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Abstract— To obtain synchronized gait assistance, this paper
presents a new delayless adaptive dual-oscillator (ADO) scheme
to address the inherent delay issue. In the ADO structure,
a new oscillator is coupled with the primitive one but the
phase is adaptively feed-forward compensated. It’s remarkable
that the compensated phase is determined by the proposed
extended phase lag observer, in which both the phase lag and
phase leading can be properly estimated and eliminated in the
steady and non-steady gait. Moreover, a unified exoskeleton
control scheme based on ADO is further proposed to im-
prove the gait segmentation, velocity/acceleration estimation,
intention estimation, and assistance generation performances,
which further enhances the assistance synergy and reduces the
safety risks. Experimental results demonstrate better alignment
assistance and consequently reduced muscle efforts with ADO-
based assistance control.

I. INTRODUCTION

The wearable robotic exoskeleton is a powered mecha-
tronics system that can be used to assist elderly and disabled
people with gait disorder [1], [2]. In recent years, several
research institutes and companies have developed different
types of exoskeletons, such as GEMS [3], SMA [4], Soft
ExoSuit [5], NREL-Exo [6], etc.

Providing synchronized human-adaptive assistance is a
critical issue for gait assistance. At present, there are two
main solutions: one is direct sensing and the other is pat-
tern recognition. Bioelectric based direct intention sensing,
such as electromyography (EMG) [7], electroencephalograph
(EEG) [8], etc., are vulnerable to interference. Moreover,
the physiological model has to be calibrated individually,
which seriously limits its applications. Instead, the pattern
recognition method, represented by adaptive oscillator (AO),
has been a popular exoskeleton control architecture due to
its less sensor requirement and strong robustness [1], [2].

AO originated from the dynamic Hebbian learning rule in
the nonlinear oscillator, which was first proposed by Righetti
et al. to synchronize with periodic or pseudo-periodic signal
[9]. Then, it was applied to human-robot synchrony control
[10], where the AO is utilized to extract periodic motion
features and predict assistance torque. To further enhance
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synchronization accuracy, Ronsse coupled the pool of adap-
tive oscillators to a kernel-based non-linear filter [11]. In
[12], a particularly-shaped adaptive oscillator (PSAO) was
proposed to effectively estimate the gait cycle, where the
basic sine and cosine functions were replaced with a mapping
from the phase angle to a period pattern. To improve the real-
time performance, Yan designed a phase error compensator
by detecting the gait event [13]. Note that the synchronization
of AO-based control is through the dynamic learning law
that is essentially a gradient descent method, which will
introduce time delay inevitably. The following experiments
show that the maximum lagged phase is up to 52.83 degrees
in the acceleration process, where gait phase-based assistance
will definitely produce unmatched assistance, i.e., flexion
assistance in the loading phase and extension assistance for
pre-swing phase. The extra resistance will hinder normal
hip rotations that will increase the falling risk, especially
for running activities, thus has to be well considered. Al-
though the methods mentioned above have made significant
improvements on the AO, they can not realize the delayless
synchronization without external sensors. Moreover, to the
best knowledge of the author, the delayless AO has not been
well explored, which finally motivates this study.

To address this issue, we design a new dual-oscillator
structure, where the primitive one is the typical AO while
the other is coupled with feed-forward phase compensation.
Based on ADO, we further propose a unified exoskeleton
assistance control scheme for better gait assistance control.

II. HIP EXOSKELETON PLATFORM

A. Mechanical Design

As shown in Fig. 1, the exoskeleton has 4 degrees of
freedom aligned with the hip, and two active series elastic
actuator (SEA) in the flexion-extension direction while the
other two passives in adduction-abduction direction. The
SEA is driven by a flat brushless DC motor via a harmonic
gear reducer, which has a rating output torque 12.8Nm and
a maximum 60RPM velocity.

B. Electronic Design

The electrical system is responsible for data acquisition,
processing, and communicating. The main control unit is a
Raspberry Pi 3B platform with ubuntu mate 16.04 OS and
Robot Operating System (ROS) installed. A commercial DC
motor driver (Copley Accelnet Plus AE2-090-30) is adopted
to realize three-loop control and instant state-feedback of
actuators. Besides, a high-speed EtherCAT fieldbus with 100
Mbps is equipped and all the slave nodes communicate with
a soft EtherCAT master running in the Raspberry Pi.
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Fig. 1. Mechanical and electronic design of powered hip exoskeleton.

III. GAIT ASSISTANCE CONTROLLER
A. Assistance Control Architecture of Hip Exoskeleton

Direct AO-based control that mapped the gait phase to
assistance torque has poor adaptation to nonperiodic gaits,
such as cross gait with walking and stop walking. Instead,
we propose a unified control scheme for various gait as-
sistance by combining AO and active impedance control,
where an improved ADO is responsible for high-level gait
sensing and active impedance control for assistance gener-
ation. As shown in Fig. 2, the new ADO is proposed to
synchronize the quasi-periodic hip trajectories and further
obtain de-noised phase, smoothed position, velocity, and
acceleration. Then, with the estimated gait intentions and
velocity/acceleration, impedance shaping generates human-
adaptive assistance force command to the joint controller to
realize compliant assistance.
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Fig. 2. Overall control architecture of powered hip exoskeleton.

B. Delayless Dual-Oscillator Scheme

(1) Typical AO: For a pseudo-periodic signal u, AO is
capable of learning the features (frequency, phase, envelop,
offset, etc.) by adaptive adjustment of parameters using n
series harmonic oscillators[9], [10], [12]. The dynamics of
AO is described as



û = α0 +∑
n
i=1 αi sin(φi)

e = u− û
α̇i = kαiesin(φi)

φ̇i = iω + kφiecos(φi)

ω̇ = kω ecos(φ1)

α̇0 = kα0e

, (1)

where αi,φi are the amplitude and phase of i-th oscillator, re-
spectively. ω denotes the oscillator frequency of fundamental
wave while α0 stands for the DC bias. e is the error variable
defined with the difference between u and û. kα0 ,kω are the
adjustable feedback gains of DC bias and basic frequency
while kαi ,φi, i = 1,2, . . . ,n denote the amplitude and phase
feedback gains of i-th oscillator. Note that φi is the phase
angle of i-th harmonic wave oscillating at iω frequency.

(2) ADO: In the AO scheme, α,φ ,ω are updated via error
feedback control, which will introduce delays inevitably.
Fortunately, we propose an extended phase lag observer to
eliminate the delay by lead phase compensation. Based on
this intuition, we design a dual-oscillator structure, where
the primitive one is the same with AO while the other is
coupled with feed-forward phase compensation. The ADO
is designed as

ûADO = α0 +α1 sin(φ1 +θlag)+∑
n
i=2 αi sin(φi)

e = u− û
α̇i = kαiesin(φi)

φ̇i = iω + kφiecos(φi)

ω̇ = kω ecos(φ1)

α̇0 = kα0e

, (2)

where ûADO is the output of delayless dual-oscillator and
θlag is the lagged phase angle of the main oscillator. Note
that only the phase of the fundamental wave is compensated
because the basic wave occupies the majority of the input
signal. The adaptive law of compensated phase lag θlag is
designed as {

elag = cos2(φ1 +θlag)e
θ̇lag = kθ elag cos(φ1 +θlag)

(3)

where kθ is the positive gains determining the convergence
rate and noise suppression capability of θlag. Note that the
synchronization error e is not directly utilized in the θlag
update but multiplied with cos2(φ1 + θlag), that is because
the phase lag is most significantly correlated to the errors at
phases φ = 0,φ = π but less at peaks or troughs, i.e., φ =
π/2,φ = 3π/2. Moreover, the convergence proof of phase
lag has been given as follows using the gradient descent
method. The raw hip trajectory can be written as

u = α
∗
0 +α

∗
1 sin(φ ∗1 )+

n

∑
i=2

α
∗
i sin(φ ∗i ) (4)

where the superscript ∗ represents ground truth. Assume the
parameter αi, i = 1,2, · · · ,n,φi, i = 2,3, · · · ,n are all accu-
rately estimated, and select tracking error functions as
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V (eADO) =
1
2
(u− ûADO)

2 =
1
2

α
∗
1 (sin(φ ∗1 )− sin(φ1 +θlag))

2

(5)
Differentitating V with respect to θlag gives

∇V (θlag) =−ecos(φ1 +θlag) (6)

Thus, the adpative law of θlag can be determined as Eq. (3)
based on gradient descent rule

θ̇lag = kecos(φ1 +θlag) (7)

where k is a positive scalar representing descent step length
and k is slected as kθ cos2(φ1 +θlag) in this paper to obtian
variable step update. Therefore, the compensated phase φ1+
θlag will approach to the truth φ ∗ with the convergence of
the synchronization error e.

C. Gait Cycle Estimation

One complete gait cycle starts from heel-strike and ends
with heel-strike of the same leg, which can be divided into
loading phase (LP), single support phase (SSP), pre-swing
phase (PSP), and swing phase (SP)[[14]]. Usually, the gait
cycle can be recognized by the aid of the foot pressure
sensor or motion capture system, but it needs an extra sensing
system outside the hip assistance exoskeleton. In this paper,
we propose a simple gait cycle estimation method with only
the hip trajectory input that can be obtained from exoskeleton
joints. Since the obtained gait phase angle from the oscillator
is expected to be linearly increased from 0 rad to 2π rad, four
discrete gait phases can be robustly recognized with the pre-
defined phase angle interval. Note that the cycle estimation
from the AO-based approach is inaccurate due to the inherent
phase lag. Instead, we use the delayless ADO scheme to
address the lag issue. The phase angle interval is defined as

LP,π/2 < φ1 +θlag ≤ π/2+0.24π

SSP,π/2+0.24π < φ1 +θlag ≤ π/2+π

PSP,3π/2 < φ1 +θlag ≤ 3π/2+0.24π

SP,φ1 +θlag ≤ π/2,φ1 +θlag > 3π/2+0.24π

(8)

The LP starts at phase angle π/2, because the loading phase
occurs at heel-strike around the maximum flexion point. Note
that the intervals of 4 discrete phases are consistent with
their duty cycle in the time domain, i.e., LP 12%, SSP 38%,
another 12% for PSP, and followed by SP with 38%.

D. Joint Velocity/Acceleration Estimation

Joint velocity/acceleration can be obtained via direct nu-
merical differentiation (DND) theoretically from the raw
trajectory, however, the noise makes the DND quite challeng-
ing. In this part, based on ADO, a hip velocity/acceleration
estimation method using an analytic differentiation method
is introduced. The estimated velocity and acceleration are
described as

ˆ̇u = α1ω cos(φ1 +θlag) (9)
ˆ̈u =−α1ω

2sin(φ1 +θlag) (10)

The estimations are based on the differentiation of funda-
mental wave in ADO. Note that the harmonic components
are not included because the adaptation to high-frequency
signal is not so accurate [15].

E. Motion Intention Estimation

Stable walking is a dynamic balance process with the
reciprocal transformation of kinetic energy and potential
energy. The sum energy is constant theoretically for the
balanced walking and will change with the gait state changes.
Based on this idea, we design a novel intention estimator
from the perspective of energy by introducing the orbit
energy concept [16]. The dynamical equation of fundamental
wave plus offset in hip oscillator can be rewritten as

m = α1 sin(φ1 +θlag)+α0

m̈ =−α1 sin(φ1 +θlag)ω
2

=−ω
2m+α0ω

2

(11)

The orbit energy of the hip oscillator is defined as the
integration of multiplying ṁ on both sides of the Eq. (11),

E =
∫

ṁ(m̈+ω
2m−α0ω

2)dt

=
1
2

ṁ2 +
ω2

2
m2−α0ω

2m
, (12)

where the first term is kinetic energy and the remaining
present the potential energy. In this paper, the orbit energy
of the hip oscillator is used to represent walking energy,
which shows a high level during walking while relatively
low level at rest. Accordingly, a variable threshold based
intention estimator is developed to recognize the walking
and stop walking intentions, and E1 is the threshold for stop
to walking detection and E2 for walking to stop detection.
The gait state variable Gs can be determined as

Gs =

{
1, if Gs = 0 and E > E1

0, if Gs = 1 and E < E2
(13)

F. Assistance Torque Generation

Based on [17], the lower-limb can be simplified as a link
model rotating around the hip with rotation inertial coef-
ficient Ih, damping coefficient bh, and stiffness coefficient
kh. The stiffness restoring torque comes from the pull force
on the limb induced by gravity, i.e., Mgl sin(q) ≈ Mglq,
where M,g, l present the leg mass, gravity constant, and
length from COG to hip while q is the hip rotation angle
with its zero equilibrium point in leg vertical direction.
Considering exoskeleton dynamics, the human-exoskeleton
coupling dynamics can be described as

(Ih + Ie)q̈+(bh +be)q̇+(kh + ke)q = τh + τe, (14)

where q, q̇, q̈ denote the hip angle, hip velocity and hip
acceleration, respectively. τh stands for the net muscle torque
and τe is the assistance torque from exoskeleton. Similarly,
Ie,be,ke represents the inertial, damping, and stiffness of
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exoskeleton itself. An active impedance shaping control law
is designed as

τe = Ieq̈+(be +bd
e )q̇+(ke + kd

e )q (15)

Substituting Eq. (15) into Eq. (14), one has

Ihq̈+(bh−bd
e )q̇+(kh− kd

d)q = τh (16)

Then, the transfer function of the coupling impedance can
be described as

Zh(s) =
τh(s)
q̇(s)

=
1

Ihs+(bh−bd
e )+(kh− kd

e )/s
(17)

Let bd
e = bh(1−Ab),kd

e = kh(1−Ak), where 0 < Ab < 1,0 <
Ak < 1 are the assistance factor for damping and stiffness
respectively. Substituting them into Eq. (17) gives

Zh(s) =
1

Ihs+Abbh +Akkh/s
(18)

From Eq. (18), we can optimize the human-exoskeleton
coupling dynamical response to achieve assistance by tuning
the assistance factors. With the estimated û, ˆ̇u, ˆ̈u, the hip
assistance torque Eq. (15) can be rewritten as

τe = Ie ˆ̈u+be ˆ̇u+ keû+[bh(1−Ab) ˆ̇u+ kh(1−Ak)û]Gs (19)

Note that the desired assistance torque is restricted by sensed
gait state Gs, and the exoskeleton will be switched into zero
torque mode automatically in stop walking gait.

IV. EXPERIMENTAL RESULTS

In this section, the ADO-based gait assistance controller is
implemented in the exoskeleton with a healthy subject (male,
aged 30, weight 70Kg, height 170cm). The Ethics Committee
of Tsinghua University had reviewed the experimental pro-
cedure, and approved this experiment (No. 20200014). The
control parameters setting are as Tab. I, where human limb
parameters are taken from [17].

TABLE I
PARAMETER SETTINGS FOR ASSISTANCE CONTROL

Parameter Value Parameter Value Parameter Value
n 2 kα0 2.0 kα1 2.0

kα2 0.1 kφ1 30.0 kφ2 50.0
kω 50.0 kθ 50.0 E1 1.8
E2 1.5 Ie 0.24 be 1.0
ke 0.2 Ih 3.38 bh 3.50
kh 54.70 Ab 0.77 Ak 0.99

A. Experimental Performance Index

TABLE II
PERFORMANCE INDEX

Items AO ADO Reduction
RMS(u− û)(rad) 0.0902 0.0704 17.18%

RMS of Peak Delay(s) 0.0572 0.0378 33.92%
RMS(u̇− ˆ̇u) (rad/s) 1.29 1.25 3.10%
RMS(ü− ˆ̈u)(rad/s/s) 7.95 7.41 6.80%

Stop→Walking Detection Time(s) 0.44 0.14 68.18%
Walking→Stop Detection Time(s) 0.48 0.29 39.58%

B. Gait Synchronization and Segmentation

The synchronized results of AO and ADO are presented
in Fig. 3, where the gait includes both acceleration and
deceleration process with frequency changes. It can be
seen that ADO presents significantly improved synchronized
performance than AO in both the steady and non-steady
states, i.e., reducing the phase lag in steady and acceleration
process, and eliminating the leading phase in deceleration
process. Moreover, the estimated gait phase of ADO is
linearly increased from 0 rad to 2π rad, which coincides
with expected gait cycles. Note that the AO phase lag relative
to ADO is even up to 0.92 rad at the rapid walking to the
running point. As expected, the compensated angle in steady
and acceleration process is positive for lag compensation and
negative for lead compensation. It can be concluded that the
proposed ADO shows better phase-locking performance in
both steady and non-steady states and stronger robustness to
changing gait.

Time(s)

RunningSlow Walking Rapid Walking

0 2 4 6 8 10 12 14
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Fig. 3. Hip trajectory alignment performance using AO and ADO.
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*LP=Loading Phase(0.25)                        *SSP=Single Support Phase(0.5) 

*PSP=Pre-Swing Phase(0.75)                   *SP =Swing Phase(1.0)

Fig. 4. 4 discrete phases in gait cycle (GC): (LP, 0-12% GC), (SSP, 12-
50%), (PSP, 50-62%), and (SP, 62-100%).
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The gait segmentation results are shown in Fig. 4, where
LP, SSP, PSP, and SP gait stages are represented with red,
green, blue, and yellow rectangles with different height. It
can be seen that the LP starts at the maximum hip flexion
point that is close to the heel-strike event, which implies that
each complete gait cycle can be segmented accurately. More-
over, the four discrete stages are consecutively distributed in
the correct order and the time duration of each stage also
coincides with clinical data of gait [14].

C. Joint Velocity/Acceleration Estimation
As shown in Fig. (5), the velocity/acceleration estima-

tions from ADO have better phase-locking performance with
ground truth and consequent smaller estimation errors. As
expected, the RMS of velocity and acceleration estimation
errors from ADO are 1.25rad/s and 7.41rad/s/s, which are
reduced by 3.10% and 6.80%, respectively. It can be con-
cluded that ADO shows better accuracy and lower latency
on the velocity and acceleration estimations.

Time(s)

Fig. 5. Joint velocity/acceleration estimation using ADO and AO.

D. Intention Estimation

Time(s)

SWT(ADO) SWT(AO)

*SWT=Stop->Walking Detection Time *WST=Walking->Stop Detection Time

Hip Trajectory

68.18%

39.58%

SWT(AO)

SWT(ADO)

WST(ADO) WST(AO)

WST(AO)

WST(ADO)

Gs(AO) Gs(ADO)

Fig. 6. Gait state detection using AO and ADO.

The dot lines in Fig. 6 are the recognized walking state
variable Gs, which is denoted as zero in stop walking

state and non-zero for walking. The stop to walking, and
walking to stop can be distinguished accurately with both
AO and ADO methods, but the detected time with ADO is
significantly reduced when compared to AO.

E. Assistance Torque Generation

From the ADO assistance torque profile in Fig. 7, the
positive flexion assistance starts at the transition point from
SSP to PSP and negative extension assistance starts at from
SP to LP, which is consistent with the nominal biomechanical
characteristics of walking. However, it can be obtained that
the AO assistance profile is not strictly aligned with phase
lag or leading from the enlarged figure, which implies the
extension resistance might occur in the LP and flexion
resistance is possible in the PSP. The extra resistance to the
hip will hinder normal hip rotations that will increase the
falling risk, especially for running activities. Moreover, the
zero torque mode and assistance mode are switched more
timely with the proposed scheme.

*AT(AO)=Assistance Torque with AO    *AT(ADO)=Assistance Torque with ADO

Time(s)

Fig. 7. Assistance torque generation using AO and ADO.

F. Assistance Evaluation

The assistance is evaluated by the muscle force that is
estimated by sEMG. The sEMG electrodes are placed on
the rectus femoris (RF) and biceps femoris (BF) of the left
leg to evaluate the flexion and extension efforts, respectively.
The sEMG is sampled in 1KHz rate and filtered with 4-
order Butterworth band-pass filter (10-200Hz) to remove the
movement artifacts and high-frequency noises. The moving
average of the rectified sEMG signal is adopted as the
activation level of muscles.

βi =
1
N

N

∑
i=1
|xi|/MVC,N = 150 (20)

The subject was asked to perform 3.5Km/h, 4Km/h,
4.5Km/h, and 5Km/h treadmill walking without exoskele-
ton, followed by another treadmill walking session with
exoskeleton on. Each experiment trial lasted 2 minutes with
15 minutes of rest to ensure sufficient time for the sEMG and
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metabolic consumption level return to the baseline. To reduce
the measurement uncertainties, 20 gait cycles of walking are
averaged to present the true muscle activation levels.

Muscle Activation Level AAL

Muscle Activation Level AAL

Gait Cycle(%) RF BF

Gait Cycle(%) RF BF Gait Cycle(%) RF BF

3.5Km/h 4.0Km/h

4.5Km/h 5.0Km/h

R
F

B
F

R
F

B
F

No Exoskeleton  Exoskeleton ON *RF=Rectus Femoris       *BF=Biceps Femoris

                     *AAL=Average Activation Level 

Fig. 8. Average muscle activation level in treadmill walking.

TABLE III
DECREASED MUSCLE EFFORT RATE

AAL 3.5Km/h 4.0Km/h 4.5Km/h 5.0Km/h
RF BF RF BF RF BF RF BF

NO Exo 0.11 0.10 0.17 0.30 0.22 0.35 0.29 0.59
Exo ON 0.10 0.15 0.14 0.26 0.19 0.25 0.17 0.31

Reduction 9.0% -50% 17.7% 13.3% 13.6% 28.6% 41.4% 47.5%

From Fig. 8 and Tab. III, it can be seen that both
the activation levels of RF and BF are reduced with the
exoskeleton assistance in most cases except for 3.5Km/h
low-speed walking, which implies the voluntary flexion and
extension torque produced by muscle has been effectively
decreased. Moreover, the reduction is more increased with
higher walking speed. The results also present great potential
for reducing metabolic energy consumption with exoskeleton
assistance.

V. CONCLUSIONS

This study proposes a new delayless adaptive dual-
oscillator scheme for gait assistance to address the inherent
lag issue. The alignment delay has been effectively esti-
mated and eliminated by the proposed extended lag phase
observer. Moreover, we further present a unified exoskeleton
assistance control scheme based on ADO, in which the gait
segmentation, intention estimation, and assistance generation
are more accurate. Furthermore, the proposed control scheme
has been implemented in the hip exoskeleton, and the results
demonstrate unique properties, such as better alignment abil-
ity, robust intention estimation, accurate velocity/acceleration
estimation, and synchronized assistance. Nevertheless, the
physical experiments should be further expanded with stairs,
slope walking, running, etc.
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