost function, u1,...,N are
the optimized step sequence, x̃1,...,N are the optimized states
of the H-LIP, and x̃0 is the initial state of the H-LIP. Here the
planar case is presented. For the 3D case, it is a composition
of two QPs of planar problems into one QP.

The solution of the QP provides the behavior of the H-LIP
in the stepping controller in Eq. (9) for achieving a similar
behavior on the aSLIP. The difference between the horizontal
state of the aSLIP and that of the H-LIP is bounded by the
disturbance invariant set in Eq. (12). Here we demonstrate
the approach in the following scenarios of walking.



1) Fixed location tracking: We suppose the task is to walk
to a fixed location, which oftentimes is a practical task on
the robot. Using the constrained optimization approach, the
task can be encoded as an equality constraint: x̃N = x̃d or
as a part of the cost: JQP =

∑N
k=1(x̃Tk − x̃d)TQ(x̃Tk − x̃d)+

uTkRuk, where Q,R are the parameters of the cost. Here
we demonstrate the approach by controlling the aSLIP to a
forward location in the x − z plane where x̃d = [1, 0, 0]T .
The optimized result on the H-LIP and the generated walking
on the aSLIP are shown in Fig. 5. The aSLIP walks to the
desired location and stays there. In the y − z plane, a P2
orbit is applied to keep the feet apart on the ground.

2) Trajectory Tracking: Now we consider the task is
to track a trajectory on the ground. We assume that the
trajectory is provided by a high-level planner using sensors
on the humanoid. Let x̃d(t) be the desired trajectory w.r.t.
time. The tracking is directly encoded via the cost:

JQP =
∑N
k=1(x̃Tk − x̃d(kT ))TQ(x̃Tk − x̃d(kT )) + uTkRuk.

The QP can be solved recursively in Model Predictive
Control (MPC) fashion since in practice the desired trajectory
may be available only in a short future horizon. Since the
trajectory tracking is in 3D, the QP is formulated including
states in both x−z and y−z planes. An additional constraint
is that the step size should be larger than the foot size of the
humanoid. Here we apply the method to track a sinusoidal
path, shown in Fig. 5, where the aSLIP behaves closely to
the H-LIP and tracks the desired trajectory closely.

Remark: The constrained optimization on the H-LIP model
shows similarities to the LIP-ZMP methods [21], [2] where
the LIP model admits quadratic programs for planning both
ZMP and step size. The step planning here can be viewed
as the special case that the foot actuation is zero. However,
one should note that the planned motion of the H-LIP is
applied not directly on the humanoid, but in the H-LIP based
stepping controller for the aSLIP.

C. Analysis

The simulation results on the aSLIP indicate the success
of applying the stepping controller in Eq. (9). One thing to
note is that the initial H-LIP state should be close to that of
the horizontal state of the aSLIP, such that e0 = x̃aSLIP

0 −
x̃H-LIP
0 ∈ E. In the examples, we select the H-LIP state to

be identical to that of the aSLIP in the beginning, which
indicates e0 = 0 ∈ E. Then ek ∈ E for all k ∈ N under
the closed-loop system in Eq. (11). To verify this, we first
numerically calculate w in Eq. (8) in the simulated walking,
and then approximate W via a polytope. When Kdeadbeat is
used, Acl is nilpotent (∃n, s.t. (Acl)

n = 0). Thus E = En :=
⊕n−1i=0 A

i
clW can be calculated exactly [22]. When KLQR is

used, E can be inner-approximated with En∈N (i.e. En ⊂ E)
or outer-approximated using the techniques in [22] and the
reference therein. We apply set iterations using MPT [23]
to calculate En=6 as the inner approximation. Fig. 6 shows
the approximation of E and the error e for the example of
trajectory tracking. The different LQR gains in each plane
come from a different Q, R in Eq. (20). e ∈ E, which

(a) (b)
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H‐LIP
aSLIP
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(b-u1)
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Path tracking

𝑥
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Fig. 5. (a) Results of the fixed location tracking in terms of the forward
positions x, forward velocities v and step sizes ux. (b) Results of the path
tracking with the velocities and step sizes in each plane. The black and blue
indicate the results of the H-LIP and the aSLIP, respectively.

Fig. 6. The disturbance invariant set E in blue transparent polytopes and
the state difference e in black dots each plane with K = [0.21, 0.96, 0.52]
in the x− z plane and K = [0.31, 0.67, 0.43] in the y − z plane.

verifies the application of the stepping controller that keeps
the error small.

V. VERSATILE WALKING EMBEDDING

In this section, we describe the embedding of the aSLIP
walking on the humanoid via the COM, step locations, and
contact forces (see Fig. 7). The robot model of Atlas [2] [24]
(without arms) is used. We first describe the dynamics model
of the walking, the output definition, and finally the output
stabilization via the task space controller.

A. Robot Model of Walking

Let qr describe the robot configuration with floating
base coordinates. The continuous dynamics of walking is
described by the Euler-Lagrange equation:

Mq̈r + h = Bτ + JTv Fv, (22)
Jv q̈r + J̇v q̇r = 0, (23)

where M is the mass matrix, h is the Coriolis, centrifugal
and gravitational term, B is the actuation matrix, τ ∈ R12

is the motor torque vector, and Fv and Jv are the contact
force vector and its corresponding Jacobian, respectively.



Fig. 7. The dynamics embedding scheme on Atlas.

Depending on the number of feet in contact with the ground,
the walking is composed of the SSP and DSP.

Contact Model: We assume that the ground is rigid and
that the impact is plastic [6] when the foot strikes the ground.
For simplification, the foot is assumed to land on the ground
flatly. The velocity of the robot undergoes a discrete jump at
the impact event, which is written as: q̇+rDSP

= ∆(qr)q̇
−
rSSP

.

B. Output Construction

The walking behavior is described via trajectories of the
outputs, i.e, the important features. For DSP, two feet are
constrained on the ground. The outputs are defined as:

YDSP(qr, t) =

[
pCOM(qr)
φφφpelvis(qr)

]
−
[
paSLIP

COM (t)
0

]
, (24)

which includes the position of the COM and the orientation
of the pelvis. The desired pelvis orientation is fixed, and the
desired COM position is the aSLIP mass trajectory.

For SSP, the swing foot position pswingFoot(qr) and orien-
tation φφφswingFoot(qr) are controlled as well. φφφswingFoot(qr) is
fixed, and pswingFoot(qr) is constructed towards the desired
step location of the aSLIP walking. Thus the outputs are:

YSSP(qr, t) =


pCOM(qr)
φφφpelvis(qr)

pswingFoot(qr)
φφφswingFoot(qr)

−


paSLIP
COM (t)
0

pdesired
swingFoot(t)

0

 . (25)

C. Output Stabilization with Active Force Control

To drive the outputs to zero, we apply the active con-
tact force control in [25] with the task space controller
(TSC) [26], [5]. By encoding the desired output acceleration
(second-order derivatives) in the cost, the optimized torques
and contact forces are smooth. First, differentiating the
output Y twice yields,

Ÿ = fY(qr, q̇r) + gY(qr, q̇r)τ. (26)

Selecting desired Ÿdes = KpY + KdẎ yields a desired
exponential stable linear system. An optimization problem
can be formulated to solve for optimal τ by minimizing:

JTSC(τ) = ||Ÿ − Ÿdes||, (27)

which is a quadratic cost on τ . Additionally, the input has
to satisfy the max torque constraint: |τ | < τmax and the
constraints on the ground contact forces (GRF): RFFv < 0,

where RF is a constant matrix that encodes the friction cone
and the non-negative normal forces. Solving Fv from Eq.
(22) and (23) yields the affine relation with respective to τ ,

Fv = Avτ + bv, (28)

where the exact formulations of Av and bv are omitted. Thus
the inequality on Fv is equivalently an inequality on τ .

Contact Force Embedding: To create smooth transitions
between the two domains in the walking [25], we make
sure that the Atlas walking exhibits similar ground normal
reaction force profile to that of the aSLIP, i.e., Fz ≈ F aSLIP

z .
This can be realized by setting up an inequality constraint,

(1− c)F aSLIP
z < Fz < (1 + c)F aSLIP

z (29)

where c ∈ (0, 1) is an relaxation parameter. This inequality
is translated on τ via Eq. (28).

Quadratic Program: The final controller to find optimal
input τ is solving the quadratic program, defined as:

τ∗ = argmin
u∈R12

JTSC(τ), (30)

s.t. AGRFτ ≤ bGRF, (GRF)
|τ | < τmax, (Torque Limit)

where the GRF constraint contains the above-mentioned
constraints on the GRF.

D. Results

The embedding is realized in simulation [27]. Fig. 8 shows
the results. The force relaxation is selected as c = 0.2. We
demonstrate the periodic walking, fixed location tracking,
and trajectory tracking. Walking motions with different COM
height variations are also generated. The walking of the
aSLIP is embedded on Atlas via the output construction (Eq.
(24) (25)) and the output stabilization using Eq. (30). For
global trajectory tracking, we also enable turning on the robot
by letting the pelvis and the swing foot to turn towards the
walking direction. The simulated walking on Atlas verifies
the proposed approach on walking generation via embedding
the aSLIP walking with the H-LIP based stepping.

VI. DISCUSSION AND FUTURE WORK

The proposed approach generates dynamic and versatile
humanoid walking in a computation efficient way. This also
motivates several research directions to discuss.

The method assumes flat terrain for walking. Generating
and stabilizing walking on uneven terrain can be challenging.
Using the reduced order models (ROM), e.g., the aSLIP
model, can presumably simplify the planning process. How-
ever, dramatically varying terrain height may lead the S2S
approximation via H-LIP to fail. Step planning and other
actuation planning may require more sophisticated care.

Our method focuses on generating the desired COM
dynamics. Cooperating that with the rotational dynamics
may utilize all available degrees of freedom for controlling
walking. For instance, a flywheel based SLIP model may also
plan the rotational dynamics appropriately, and consequently,
arms on the humanoid can be better used for walking.
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Fig. 8. Simulation results: (a) the mass trajectory for the fixed location
tracking, (b) the ground normal force during walking inside the relaxation,
and the snapshots of the generate walking: (c1, c2) periodic walking in
forward and lateral direction, and (c3, c4) tracking a fixed location and a
global trajectory.

For the stepping controller, adaptive controllers can be ex-
plored to better stabilize the walking to the desired behaviors.
Additionally, better approximations of the S2S dynamics can
reduce the set W . Optimization on the gain K in Eq. (9)
can further reduce the size of the disturbance invariant set
E. The influence of the parameters of the aSLIP and the
original stepping-in-place behavior on W and then E is also
important to study. These will be our future work.

VII. CONCLUSION

To conclude, we propose a novel and efficient approach
to generate dynamic and versatile walking on humanoid
robots. We generate target walking behaviors on the 3D
actuated Spring Loaded Inverted Pendulum (3D-aSLIP) via
the Hybrid Linear Inverted Pendulum (H-LIP) based stepping
controller by perturbing an existing periodic walking of the
3D-aSLIP. The stepping controller is solved either in closed-
form or via fast solvable quadratic programs. The generated
3D-aSLIP walking is then realized on the humanoid via
an optimization-based controller with ground reaction force
embedding. By innovating and exploiting the benefits of
reduced order models, the approach renders dynamic and
versatile walking generation on high-dimensional humanoids
to be highly efficient.
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