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Abstract— Spine injections are commonly performed in sev-
eral clinical procedures. The localization of the target vertebral
level (i.e. the position of a vertebra in a spine) is typically done
by back palpation or under X-ray guidance, yielding either
higher chances of procedure failure or exposure to ionizing
radiation. Preliminary studies have been conducted in the
literature, suggesting that ultrasound imaging may be a precise
and safe alternative to X-ray for spine level detection. However,
ultrasound data are noisy and complicated to interpret. In this
study, a robotic-ultrasound approach for automatic vertebral
level detection is introduced. The method relies on the fusion
of ultrasound and force data, thus providing both “tactile”
and visual feedback during the procedure, which results in
higher performances in presence of data corruption. A robotic
arm automatically scans the volunteer’s back along the spine
by using force-ultrasound data to locate vertebral levels. The
occurrences of vertebral levels are visible on the force trace as
peaks, which are enhanced by properly controlling the force
applied by the robot on the patient back. Ultrasound data are
processed with a Deep Learning method to extract a 1D signal
modelling the probabilities of having a vertebra at each location
along the spine. Processed force and ultrasound data are
fused using both a non deep learning method and a Temporal
Convolutional Network to compute the locations of the vertebral
levels. The benefits of fusing force and image signals for the
identification of vertebrae locations are showcased through
extensive evaluation.

I. INTRODUCTION

Lumbar spinal injections are commonly performed in
different clinical procedures as facet joint or epidural in-
jections [1], [2]. Such procedures typically require the cor-
rect localization of the target vertebra to effectively release
pharmaceuticals. In clinical practice, vertebral level detection
is achieved either through palpation or X-ray guidance.
Although X-ray guidance can improve the overall precision
of the procedure, the use of ionizing radiation is considered
a hazard for the patient and especially for the clinicians and
assistants. On the other hand, the accuracy of the palpation
technique is lower, especially for less experienced clinicians.
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Furthermore, the incorrect chosen level of injection can
lead to avoidable complications, such as headaches, nerve
damage, and paralysis [3].

Ultrasound (US) has proven to be an alternative to X-
ray, providing precise guidance and preventing patients and
clinicians from unnecessary radiation [4]. Despite being real-
time and non-invasive, ultrasound guidance is particularly
challenging in spine procedures due to artifacts and noise
caused by the curvature of the spinal bones and the layer of
soft tissue covering the spine. To address these issues, various
authors have proposed to use image processing techniques to
support the clinician in the detection of vertebral levels.

In [5] a method is proposed to automatically classify
images acquired during manual ultrasound-guided epidural
injections. In this work, a Convolutional Neural Network
(CNN) is used to classify the acquired images as either
“vertebra” or “intervertebral gap” and State Machine is
implemented to refine the results. In [6] and [7] panorama
image stitching is used to obtain a 2-Dimentional (2D)
representation of vertebral laminas along the spine in the
paramedian-sagittal plane. In [6] a set of filters are applied to
the panorama image to enhance bony structures. Local min-
imums in the resulting pattern are extracted and labelled as
vertebrae. In [7] the identification of vertebrae is performed
on the panorama image using a template matching approach.

The aforementioned methods provide support tools for
the interpretation of ultrasound data during manual injection
procedures. However, they still rely on the operator’s skills
to manually find correspondence between ultrasound images
and patient anatomy. Few studies have been conducted to
evaluate the potential of robots integration in the clinical
environment for injection procedures. In [8], a robotic-
ultrasound system for precise needle placement is described
in an initial clinical study. In this study, a robotic system
with a calibrated ultrasound probe is used to scan the patient
back. The acquired US volume is then used by the operator to
select the needle insertion path. The manipulator, equipped
with a calibrated needle holder, moves to the desired in-
sertion point to offer visual guidance during the insertion.
Although showing promising results, these systems still rely
on the operator in the interpretation of ultrasound images.
Furthermore, they do not provide any tactile feedback, which,
for the standard procedure, is given by palpation.

The contribution of this work is a robotic-ultrasound
approach combining force and ultrasound data for automatic
lumbar vertebral level classification in the spine. The target
spinal region is the lumbar region (i.e. vertebrae levels
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(a) (b)

Fig. 1: a) The Robotic Ultrasound System for Vertebral Level Classification Setup. b) The Robot end-effector configuration: 1 - Robotic arm, 2 - External
force sensor, 3 - Ultrasound linear probe + 3D printed probe holder.

TABLE I: DATASET TABLE WITH CORRESPONDENT SIZE, DATA AND SENSOR SETTINGS

Dataset N. Subjects Acquired Data Probe Orientation US Parameters Applied Force [N] Robot Speed [mm/s]

Dataset 1 19 B-Mode Linear US Transverse Depth = 4cm 2 20

Dataset 2 14 B-Mode Linear US
Force Data Transverse Depth = 4cm [2, 10, 15] [12, 20, 40]

Dataset 3 19 B-Mode Convex US Paramedian-Sagittal Depth = 7cm 2 5

from L5 to L1), where spinal injections commonly take
place. Force feedback reproduces the tactile information the
operator can get through palpation while ultrasound images
provide continuous visual feedback during the procedure.
Compared to the previously presented methods for vertebrae
level classification, the proposed approach combines the ben-
efits of both robotics and standard procedures. Furthermore,
it does not only rely on visual feedback, but it exploits
multiple sensors information. It is demonstrated that fusing
ultrasound and force data ensures higher performances in the
presence of data corruption and single-sensor misclassifica-
tions. The potential of the proposed approach is explored for
an example application, i.e. automatic target plane detection
for facet injection procedures.

II. METHODS

A. Materials and Experimental Setup

The robotic ultrasound system setup is presented in Fig.
1a. The system consists of a main workstation (Intel i7,
GeForce GTX 1050 Mobile), a robotic arm certified for
human interaction (KUKA LBR iiwa 7 R800) combined
with a Six-Axis Force/Torque Sensor System FTD-GAMMA
(SCHUNK GmbH & Co. KG) and a Zonare z.one ultra sp
Convertible Ultrasound System with an L8-3 linear probe,
with purely linear and steered trapezoidal imaging (Fig. 1b).
The ultrasound system is connected to the main workstation
through an Epiphan DVI2USB 3.0 frame-grabber (Epiphan
Systems Inc. Palo Alto, California, USA), with an 800x600

resolution and a sampling frequency of 30 fps. Deep Learn-
ing models were trained on an NVIDIA Titan V 12 GB
HBM2, using Pythorch 1.1.0 as Deep Learning framework
for both training and inference. ImFusion Suite Version 2.9.4
(ImFusion GmbH, Munich, Germany) is used for basic image
processing and visualization.

Three different datasets were used for training of Deep
Learning models and testing. The datasets were acquired for
different subjects with different ultrasound (constant Gain =
92%, Frequency = 14 Hz), robot force and speed settings.
The acquisition was performed in the lumbar region, from L5
to L1. The Body Mass Index (BMI) of the scanned subject
is in the range 20-30 for all the 3 databases. The dataset
size and acquisition parameters are reported for the three
datasets in Table I. Two ultrasound experts manually labeled
ultrasound data independently. All the ultrasound sweeps
where the number of labeled vertebral levels did not coincide
between the annotators were discarded.

In Fig. 2 a flowchart of the method is shown. In Sec. II-
B, II-C, II-D and II-E a detailed description of each pipeline
step is provided.

B. Scanning Procedure

Before starting the procedure, the robotic arm is manually
placed at the base of the sacrum with a transverse probe
orientation. After probe placement, the robot starts moving
in the caudo-cranial direction towards the subject’s head,
while force and ultrasound data are simultaneously collected



Fig. 2: The method pipeline, including force data extraction, ultrasound data processing and the fusion method.

(a) Data acquisition with a
probe in transverse orienta-
tion and the respective ultra-
sound image of the spinous
process.

(b) Data acquisition with the
probe in paramedian sagittal
orientation and the respec-
tive ultrasound image of the
facet joint.

Fig. 3: Robot Trajectory during the procedure (arrows), target anatomies
(dash line) and corresponding ultrasound images of acquired anatomies with
planes of scanning (blue line).

(Fig. 3a, black arrow). The subjects are asked to hold their
breath for the whole duration of the scan (around 10 sec.),
which is comparable to the breath-hold time of standard
imaging procedures, as abdominal MRI or PET/CT [9], [10].
Once the scan is completed, the collected data are processed,
to provide the location of the vertebral level at which the
injection must be performed (Fig. 3a, red cross).

Depending on the clinical application, further data can
be acquired of the target vertebral level, to identify specific
anatomical features. For the explored example application
(i.e. automatic facet plane detection for facet joint injections),

(a) (b)

Fig. 4: (a) The modelled interaction between robot and patient back during
the robotic scanning procedure. (b) Z component (red) and Y component
(blue) of the force signal recorded over a single vertebra.

a further scan of the target vertebral level is performed in the
latero-lateral direction with the probe in paramedian-sagittal
orientation (Fig. 3b). The facet plane is identified within the
scan so that the robot can then move to the plane position.

C. Force Data Extraction

In Fig. 4a, a model of the vertebra-robot interaction is
provided. In absence of vertebrae, the robot moves on a
surface (the patient back) which can be considered flat. The
reaction force is directed along the z-axis and its modulus
balances the force applied by the robot, which is constant
and set prior to the acquisition (Point A). In correspondence
to a vertebra, the local direction of the subject back changes
yielding to the generation of a non-null y-axis component
of the reaction force (point B). Once the vertebral peak has
been reached (point C), the inclination of the plane changes
again (point D) leading to the generation of non-null y-
component of the reaction force, with an opposite sign with
respect to point B. When the original surface direction is
recovered, the y-component of the reaction force vanishes
and the initial force value is recovered. The variations in the
force y-component due to reaction forces are recorded by the
force sensor and result in a very characteristic pattern in the
force trace (Fig. 4b). This pattern can be used to count the
vertebral levels while the patient back is scanned. In Fig. 4b,
a plot of the y-component of the force signal is provided, in
relation to the points A, B and C.



Fig. 5: The force signal recorded in the y-axis with 3 different values (2, 10
and 15 N) of the z-force applied by the robot for subjects with BMI < 23
(left) and for subjects with BMI > 23 (right).

The recorded force in the y-direction (Fy) is pre-processed
to remove the low-frequency drift, appearing due to the
robot initial and final acceleration/deceleration. Drift removal
is done by subtracting from the original signal its filtered
version obtained applying a second-order Butterworth filter
with cutoff frequency at 0.05 Hz. The “un-drifted” signal is
then low pass-filtered with a second-order Butterworth filter
with cutoff frequency at 0.3 Hz, normalized between 0 and
1 and re-sampled in equally spaced space-grid.

As mentioned above, the force applied by the robot along
the z-direction (FRo,z) is constant and manually set before
the acquisition takes place. The robot complies to the Force
Control Scheme as described in [11].

Control over z-axis is also designed to compensate residual
breathing motions, which main component is along the z-
axis.

The value of the force z-component has a notable impact
on the quality of the force signal recorded along the y-axis
(Fy) and on the visibility of vertebral patterns. In particular,
higher values of FRo,z lead to more visible and defined
vertebral spikes. However, high values of FRo,z also result
in less comfort for the subjects, especially for those with a
thin muscle/fat layer. In this study, the quality of the force
signal recorded along the spine direction is evaluated for
three different values of FRo,z on a group of 14 subjects with
BMI ranging from 20 to 30 (Dataset 2). The selected force
values are comparable to those which are used in clinical
experimentation [8]. Each subject was asked to report the
comfort level of the procedure on a scale ranging from 1 to
4, designed in the following way: 1 - very uncomfortable, 2
- uncomfortable, 3 - slightly uncomfortable, 4 - comfortable.

For none of the subject, the procedure resulted to be “very
uncomfortable” or “uncomfortable”. However, subjects with
lower BMI tended to rate the procedure performed with
Fz = 15N as slightly uncomfortable.

For this reason, the force applied by the robot along the z-
axis is set to 10N for subjects with lower BMI (BMI < 23)
and to 15N for subjects with higher BMI (BMI > 23). In
Fig. 5, the force signals are reported for 3 different values
of Fz (i.e. 2N, 10N, 15N ) for two subjects with different
BMI. For both subjects, the amplitude of the spikes in the
force trace increases with increasing force. However, for

the subject with lower BMI, the spikes are still clearly
recognizable in the signals obtained with lower pressures
along the z-direction.

D. Ultrasound Data Processing

The informative component of the force signal (along
y-axis Fy) is a 1D signal providing spatial information
about the spine anatomy along the spine direction. However,
ultrasound data are 3D data, where each position along the
spine corresponds to a 2D (B-mode) ultrasound frame. To
be able to effectively compare the information from the
two sensors, ultrasound data are reduced to a 1D vector,
defined along the spine direction. The dimension reduction is
achieved by analyzing each ultrasound frame in the acquired
sweeps and defining the probability for each of them to
contain a vertebra.

Therefore the problem is designed as a binary classifica-
tion problem in which the network learns to classify each
frame along the spine as either “vertebra” or “intervertebral
gap”. The concatenation of the resulting values along the
spine direction is a 1D signal where high probability peaks
ideally coincide with vertebrae and therefore corresponds to
peaks in the force signal.

The vertebra probability value is extracted from each
frame using a Convolutional Neural Network trained for the
task of classification. In order to ensure the best classification
results, three state of the art classification networks were
tested and compared: ResNet18 [12], DenseNet121 [13],
VGG11 with batch normalization [14]. The training and
validation performances were evaluated for all the archi-
tectures in the following cases: a) Training the network
with randomly initialized weights; b) Using ImageNet [15]
weights as initialization (pre-trained network) and fine-tuning
all layers; c) Using ImageNet weights as initialization and
fine-tuning the last layer only. Each model was trained using
Adam optimizer, Cross-entropy loss function, learning rate
of 0.0005 and a learning rate decay of 0.1 every 5 epochs
for 30 epochs. The data for CNN training and testing were
sampled from the Dataset 1.

Labels are represented as boolean values, where 1 cor-
responds to “vertebra” and 0 to “intervertebral gap”. The
training dataset consisted of 15 subjects (12 for training and
3 for validation), for a total of 1986 images for each class to
ensure class balance. The test set consisted of 4 subjects, for
a total of 696 images for each class. A 5-fold cross-validation
study was performed over the training and validation datasets
to exclude false-positive results. The obtained 1D signal is
smoothed using a second-order Butterworth filter with cutoff
frequency at 0.3 Hz and re-sampled in equally spaced space-
grid.

E. Force - Ultrasound Data Fusion

The extracted and pre-processed force and ultrasound 1D
signals represent variations of the inner/outer spine anatomy
along the spine direction. In optimal conditions, both signals
present well visible peaks in correspondence with vertebral
levels (Fig. 6a). However, in some cases one (or both) signals
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Fig. 6: (a) Force signal, Ultrasound signal and labels in the presence of non-corrupted force and ultrasound data. (b) Force signal, Ultrasound signal and
labels in the presence of noisy ultrasound data. (c) Force signal, Ultrasound signal and labels in presence of noisy force signal.

may be corrupted by noise, making it challenging to identify
the real position of the vertebral levels. Noise in the signal
extracted from the ultrasound data typically arises from the
scarce visibility of the spinous process in the ultrasound
sweep (Fig. 6b). This can be related to several factors as
device-specific noise, non-optimal couplings between the
probe and the patient skin or subject-specific anatomy and
tissue distribution. Noise in the force signal may arise from
sudden movements of the subject during the acquisition,
or from subject-specific anatomical features (e.g. vertebral
peaks may be less evident in particularly muscular subjects)
(Fig. 6c). Labels for ground truth images were generated
by manually labeling each image as one of the classes (L1
to L5). To make the method more robust against single-
sensor misclassifications, a force-ultrasound fusion method
was implemented. In particular, a Temporal Convolutional
Network (TCN) was trained to classify vertebral levels from
the input signals. The vertebral level counting problem is
modelled as a classification problem, where the network is
trained to classify each vertebral level in the lumbar region.

A multi-stage temporal convolutional network is devised
based on [16], where the overall architecture consists of three
stages and each stage is trained to classify the input data.
Each stage refines the results from previous stages, yielding
smoother and more accurate classification results. Each stage
consists of an initial 1x1 convolution layer which re-sizes
the input into a 32 x N sequence, where N is the original
signal length (number of samples along the spine direction).
The initial layer is followed by 9 1xD dilated convolution
layers with kernel size 3 and increasing dilation size (Fig.
7). Dilated convolution is defined as:

(F ∗l k)t =
∑

s+lt=p

F (S)k(t) (1)

where F is the input signal, k is the filter kernel and l
is the dilation factor. It can be seen from the formula that,
compared to standard convolution, the result at each point of
the convoluted signal is obtained considering a larger spatial
field in the input signal, therefore allowing the network to
exploit a broader spatial context for the input’s classification.
A softmax layer is added after the last convolution layer, to

Fig. 7: The architecture of the single stage of the 1D convolutional network
for data fusion.

retrieve class probabilities (Fig. 7). The cross-entropy and
an additional smoothing factor are used as the loss function
for network training, as described in [16]. The convolutional
network for force and ultrasound fusion was trained using
Adam optimizer, learning rate of 0.0005 and batch size 1
for 110 epochs. The data for network training and testing
were sampled from Dataset 2. The training dataset consisted
of multiple sweeps acquired over 9 subjects (7 for training
and 2 for validation) sampled from Dataset 2, for a total of
27 sequences for training and 7 for validation. The test set
consists of 4 unseen subjects, acquired with the optimal robot
parameters (force equal to 10N or 15N depending on subject
BMI and robot speed equals to 20 mm/s). The test subjects
were excluded from network training and validation, to avoid
positive results related to network overfitting on the training
dataset. No data acquired on any of the test subjects were
used for model training at any step of the pipeline, ensuring
the test set was unseen at test time as well as test subjects
anatomy.

III. RESULTS AND DISCUSSION

1) Ultrasound Data Processing: In Table, II the test
accuracy is reported for each CNN architecture (ResNet18,
DenseNet121, VGG11) for the 3 training cases (a - training
entire network with randomly initialized weights; b - using a
pre-trained network with ImageNet weights as initialization



TABLE II: RESULTS OF 5-FOLDS CROSS-VALIDATION STUDY FOR
VARIOUS MODELS WITH DIFFERENT TRAINING MODES.

ResNet18 DenseNet121 VGG11

Case a 0.817± 0.118 0.878± 0.047 0.635± 0.15
Case b 0.929± 0.006 0.89± 0.014 0.878± 0.055
Case c 0.6± 0.02 0.577± 0.006 0.63± 0.03

TABLE III: CONFUSION MATRIX FOR THE BEST MODEL PERFOR-
MANCE EVALUATED ON THE TEST SET OF 4 SUBJECTS.

Predicted
n = 1392 Vertebra Intervertebral Gap

Actual Vetrebra True Positive
0.459 (n = 640)

False Negative
0.04 (n = 56)

Intervertebral Gap False Positive
0.02 (n = 30)

True Negative
0.478 (n = 666)

and fine-tune all layers; c - training only the last layer of the
network). The best accuracy on the test set is obtained by
fine-tuning all the layers of ResNet18 from the pre-trained
model, providing an average accuracy of 0.929± 0.006. The
ResNet18 model with the best performance was tested on a
testing database of 4 subjects, yielding an overall accuracy
of 0.938. The confusion matrix computed on the test data
is displayed in Table III. The values are normalized by the
total number of frames, the number of images n = 1392, the
correspondent number of frames is shown in the parenthesis.

2) Force-Ultrasound Data Fusion: The performances of
the force-ultrasound data fusion method were evaluated in
terms of its capability to correctly label each vertebral level.
The test group consists of 5 (unseen) subjects, for a total of
25 vertebral levels.

The TCN results were evaluated in the following condi-
tions: using the pure force, the pure image and both force
and image signals as input. The performance of the TCN for
vertebral level counting was compared with a conventional
peak detector (CPD). For the peak detector, the parameters
were empirically chosen on the training set and were constant
across all of the experiments (amplitude threshold 0.5, the
minimum distance between peaks - 10 samples). The fusion
input signal for the peak detector was obtained as the sum
of force and ultrasound input signals.

Table IV reports the counting results in terms of detection
accuracy and distance from the ground truth for all methods.
A vertebral level classification is here considered successful
if an overlap higher than 0.5 exists between labels and
predictions, similarly as in [5]. Given the small training data
set, the results of the 5-fold cross-validation study for all
TCN methods are reported in Table IV. The test subjects
were divided into three groups according to their height:
i) below average (< 163cm), ii) average (163cm < − <
183cm), iii) above average (> 183cm) The threshold values
were chosen according to the training set height distribution
(173 ± 10cm). It can be noticed that the TCN methods

outperform the peak detector for all of the input signals
for subjects with average height, and outperforms the peak
detector method when using pure force and pure image as
input signals, for all of the height categories. This superiority
could be attributed to the capability of the TCN to learn
an anatomical prior based on the training data and hence
compensate for missing or corrupted peaks in the input
signals. This characteristic of TCN is relevant when using
the pure force signal as input, where the first vertebral peak
is often non well visible, due to both L5 anatomy (on average
smaller and less prominent than the other lumbar vertebrae)
and to the noise introduced by the acceleration of the robot
at movement initiation. This leads to a shift in the vertebral
level classification when using a peak detector on the force
signal (Fig. 8).

When using a TCN, the pure image and fusion meth-
ods perform similarly. The slight difference between these
methods could be attributed to the labeling process, which
is performed on ultrasound data and not on the force signal.
During labeling all the cases where the spinous processes
were not visible were discarded because they did not pass
the double-blind labeling process. This approach introduces a
bias toward the pure-image based TCN, which can, therefore,
be considered in this case the upper bound in terms of
accuracy for TCN-based vertebral level classification.

The peak detector applied to the fusion signal outperforms
the TCN fusion method for subjects above and below the
average height. This can be explained by the limited size
and variability of the training set (9 subjects). Nevertheless,
the capacity of the TCN can be further improved with
the acquisition of a more extensive data set with higher
variability in terms of spine anatomy. Furthermore, compared
to the peak detector method, the TCN does not rely on
empirical parameter setting. In terms of the distance between
ground truth and detected vertebral levels, the pure image and
fusion methods perform similarly and marginally better than
the pure force method. Compared to the peak detector, the
distance errors of the TCN are more consistent, according to
the reported standard deviation.

In Fig. 8 the results for all the analyzed methods are
reported for one of the test subjects (Height: 186 cm). It
can be seen that the peak detector on the pure image signal
is only able to detect L5 and L4. As for most of the subjects,
the peak detector on the pure force signal cannot correctly
detect L5, which leads to an offset in the classification of all
the remaining vertebrae. This offset is corrected by the TCN,
which can correctly classify the first vertebral level. The peak
detector on the fusion signal also successfully integrate the
information from the two signals and correctly classifies all
the vertebral levels.

In Fig. 8 the results for Subject 2 (Height: 172 cm) for the
three methods are shown in the presence of noisy ultrasound
data. In this example it can be noticed that the TCN is able
to compensate both for the first missing peak (L5) in the
force signal and for the spurious peak in the image signal
(L1).



Fig. 8: The predicted (red line) and ground-truth (black line) vertebral levels for pure force-based, pure ultrasound-based and force-ultrasound fusion both
when using a peak detector and a tcn. Subject 1 with anatomical characteristics non well-represented in the tcn training set (Subject Gender: Male, BMI:
30, Height: 186 cm). Subject 2 with anatomical characteristics well-represented in the tcn training set (Subject Gender: Female, BMI: 22, Height: 172 cm).

TABLE IV: THE CLASSIFICATION PERFORMANCES AND DIS-
TANCE FROM THE GROUND TRUTH VERTEBRAE POSITION FOR
ALL TESTED METHODS. FOR THE TCN METHODS THE RESULTS
ARE REPORTED AS MEAN (STD) FOR THE 5-FOLD CROSS VALI-
DATION.

Correctly Classified
Levels [num/total]

Distance from
Ground Truth Label [mm]

Below Average Above Overall Below Average Above Overall

Image 0.4 0.73 1.0 0.72 27.359
(26.9)

9.85
(14.0)

3.079
(1.96)

9.74
(15.95)

Force 0.2 0 0 0.04 20.01
(9.779)

37.58
(7.10)

30.7
(3.70)

32.09
(10.3)CPD

Fusion 1.0 0.933 1.0 0.96 2.495
(3.2)

2.357
(1.8)

2.386
(2.196)

2.39
(2.23)

Image 0.48
(0.09)

1.0
(0.0)

0.68
(0.097)

0.832
(0.03)

10.93
(0.90)

3.7
(1.17)

8.224
(1.20)

6.05
(0.735)

Force 0.439
(0.079)

0.92
(0.06)

0.72
(0.16)

0.784
(0.04)

14.74
(2.8)

6.18
(1.79)

8.88
(1.46)

8.43
(1.02)TCN

Fusion 0.439
(0.149)

1.0
(0.0)

0.6
(0.0)

0.808
(0.03)

12.64
(1.6)

3.76
(0.99)

8.72
(0.70)

6.52
(0.5)

3) The potential application: The performances of the
presented method were tested for an example application,
i.e. automatic target plane selection for facet injection pro-
cedures. The facet injection procedure is performed to deliver
anaesthetics at the level of facet joints, i.e. the anatomical
structures connecting consecutive vertebrae (Fig. 3b). Using
the proposed vertebral level classification method, the correct
vertebral level can be selected, and a sweep can be taken
at the correct level with the probe in a paramedian sagittal
orientation, to identify the target injection plane.

The method for facet plane identification is similar to the
one presented in [17]. Each frame in the sweep is classified
as either “facet” or “non-facet” plane and the two frames with
the highest probability in the sweep are labelled as right and

left facet planes. The labels are represented as boolean values
where 1 corresponds to “facet” and 0 to “non-facet” plane.
The plane classification task is performed using ResNet18,

given its high performances in the ultrasound classification
task (Sec. III-.1). The model was pre-trained on ImageNet
and fine-tuned on a training set sampled from Dataset 3.
The spatial errors between identified facet joint planes and
labelled planes were calculated on 4 test subjects sampled
from Dataset 3, which consisted of 20 vertebrae sweeps (5
vertebrae for each subject), each containing two facet joints,
resulting in 40 facet joints in total. For 37 facet joints out
of 40, the mean distance error between the detected and
manually labelled facet planes is 2.08±2.63 mm. According
to [18] an error below 5 mm leads to an effective anaesthetic
result for the facet joint injections. For the rest 3 facet joints
out of 40, the error is 8.43±8.98 mm since the CNN output
resulted to be less precise, due to the poor image quality.

IV. CONCLUSION

Currently, clinical routine spine injections procedures
completely rely on the expertise of the surgeon, both to
ensure the accuracy of the procedure and to limit the expo-
sure time to the ionizing radiation. In this study, a robotic-
ultrasound method for vertebral level detection and counting
was developed for spine injection procedures. To the best
of our knowledge, it is the first robotic system integrating
visual and force feedback for vertebra level classification.

The current work shows that the fusion of force and ultra-
sound data is effective for vertebral level counting compared
to only using ultrasound or force data separately. The use
of a TCN network was explored and compared with a peak



detector method. The TCN showed improved performance in
both force and image methods, which highlights the ability
of the TCN to learn not only the peaks in the input signal
but also an anatomical prior on the positions of vertebral
levels. This is highly beneficial in the case of missing or
corrupted peaks in the input signal, where the network can
use the anatomical prior to compensating for the missing
information.

Nevertheless, this may cause misclassification for subjects
where the spine anatomy is significantly different from
those in the training dataset. However, the best detection
performances across all methods were obtained with the
fused input, proving that the combination of force and image
is beneficial for vertebral level counting.

The method was tested on a group of healthy volunteers,
chosen to maximize the inter-subject variability in terms of
gender and BMI. The detection accuracy is reported for a
group of healthy volunteers. However, the appearance of
the spine in the US images of pathological patients might
not be as clear as in healthy subjects. Therefore, further
clinical studies should be conducted to evaluate the method
accuracy on real patients, in more challenging scenarios.
The robotic procedure can be used for most of the patients
undergoing facet joint injections. However, for patients with
pathologies as, spondylolisthesis or tumour the usage of the
robotic system is not advisable. In principle, there is no
contraindication for hernia patients, although lying in a prone
position might not be comfortable enough. It is anyways ad-
visable to test both the position and the force on the patient’s
back prior to the procedure, to ensure the patient’s comfort.
Despite the promising results of the presented system, further
steps are to be taken for the deployment of the system
in a clinical environment. The initial position of the probe
should be automatized to avoid any misplacement, e.g. by
integrating the proposed system with methods for automatic
sacrum localization as in [19]. Furthermore, to account for
the curvature of the spine in medical conditions as scoliosis,
the spinous process tracking during the procedure might be
enabled. In fact, in these conditions, the spine might fall out
of the field of view of the probe. Tracking could be improved
by using, for example, landmark localization algorithms to
center the robot on the spine. Enabling tracking of the
spine potentially extends the application of the system to
another clinical scenario as scoliosis assessment. Curvature
reconstruction using robotic ultrasound systems was already
explored in the literature [20] and might benefit from the
proposed vertebrae level counting and additional tracking.
The final step to be explored toward fully automatic injection
procedures is the automation of the target point localization
as well as of the mechanical injection itself. Despite further
steps are to be taken for the deployment of the system in
a clinical environment, this work opens the path for future
exploration toward fully automatic injection procedures.
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