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Abstract— Wearable robots have the potential to improve
the lives of countless individuals; however, challenges associ-
ated with controlling these systems must be addressed before
they can reach their full potential. Modern control strategies
for wearable robots are predicated on activity-specific imple-
mentations, and testing is usually limited to a single, fixed
activity within the laboratory (e.g. level ground walking). To
accommodate various activities in real-world scenarios, control
strategies must include the ability to safely and seamlessly
transition between activity-specific controllers. One potential
solution to this challenge is to the infer wearer’s intent using
pattern recognition of locomotion sensor data. To this end,
we developed an intent recognition framework implementing
convolutional neural networks with image encoding (i.e. spec-
trogram) that enables prediction of the upcoming locomotor
activity of the wearer’s next step. In this paper, we describe
our intent recognition system, comprised of a mel-spectrogram
and subsequent neural network architecture. In addition, we
analyzed the effect of sensor locations and modalities on the
recognition system, and compared our proposed system to state-
of-the-art locomotor intent recognition strategies. We were able
to attain high classification performance (error rate: 1.1%),
which was comparable or better than previous systems.

I. INTRODUCTION

Wearable robots, including powered prostheses and ex-
oskeletons, have the potential to improve people’s qual-
ity of life by enhancing their physical capabilities during
locomotion [1], [2]. Despite the promise of these wear-
able technologies, challenges remain in the development
of safe, intuitive, and versatile control systems. Recently,
researchers have demonstrated exoskeletons that are able to
apply substantial assistance, as well as reduce the metabolic
expenditure during walking [1], [3]. To obtain these results,
researchers typically develop control approaches that are
intended for single activities, often tethered to a treadmill.
For this approach to be applicable in daily life, these systems
must be able to encompass multiple activities, including
walking, running, and stair ascent or descent. To address
the limitations associated with control systems meant for
single activities, some researchers have developed methods
for switching between multiple activity-specific controllers;
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however, often these transitions are initiated by commands
such as visual, auditory, or touch (e.g. key-fob) cues which
are non-intuitive and can increase cognitive burden [4]. Thus,
for users to naturally perform the activities of daily life, it
is imperative to develop control strategies that can infer the
wearer’s intended movement automatically without requiring
external commands, and autonomously transition between
different activity-specific controllers.

One approach to infer the wearer’s intended activity is
to use an intent recognition framework [4], [5], [6]. Intent
recognition typically includes predicting the upcoming activ-
ities of the user each step using information from the wearer,
robotic system, or environment prior to completing the move-
ment (e.g. before heel contact or toe off of the current step)
[7]. There have been several works that implemented intent
recognition strategies employing sensor fusion for improving
the performance [5], [8]. While these strategies demonstrated
high performance on classifying users’ locomotor activities
(error rate < 2%), they often rely on hand-crafted features,
such as the mean, standard deviation, maximum and mini-
mum of time-series data. This can be challenging because it
may require domain specific knowledge and trial and error
approaches to extract meaningful features [9].

Deep learning (DL) has been emerging as a tool to classify
activities in human activity recognition (HAR) or intent
recognition tasks [10], [11], [12]. Especially, convolutional
neural networks (CNNs) have been used over other DL
methods, due to their local dependency and scale invari-
ance, which captures the invariant features of the same
activities with variations (e.g. walking) [10]. Combined with
recent advancement in processing capability and miniatur-
ization of graphics processing units (GPUs), CNNs have
been extensively employed for mobile and wearable sen-
sors based tasks. To increase the performance of CNNs,
several researchers have configured CNN architectures by
adding additional layers and nodes or combined with other
DL architectures (e.g. CNN + Long Short Term Memory)
[13], [14]. These approaches can increase the computational
complexity, which may not be ideal for low-power on-board
sensors or microcontrollers [15]. In addition, due to the
increased number of parameters in these architectures, it may
be challenging to determine the optimal parameters from
relatively small datasets [16].

To obtain better performance while minimizing the com-
putational efforts, researchers in HAR have investigated
various techniques for configuring input data, such as lin-
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ear interpolation, distance matrices, etc. [17]. Among these
techniques, the use of image transformation (i.e. 2D rep-
resentation) of time-series data as an input to CNNs, have
been employed for classifying activities [11]. Especially,
conversion to the spectrogram captures frequency features
of the signals and is robust against variance of sampling
rate [15]. While these image configuration techniques have
achieved promising results, many researchers have focused
on classifying the activity after the movement completion,
rather than predicting the activity before the completion (i.e.
intent). Specifically for HAR tasks of walking activities,
researchers have focused on classifying the activity of the
current or past step, rather than the activity of the subsequent
step of the gait cycle [10], [15]. CNNs have been used
to predict locomotor intent for use in powered prostheses;
however, they either have directly applied time-series data or
hand-crafted features as an input to the CNN, which resulted
in similar or inferior performance compared to the feature-
based classifiers (e.g. Linear Discriminant Analysis) [12],
[18], [19]. Thus, the impact of these image configuration
methods applied to CNNs for locomotor intent recognition
tasks remains unknown.

The contributions from this paper include: (1) We pro-
pose a spectrogram-based CNN recognition framework for
predicting the intent of the lower-limb locomotor activities.
Inspired by [15], we modified this approach to be suitable
for our tasks by developing an analysis pipeline composed
of a lightweight neural network architecture and a mel-
scaled spectrogram. (2) We compared the performance of our
system to the state-of-the-art (SOTA) locomotor intent recog-
nition strategies using bilateral neuromechanical signals. The
proposed system achieved a classification error rate of 1.1%,
which outperformed or was comparable to previous works
[5], [19]. (3) We characterized the effect of sensor locations
and modalities on the classifier performance; finally, (4) we
qualitatively identified the region of the gait cycle responsible
for the intention by visualizing the activation of the CNN.
To our knowledge, this is the first work to use CNNs with
image encoding of frequency content for lower-limb intent
recognition with bilateral neuromechanical sensor fusion.
The intent of our work is to enable future wearable robotic
technologies to be used outside the laboratory, where a
diverse range of activities is required.

II. SYSTEM DESIGN

A. Dataset

We used a publicly available dataset composed of kine-
matic and muscle activity signals to train our intent recog-
nition framework. The dataset, named as the Encyclopedia
of Able-bodied Bilateral Lower Limb Locomotor Signals
(ENABL3S), was chosen over other datasets (e.g. UCI-HAR
[21]), because it focuses on normal locomotion, includes
rich biomechanical signals from multiple sensor modalities,
and sampling rates are sufficient for online control purposes.
The data were collected from wearable electrogoniometers
(GONIO), surface electromyography (EMG) and internal
measurement unit (IMU) sensors. The sampling rate of
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Fig. 1: Instrumentation setup for the dataset. The EMG electrodes
were placed on seven muscle groups responsible for lower limb
locomotion: tibialis anterior (TA), medial gastrocnemius (MG),
soleus (SOL), vastus lateralis (VL), rectus femoris (RF), biceps
femoris (BF), and semitendinosus (ST). The GONIOs were placed
on knee and ankle joints and the IMUs were placed on the thigh
and shank to measure angular position and velocity. [20]

EMG, GONIO and IMU sensors were 1000, 500, and 500
Hz respectively and low-pass filtered at 350, 10 and 25
Hz respectively. All sensor data were processed to identify
right and left heel contact and toe off (i.e. gait events).
These sensors were placed on the lower limbs of 10 able-
bodied human subjects (Fig. 1). Each subject performed 25
repetitions of a circuit consisting of walking on level ground
(LW), ascending/descending a ramp with a 10 degree incline
(RA/RD), and ascending/descending a four-step staircase
(SA/SD). The odd-numbered trials had a sequence of these
activities as follows: LW→ SA→ LW→ RD→ LW, while
even-numbered trials had LW→ RA→ LW→ SD→ LW. The
ground truth label was marked by the experimenter using a
key fob. The preceding 500 ms of sensor data before each
gait event was used as the input to our analysis pipeline and
the activities after each gait event (i.e. upcoming activity)
were used as the label for prediction [20].

B. CNN-based Intent Recognition

1) Image Encoding using Spectrograms: Due to the pe-
riodic nature of walking, we propose that the frequency do-
main information from the time-series data provides a more
effective representation of lower-limb locomotor activities
for CNN classification. To produce the frequency-domain
representation, the Short-Time Fourier Transform (STFT)
was performed on time-series data:

STFT(x[n];w, k) =

∞∑
n=−∞

x[n]w[n− k]e−jωn (1)

where the signal x[n] was multiplied by a windowing func-
tion ω, shifted by an offset k. The squared magnitude of the
STFT produced a spectrogram, and we further transformed
the spectrogram using nonlinear scaling known as the mel
scale (Eq. 2) which demonstrated its success as a pre-
processing step in auditory classification tasks [22]. The mel
scale originates from representing the human auditory system
such that it has perceptually equal pitch (i.e. frequency-scale)
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Fig. 2: Our proposed intent recognition pipeline from frequency domain representation, CNN architecture to the output activities.
Convolutional layers consisted of kernels sized of 5x5, stride of 1, padding of 2, and two sequential linear layers had hidden units
of 6144 and 2000, respectively. The dropout with 0.5 probability was added to improve the generalizability of the proposed system.

Fig. 3: A sample spectrogram (left) and mel-spectrogram (right)
generated from the EMG signal of the right TA. Lower frequency
signals were amplified from the mel scale conversion.

increments; in other words, as frequency (Hz) increases,
larger intervals of frequency are required to produce the same
magnitude of pitch increments. This scaling was chosen so
that it amplifies the lower frequency content of the signal
(Fig. 3), where much of the content of human locomotion is
below 3.5 Hz [23]. The mel scale can be computed using

2595 · log10
(
1 +

f

700

)
(2)

Lastly, the amplitudes were squared to further attenuate the
higher frequency content and transformed to a decibel scale.
For the windowing function ω, a Hann window of length
20, with an offset k of 10 was used. When converting to
the mel scale, the Hz scale was partitioned into 10 bins
(user-defined) prior to the transformation being applied. The
selection of 10 bins was to balance classifier performance
and processing overhead. All the steps outlined in this section
were performed using the LibROSA package in Python [24].

2) LIR-Net Architecture: We designed the CNN archi-
tecture which consists of a series of 2D convolutional lay-
ers and pooling layers, followed by fully-connected layers
(Fig 2). This proposed network is called Locomotor Intent
Recognition-Net (LIR-Net), which is lightweight but pro-
vides high performance when classifying lower-limb neu-
romechanical spectrogram images. The spectrogram pro-
duced in the image encoding step (Section II-B.1) was
provided as an input to the CNN and the softmax operation
was applied to the output of the last linear layer, which
represented probability distribution of the predicted class.

III. EXPERIMENTAL PROTOCOL

The proposed system was evaluated against separate clas-
sifier configurations and compared with different classifica-
tion strategies using the ENABL3S dataset. Furthermore, we
investigated the effect of sensor modalities and laterality
groups, where modality describes sensor type (e.g. IMU,
EMG, GONIO) and laterality describes the side of the leg
where a gait event was detected (e.g. ipsilateral, contralateral,
and bilateral) [20]. Lastly, we implemented feature (i.e. unit)
visualization of LIR-Net to identify the frequency region of
the input spectrogram where the units were most activated.

A. Classifier Configuration

1) Generic: A generic configuration is defined as when
only signal data or features were given as an input to a
certain classification strategy without any information (i.e.
ground truth) from the current activity provided. The current
activity was defined as the activity before each gait event (i.e.
before movement completion), whereas upcoming activity
was defined as the future activity after each gait event.

2) Mode-Specific: The mode-specific strategy encodes the
environment knowledge by providing the information of
the current locomotor activity [4]. Specifically, the strategy
employs separate classifiers depending on the current activity
(i.e. mode), which has different number of outputs for each
classifier (e.g. for the RA classifier, only transition to RA
or LW is allowed). Combined with heuristic feature-based
classifiers (e.g. Linear Discriminant Analysis (LDA), Support
Vector Machine (SVM)), this configuration demonstrated low
error rates (< 2%) when classifying the locomotor intent [5].

B. Classification Strategies

1) Random Guesser: To understand the effect of distribu-
tion of the dataset on the classifier configurations, we created
a baseline system that predicts activity based on distribution
of samples, thereby always predicting the activity with the
greatest likelihood.

Generic: Provided only the signal data without activity
information, such a system can be represented as follows:



TABLE I: DATA DISTRIBUTION OF ENABL3S

Transition from to Number of Samples#

Level walking (LW) LW 8886 (42.87%)
RA 503 (2.43%)
RD 474 (2.29%)
SA 478 (2.31%)
SD 477 (2.30%)

Ramp ascent (RA) RA 2740 (13.22%)
LW 481 (2.32%)

Ramp descent (RD) RD 3416 (16.48%)
LW 471 (2.27%)

Stair ascent (SA) SA 934 (4.51%)
LW 469 (2.26%)

Stair descent (SD) SD 925 (4.46%)
LW 476 (2.30%)

# The count of each activity transitions across all subjects.

în = argmax
i
P (i) (3)

where î, i are the predicted class (i.e. upcoming activity) and
true class label respectively, n represents the nth gait event,
and P is the probability distribution of the class i. Therefore,
the class with the largest representation (LW, Tab. I) was
chosen every time.

Mode-Specific: Given the signal data and the current class
of the signal data, we represented a similar system as follows:

în = argmax
i
P (i|in−1) (4)

where P is the probability distribution of the class i given a
current activity (in−1) of nth gait event. For example, given a
RA, the classifier only outputs RA since the data distribution
of RA-RA is (13%) larger than RA-LW (2%).

2) Heuristic Feature-based Classifiers: LDA and SVM
have demonstrated their validity as classifiers for intent
recognition, because they provide low classification error
while it is computationally efficient [4], [5]. Especially, LDA
combined with the mode-specific configuration achieved
SOTA performance (1.43%) for intent recognition tasks [5].
To this end, we used LDA and SVM for our baseline
classifiers to be compared with our proposed system. For an
input to the classifiers, we used features previously known to
be important for intent recognition when controlling powered
prostheses. Features were extracted from the time-series data,
including mean, standard deviation, maximum, minimum,
initial, and final value, etc [5], [20].

Generic: The features extracted from bilateral sensor set
with all sensor modalities of ENABL3S were provided as an
input to the classifier, which were 332 features in total. To
be consistent with the existing work, for the LDA classifer,
features were normalized and principal component analysis
was applied to maintain 95% variance, while the prior was
set to be equally probable. For the SVM, a linear kernel
was chosen with a regularization parameter of 10 [5]. The
calculation was performed using the Sckit-learn software
package in Python.

Mode-Specific: Separate LDA and SVM classifiers were
trained to encompass all the gait events and locomotor

activities. During the prediction, the mode-specific classifier
was selected based on the current locomotion activity. The
predictions (i.e. output) of the classifiers were limited by the
number of transitions allowed on the previous activity.

3) LIR-Net: Generic: A generic configuration of LIR-Net
followed the procedures of Section II-B.

Mode-Specific: To provide the current activity information
to the network, we provided the mode information as a one-
hot encoding vector and concatenated into the first linear
layer of our intent recognition pipeline (Fig. 2). We chose this
approach rather than explicitly following the conventional
mode-specific scheme (i.e. training separate classifiers with
differing number of output depending on the mode), since
the performance of DL will likely suffer from the scarcity
of the training samples due to the splitting.

C. Performance Evaluation

We compared the offline performance using both classifier
configurations. We divided the dataset, including all sensor
laterality groups and modalities, into testing and training
sets, which were divided in two ways: 1. the division was
randomized by 10-fold cross validation (90:10 split) within
all subjects’ data (i.e. user-dependent); 2. one out of ten
subject’s data were withheld as testing set, while the other
nine subjects were grouped as the training set. This was
repeated 10 times until all subjects were tested once (i.e.
leave-one-out or user-independent cross validation) [4]. Each
classifier was trained on the training set and evaluated on the
testing set. For the user-dependent LIR-Net, the data were
divided into training, validation, and test sets (80:10:10), and
after finding the best hyperparameters, the validation set was
added to the training set. Identical hyperparameters of the
user-dependent LIR-Net were used for the user-independent
classifier. The error rate of each classifier was determined by
the number of correctly classified predictions divided by the
number of each test set. Error rates were further categorized
based on whether the misclassification occurred at the gait
event where the previous and the following activities were
identical (i.e. steady-state) or different (i.e. transitional) [5].

We conducted statistical analyses separately for each error
types, and analyzed all classifiers on both classifier configu-
rations and user-dependencies. We used three-way ANOVAs
with error rate as a dependent variable, and classifier type,
configuration, and user-dependency as independent variables,
and subject as a random factor. We performed a post hoc
comparison test using Tukey’s Honestly Significant Differ-
ence Criterion (Tukey) to determine the statistical difference
between the pairs of interest (α = 0.05).

1) Training of LIR-Net: The network was trained to
minimize the cross entropy loss which is described as:

Loss(q, p) = −
∑
i

q(i) log p(i) (5)

where the q(i) is the ground truth probability expressed
as one-hot encoding and p(i) is the predicted probability
of class i. We used a stochastic gradient-based optimizer
ADAM [25] with L2 regularization to prevent overfitting.



2) Hyperparameter Search of LIR-Net: We investigated
different hyperparameters of LIR-Net to obtain the best
performance. The parameters associated with spectrogram
implementation were fixed (Section II-B.1). A grid search
was then performed on hyperparameters to maximize vali-
dation accuracy. The hyperparameters found to give greatest
accuracy were a batch size of 32, learning rate of 10−5,
L2 regularization strength of 10−3, and 200 epochs. All
calculations were performed using the PyTorch package [26].

3) Classification Latency of LIR-Net: The time required
for the classifier to make a prediction is a critical factor
in the real-time usability of intent recognition systems. To
evaluate the latency of LIR-Net, we measured the elapsed
time from spectrogram generation to prediction per activity
using all sensors. We calculated the latency using a single-
board computer (model: Jetson Nano, NVIDIA, Santa Clara,
CA) with GPU acceleration. The calculation was repeated
10 times and was averaged to obtain the latency.

4) Comparison to ResNet: To validate the design choice
of LIR-Net architecture, we compared the performance of
ours with ResNet18 [27]. We used ResNet pre-trained on
ImageNet to perform a fair comparison due to our scarcity
of the number of data samples compared to the complexity of
ResNet [28]. An identical training and evaluation procedure
for LIR-Net was employed to quantify the performance
of ResNet. A one-way ANOVA was used to measure the
statistical difference between the two architectures.

D. Effect of Sensor Modalities and Locations on LIR-Net

To determine the effect of sensor types and locations, we
trained LIR-Net classifiers on various subsets of the data
and compared their performance. The subsets were deter-
mined by dividing the sensor data into four modality (EMG,
GONIO, IMU, all) and three laterality groups (contralateral,
ipsilateral, bilateral). The LIR-Nets were trained on each
laterality group with a subset of the four modalities, and their
error rates were recorded. The remaining sensor data were
withheld during training. We divided all subsets of data into
testing and training sets, where the division was randomized
by user-dependent 10-fold cross validation.

We conducted statistical analyses of LIR-Nets by using a
two-way ANOVA with the overall error rate as the dependent
variable, modality and laterality as independent variables,
and subject as a random factor. We performed a post hoc
comparison test using Tukey’s Criterion to determine the
statistical difference between the pairs of interest (α = 0.05).

E. Visualizing Activations of LIR-Net

Activation (i.e. output of the convolutional operations)
visualization is a technique that can provide greater under-
standing of the internal operations of CNNs [29]. To this end,
we visualized the activation of the trained LIR-Net after the
first convolutional layer, given one sample of spectrogram.
This was accomplished by first localizing the maximum
value in each output channel (total 128 channels) and map-
ping each pixel from the first convolutional layer back to the
input space (i.e. receptive field), where a highly activated
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Fig. 4: Error rates of the classifiers on Generic and Mode-specific
(Mode) configurations with user-independent (Indep.) and user-
dependent (Dep.) conditions.

pixel is likely important to the CNN. After identifying the
mapping between the input and the activations, the receptive
field of the input was weighted by the magnitude of its
according maximal activation of each channel, and the max
activations of all channels were summed and then normalized
to create an averaged activation in the input space.

IV. RESULTS

A. Performance Evaluation

We evaluated the performances of the classifiers on all
classifier configurations and user-dependencies (Fig. 4). The
interaction between all pairs of classifier types, configura-
tions, and user-dependencies were all significant except the
pair of configuration and user-dependency (p = 0.63).

1) Effect of Configuration: Error rates of the classifiers on
both classifier configurations were compared (Tab. II). The
generic and mode-specific configurations were statistically
different across all classifiers and types of error rates. In
general, the mode-specific configuration lowered the overall
error rates of the random and heuristic-based classifiers,
while the change in the error rate of LIR-Net was minimal.

2) Effect of Classifiers: Error rates of the random and
heuristic classifiers were compared to that of LIR-Net (Tab.
II) for each configuration and user-dependency. In general,
the error rates were statistically different from LIR-Net
across all error types, classifier configurations and user-
dependencies, except the steady-state error of the generic



TABLE II: ERROR RATES OF THE CLASSIFIERS

User-Dependent User-Independent
Random LDA SVM LIR-Net Random LDA SVM LIR-Net

Overall (%)
Generic 47.99 [1.18]* 6.43 [0.53]* 4.30 [0.61]* 1.11 [0.26] 47.99 [2.65]* 12.21 [4.84]* 16.17 [7.27]* 7.75 [ 3.84]
Mode-specific 18.48 [1.03]* 1.85 [0.35]* 2.19 [0.20]* 1.52 [0.42] 18.52 [1.72]* 10.52 [4.55]* 9.16 [1.87]* 7.26 [3.42]
Steady-State (%)
Generic 47.42 [1.55]* 1.03 [0.20] 2.54 [0.52]* 0.54 [0.18] 47.46 [3.18]* 6.99 [6.21] 14.18 [8.69]* 5.45 [4.41]
Mode-specific 0.00 [0.00]* 1.32 [0.31] 1.19 [0.15]* 0.61 [0.23] 0.00 [0.00]* 10.08 [6.01] 7.39 [3.03]* 5.14 [3.95]
Transitional (%)
Generic 50.54 [2.00]* 30.26 [1.77]* 12.05 [1.76]* 3.64 [0.98] 50.46 [0.81]* 35.41 [7.67]* 25.08 [4.86]* 18.08 [6.43]
Mode-specific 100.00 [0.00]* 4.18 [1.17]* 6.60 [0.99]* 5.54 [1.94] 100 [0.00]* 12.37 [4.13]* 17.06 [5.46]* 17.03 [7.96]

Error rates (mean, [standard deviation]) of the generic and the mode-specific classifiers using the bilateral sensors with all modalities. Asterisks under
random, LDA and SVM classifiers denotes statistically significant differences between the according classifiers and LIR-Net. The difference between the
generic and the mode-specific configurations were all significant across all error types regardless of user-dependencies. Bold numbers represent the classifier
with the lowest error rate for each type of error rate and configuration.

and mode-specific LDA classifiers. For overall errors, our
proposed system achieved the lowest error rate (Depen-
dent: [Generic: 1.1%, Mode-specific: 1.5%], Independent:
[Generic: 7.7%, Mode-specific: 7.2%]) on both config-
urations and user-dependencies; whereas for the steady-
state error, LIR-Net obtained the lowest error-rate on the
generic configuration across all user-dependencies (Depen-
dent: 0.5%, Independent: 5.4%) and the random classifier
had the lowest error rate (0.0%) on the mode-specific
configuration for both user-dependencies. In practice, the
mode-specific random classifier simply predicted the current
activity as the upcoming activity, which produced 0% error
rates in steady-states. Since there were more steady-state than
transitional cases in the dataset, the overall error rate of the
mode-specific random classifier was lower than that of the
generic classifier (Generic: 47.9 %, Mode-specific: 18.4%).
The generic LIR-Net reached the lowest transitional error
rates, while LDA had lowest transitional error within the
mode-specific configurations across all user-dependencies.

3) Effect of User-Dependencies: We compared the error
rates of the classifiers in the presence of different user-
dependencies. The user-independent condition was statisti-
cally different from the user-dependent condition. For all
classifiers, the error rates increased with the user-independent
condition except the random classifier, the performance of
which was governed by the distribution of the data (Tab. I).

4) Classification Latency of LIR-Net: The averaged la-
tency was 136.07 ± 3.86 ms.

5) Comparison to ResNet: The overall error rate of the
ResNet was compared with that of LIR-Net. The overall
error rate of the pre-trained ResNet (1.29 ± 0.20%) was not
statistically different (p = 0.13) to that of LIR-Net (1.11 ±
0.26%), which validated the choice of our network design.

B. Effect of Sensor Locations and Modalities on LIR-Net

The overall error rate of LIR-Net was statistically com-
pared across all combinations of sensor laterality groups
and modalities. The interaction between the modalities and
laterality groups was significant. The effect of laterality
groups was observed by comparing the classifier’s perfor-
mance with all sensor modalities combined (Tab. III). The
error rate of the bilateral sensor set was statistically less

TABLE III: LIR-NET PERFORMANCE ON DIFFERENT SEN-
SOR MODALITIES AND LATERALITY GROUPS

# of
Sensor Sensor Type Ipsi (%) Contra (%) Bi (%)

I 4.68 [0.51] 5.99 [0.70] 2.58 [0.38]†

1 G 3.85 [0.43] 4.00 [0.57] 1.49 [0.29]†
E 7.66 [0.58] 8.00[0.51] 3.08 [0.46]†

I & G 3.05 [0.42] 3.33 [0.55] 1.29 [0.44]
2 I & E 3.96 [0.55] 4.42 [0.52] 2.17 [0.71]†

E & G 3.05 [0.55] 3.11 [0.32] 1.15 [0.26]
3 ALL 2.56 [0.50]* 2.89 [0.38]* 1.11 [0.26]

Overall error rates (mean, [standard deviation]) of LIR-Net using all
possible combinations of laterality groups and sensor modalities: IMU (I),
EMG (E), GONIO (G). The lowest error rates on each number of modalities
are bolded.
* Asterisks under ipsilateral (Ipsi) and contralateral (Contra) classifiers de-
note the statistically significant differences between the according laterality
and the bilateral (Bi) sensor set when all modalities are used.
† Daggers under sensor modalities denote the statistically significant dif-
ferences between the according modality and all combined sensor (IMU &
EMG & GONIO) with the bilateral sensors.

(1.11%) than either ipsilateral or contralateral set. Similarly,
the effect of sensor modalities was tested by comparing
the performances of the classifier using the bilateral sensor
set. The statistical significance was measured between all
combined sensor modalities and individuals or combinations
of two different sensor modalities. As a result, the error
rate of the all combined sensor sets was significantly less
than all individual sensor modalities and a pair of IMU and
EMG sensors. For the single modalities with the bilateral
sensor set, GONIO achieved the best performance, and for
the two modalities, EMG and GONIO combination attained
the lowest error rate.

C. Visualizing Activations of LIR-Net

The network showed greater activations in the lower
frequencies, where much of the information in the signals
was localized (Fig. 5). Additionally, the greatest activations
in the low frequency area occurred near to the gait events.

V. DISCUSSION

In this paper, we proposed a CNN-based intent recogni-
tion system that utilized the spectrogram to represent the



Fig. 5: A representative sample of the right shank IMU, right VL
EMG, and right knee GONIO signals (top three), and activation
visualization of LIR-Net (bottom).

frequency content of the input data. To this end, we studied
the effect of sensor modalities and laterality groups on
the proposed system, visualized the activation of CNNs,
and compared our system to the state-of-the-art (SOTA)
intent recognition classifiers [5], [19]. The overall error rate
of our proposed system was 1.11% which exceeded the
performance of the existing work in a generic classifica-
tion scheme. The motivation of this paper is to improve
the prediction capabilities of lower-limb locomotor intent
recognition systems; ideally, providing a framework for
autonomous wearable robots which can assist wearers with
a diverse range of activities encountered in the real-world.

A. Limitations

The error rates of the user-independent classifiers were
statistically higher than that of the user-dependent classifier.
This result showed the classifiers, including our proposed
system, were not able to generalize well to novel subjects.
The performance reduction of our system was due to an
increase in transitional error (LDA: +5%, SVM: +12%,
LIR-Net: +14%) across user-dependencies, compared to the
increase in steady-state error (LDA: +5%, SVM: +12%,
LIR-Net: +5%). This relatively weak generalizability of
LIR-Net to novel users in transitional states is likely due to
the unbalanced number of activity samples in the ENABL3S
dataset; specifically, the number of transitions were less
than that of steady states (Tab. I). This stems from the
fact that the data collection was conducted in a circuit that
consisted of each activity, which is a convenient protocol,
but may lead to sparseness in transition data [5]. Although
our system obtained the lowest transitional error rates among

all classifiers in the generic condition, the network had been
trained and biased to lowering the overall error. In addition,
deep learning (DL) generally performs better with more data,
which may lead to greater improvements in performance
when data are added, when compared to other classical
machine learning algorithms. Thus, collecting more subject
data with balanced number of samples, and techniques,
such as data augmentation, can mitigate this limitation and
improve the DL-based classifier [12].

B. Comparison to Past Works

Our proposed system was compared to the SOTA intent
recognition systems using the ENABL3S dataset [5], [19].
For the combined mode-specific and user-dependent con-
dition, our system performed comparably (1.52%) to the
previous work of (1.43% [5]); but most importantly, in
the generic classifier configuration, our work outperformed
(1.11%) the heuristic-feature based classifiers (LDA: 6.43%,
SVM: 4.30%) and CNNs with heuristic features as an input
(3.7% [19]). Although mode-specific configurations could
improve system performance, in real-world scenarios, relying
on accurate knowledge of the previous step’s activities (i.e.
ground-truth) may be untenable. The performance of our
intent recognition system in generic configuration demon-
strates that our approach can be generalized across different
environment conditions with various sequences of activities.

C. Effect of Sensor Locations and Modalities on LIR-Net

In general, as we fused more senor modalities and later-
alites, the performance of the classifiers improved. This result
was in accordance with the prior work using ENABL3S
[5], [19]. Our findings showed GONIO had the best single
modality performance with the bilateral sensor set; whereas
IMU sensor data had the lowest error rate in previous works
[5], [19]. For two modality sensors, EMG and GONIO
combinations gave the best performance agreeing with the
prior work [19]. Interestingly, the IMU and GONIO, EMG
and GONIO combinations were not statistically different
from all combined sensors, which suggests near optimal
performance may be obtained from limited sensor selections.

D. Visualizing Activations of LIR-Net

Our technique of visualizing activations allowed a simple,
but intuitive understanding of which features were learned by
the network (Fig 5). The network had high activations nearby
the gait events under the lower frequency region (<100
Hz). This shows that the information that dictates activity
transitions are concentrated on the signals close to toe-off or
heel-contact. To our knowledge, this is the first time that the
activations of CNNs were qualitatively analyzed within a gait
cycle, which is critical for identifying the intent using lower-
limb neuromechanical signals. Although there was previous
work visualizing the features of a CNN in lower limb sensor
signals, the visualization was less intuitive and features were
indistinguishable [18].



E. Application to Control of Wearable Robotics

Intent recognition is a control strategy which enables a
wearable lower-limb robot to autonomously switch between
controllers responsible for a specific task by inferring the
wearer’s locomotor intent. Typically, intent recognition is
used as a high-level controller in a hierarchical control
structure, where a mid-level controller encodes the activity-
specific instructions for how to provide mechanical effort
(e.g. via impedance or position control), and a low-level con-
troller tracks the desired reference trajectories (e.g. feedback
controller) [30]. A representative use case of the hierarchical
controller is intent recognition in conjunction with mid-level
finite-state controllers, where the gait cycle is divided by
distinctive phases, and the transitions between these phases
are based on heuristic rules. Since it is assumed that signals
are stationary within each phase (i.e. identical activity),
recognition-based classification strategies mitigate the time-
varying characteristics of signals during the gait cycle [6].

The latency of our system was below what users may
perceive (300 ms [31]) and within the time window required
to ensure smooth transitions between activities following
the gait events [32]. The latency can be further reduced by
exploiting optimal sensor selection, and microcomputers with
higher processing capabilities. Thus, this work demonstrates
the usability of these techniques in real-time control of
wearable robots.
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