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Abstract— This paper focuses on the design and comparison
of different deep neural networks for the real-time prediction of
locomotor intentions by using data from inertial measurement
units. The deep neural network architectures are convolutional
neural networks, recurrent neural networks, and convolutional
recurrent neural networks. The input to the architectures
are features in the time domain, which have been derived
either from one inertial measurement unit placed on the upper
right leg of ten healthy subjects, or two inertial measurement
units placed on both the upper and lower right leg of ten
healthy subjects. The study shows that a WaveNet, i.e., a
full convolutional neural network, achieves a peak F1-score of
87.17% in the case of one IMU, and a peak of 97.88% in the
case of two IMUs, with a 5-fold cross-validation.

I. INTRODUCTION

The accurate prediction of locomotor intention is a funda-
mental step towards the achievement of the intuitive control
of lower limbs prostheses. To avoid discomfort in the use of
the prosthetic leg, to reduce the user’s cognitive load, and to
guarantee safety, the locomotor intention should be predicted
and converted to the correct control mode within 300 ms [1].

Inertial measurement units (IMUs) have been used for the
prediction of locomotion modes and as the control input
for lower limb powered prostheses [2]. To translate the
information contained in the IMUs signals into a locomotion
mode, a number of data analysis and machine learning tech-
niques have been proposed that are able to recognize patterns
in the IMUs signals in real-time. Specifically, the existing
IMU pattern recognition approaches can be divided into two
categories, i.e., methods based on feature engineering [3]
and methods based on feature learning [4], with either hand-
crafted input data or raw input data.

For feature engineering, methods have been studied for
locomotion mode recognition and locomotion intent predic-
tion. Figueiredo et al. used hand-crafted features from several
IMUs, and compared different supervised machine learning
classifiers, i.e., discriminant analysis, k-nearest neighbors
algorithm, random forest, support-vector machine, and mul-
tilayer perceptron [5]. Other research has focussed on the use
of hand-crafted features from IMUs and mechanical sensors’
data [6], IMUs and force sensors’ data [7], [8], IMU and
pressure sensors’ data [9], to name few.

IMU features learning, by means of deep learning meth-
ods, has also been recently used for locomotion mode
recognition and locomotion intent prediction. For example,
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deep belief networks have been used in combination with the
spectrogram of one accelerometer sensor [10], Convolutional
Neural Networks (CNNs) with one IMU on the foot [11],
[12], CNN with several IMUs placed at different locations on
the lower-limbs and torso [13], [14], [15], Recurrent Neural
Network (RNN) with one IMU on the lower back [16].

This paper focuses on the real-time prediction of locomo-
tor intentions by means of deep neural networks by using
data from IMUs. Nine different artificial neural network
architectures, based on CNNs, RNNs, and Convolutional
Recurrent Neural Networks (CRNNs), are designed and
compared. The inputs to the architectures are features in the
time domain, which have been obtained from either one IMU
(placed on the upper right leg of ten healthy subjects) or
two IMUs (placed on both the upper and lower right leg
of ten healthy subjects). Specifically, the inputs are IMU
raw data (i.e., angular accelerations and angular velocities,
obtained from 3-axis accelerometers and 3-axis gyroscopes)
and quaternions (i.e., the attitude of the upper and/or lower
leg, estimated from the IMU raw data). The task concerns the
prediction of seven locomotion actions, i.e., sitting, standing,
ground-level walking, ramp ascent and descent, stair ascent
and descent. The study shows that a WaveNet, i.e., a full
CNN, achieves an average F1-score of 83.0% (with standard
deviation of 0.052) in the case of one IMU, and an average
F1-score of 95.58% (with standard deviation of 0.05) in the
case of two IMUs, with a 5-fold cross-validation. Moreover,
the WaveNet achieves a peak F1-score of 87.17% in the case
of one IMU, and a peak of 97.88% in the case of two IMUs,
with a 5-fold cross-validation.

The remainder of the paper is organized as follows. In
Section II, the materials and methods for the prediction of the
locomotor intention are described. In Section III, the results
of the study are presented and discussed. Finally, concluding
remarks are drawn in Section IV.

II. MATERIALS AND METHODS

This Section presents the design of nine different deep
neural networks architectures for the real-time prediction of
seven locomotor actions, based on the raw data collected
either from one IMU sensor (placed on the upper right leg
of ten healthy subjects) or from two IMUs (placed on the
upper and lower right leg of ten healthy subjects).

A. Data-set

The data used in this study is the Encyclopedia of
Able-bodied Bilateral Lower Limb Locomotor Signals (EN-
ABL3S) public data-set [17]. The data have been collected
on ten healthy subjects, i.e., seven males and three females,
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with an average age of 25.5±2 years, height of 174±12 cm,
and weight of 70±14 kg. From the ENABL3S data-set, this
study only uses the data from the two IMUs on the upper
and lower right leg. The IMU raw data are sampled with a
sampling frequency of 500 Hz.

The locomotion actions that need to be predicted are S:
Sitting, St: Standing, LW: Ground Level Walking, RA: Ramp
Ascent, RD: Ramp Descent, SA: Stair Ascent, SD: Stair
Descent. During the recording, each subject performed the
same locomotion actions in the same order, i.e., the odd
circuit is: S→ St→ LW→ SA→ LW→ RD→ LW→ St
→ S; the even circuit is: S → St → LW → RA → LW →
SD → LW → St → S. The odd circuit includes stair ascent
and ramp descent, the even circuit includes ramp ascent and
stair descent. The stairs consist of four steps and the ramps
have slopes of 10◦. By using a key-fob, the data labeling is
done on the true locomotor intention.

B. Input

1) Features: The inputs to the deep neural networks are
extracted from the IMUs. Specifically, two different scenarios
are compared: (i) one IMU on the upper right leg; (ii) two
IMUs, one on the upper right leg and one on the lower right
leg. The features used in this study are the raw IMU data
(i.e., rotational accelerations and rotational velocities of the
upper and/or lower leg, respectively obtained from 3-axis
accelerometers and a 3-axis gyroscopes) and the quaternions
(i.e., the attitude of the upper and/or lower right leg). To
estimate the quaternions, the filter proposed in [18], with the
implementation presented in [19], has been used. The choice
of these input data is inspired by [20].

2) Sample Generation: The original IMU data are sam-
pled with a frequency of 500 Hz, i.e., each data frame is
available every 2 ms. For each healthy subject, 10 adjacent
data frames are sequentially concatenated in one sample
using a sliding window (with stride equal to 3) method.

3) Scaling: The data have been standardized within each
sample, by centering to the mean and by scaling element-
wise to the unit variance.

4) Data Partitioning: The data-set has been divided as
follows: 80% for training and 20% for testing. Within the
training set, 10% was also used for validation. This was done
to prevent overfitting of the neural networks on the data.

5) Categorize: The locomotion actions have been catego-
rized, i.e., they have been encoded into a one-hot matrix.

C. Output

The output of the neural networks has dimension equal to
seven, i.e., the number of locomotor actions to be predicted
(sitting, standing, ground-level walking, ramp ascent and
descent, stair ascent and descent).

D. Deep Neural Networks Architectures

Nine deep neural network architectures are designed and
compared in this study, and are further described in the
following subsections. Specifically, the different architectures
are based on CNNs, RNNs and CRNNs.

1) CNNs: Three different CNN architectures (i.e.,
CNN1D, CNN2D, and WaveNet) have been designed.

Figure 1 shows the CNN1D and the CNN2D, which both
consist of six hidden layers, i.e., two convolution layers,
two max-pooling layers, and two dense layers. Figure 1
(left) shows the CNN1D architecture. The input is an array
of 10 rows (i.e., the frames) and num features rows. The
direction of the convolutional operation is frame-wise, i.e.,
the convolutional kernel (filter) moves from up to down.
The first layer is a convolutional 1D layer, consists of 32
filters, and the length of each kernel is 3. To overcome
the numerical problems related to the non-linear threshold
functions, a rectified linear unit, i.e., a linear activation
function, is used [21]. The next layer is a max-pooling layer,
with pooling length of 2. Then, a convolutional 1D layer
with 64 filters and kernel length of 3 follows, and the same
max-pooling layer follows again. Then, a dense layer with
50 units follows, with 0.25 dropout parameters. Finally, the
output layer is a dense layer with 7 units (i.e., num class) and
with a softmax activation function. Figure 1 (right) shows the
CNN2D architecture. It is similar to the CNN1D architecture.
The most significant difference is that the convolution kernels
of the CNN2D slide both row-wise and column-wise. The
size of the CNN2D kernel is 3× 3, and the size of the max-
pooling is 2× 2.

input
(10 frames * num_feature)

Conv1D, ReLU
(32 filters, size = 3)

MaxPool1D
(size = 2)

MaxPool1D
(size = 2)

Conv1D
(64 filters, size = 3)

Dense (50 units), Dropout,0.25

Dense, Softmax
(num_class)

output

input
(10 frames * num_feature)

Conv2D, ReLU
(32 filters, size = 3*3)

MaxPool2D
(size = 2*2)

MaxPool2D
(size = 2*2)

Conv2D, ReLU
(64 filters, size = 3*3)

Dense (50 units), Dropout,0.25

Dense, Softmax
(num_class)

output

Fig. 1: CNN1D (left) and CNN2D (right) architectures. Both CNN archi-
tectures consist of six hidden layers, including two convolution layers, two
max-pooling layers, and two dense layers.

Figure 2 shows the WaveNet, i.e., a full CNN, which
consists of three convolutional layers. The input is processed
by a causal convolutional layer (with 64 filters and filter size
3), then the current output goes through two ways. In the first
way, the output goes through a dilated convolutional layer
(with 64 filters and filter size 3), to a dot multiplication of
the two tanh and sigmoid, and then to the current output
layer. In the second way, the output skips the dilated layer
and connects to the current output layer directly, sums up
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Fig. 2: The WaveNet architecture consists of three convolutional layers.

with the skipped element, and goes to the second layer. A
rectified linear unit and a softmax function calculate the final
output. The WaveNet architecture proposed in this study is
inspired by [22], with the main difference that the WaveNet
is used for locomotor intention prediction instead of being a
deep generative model of raw audio waveforms.

2) RNNs: Two different RNN architectures have been
designed as shown in Figure 3, and they both consists of four
hidden layers i.e., two recurrent layers, which can be either
long short-term memory (LSTMs) [23] or gated recurrent
units (GRUs) [24], and two dense layers.

As shown in Figure 3, the input is a sequence of 10 frames.
The first layer consists of 30 LSTMs (or GRUs) networks,
and the next layer is identical. Then, a dense layer with
50 units follows, with 0.25 dropout parameters. Finally, the
output layer is a dense layer with 7 units (i.e., num class) and
with a softmax activation function. The RNN architectures
proposed in this study are inspired by [16], with the main
difference that the RNN is used for locomotor intention
prediction instead of gait analysis. Moreover, we investigate
both LSTM and GRU networks.

input
(10 frames * num_feature)

LSTM/GRU
(30 units)

LSTM/GRU
(30 units)

Dense (50 units), Dropout,0.25

Dense, Softmax
(num_class)

output

Fig. 3: RNN (either LSTM or GRU) architectures. Both RNN architectures
consist of four hidden layers, including two recurrent layers (LSTMs or
GRUs) and two dense layers.

3) CRNNs: Four different CRNN architectures have been
designed as shown in Figure 3, and they both consists of eight
hidden layers, i.e., two convolution layers (either CNN1D or

CNN2D), two recurrent layers (either LSTM or GRUs), two
max-pooling layers, and two dense layers.

Figure 4 (left) shows the CNN1DLSTM (or CNN1DGRU)
architectures, in which the first four layers are the same as in
the CNN1D. Then there are two LSTMs (or GRUs), each one
with 30 units. A dense layer with 50 units follows, with 0.25
dropout parameters. The output layer is a dense layer with
7 units (i.e., num class) with a softmax activation function.

Figure 4 (right) shows the CNN2DLSTM (or
CNN2DGRU) architectures. The main difference is
that, since the interface of the CNN2D and the LSTMs
(or GRUs) are not directly compatible, the output of the
CNN2D needs to be wrapped together with the time-step to
be fed to the LSTM (or GRU). These CRNN architectures
are inspired by [25], with the main difference that the
RCNN is used for locomotor intention prediction instead
of hand position regression. Moreover, we investigate both
LSTM and GRU networks.

input
(10 frames * num_feature)

Conv1D, ReLU
(32 filters, size = 3)

MaxPool1D (size = 2)

MaxPool1D (size = 2)

Conv1D, ReLU
(64 filters, size = 3)

Dense (50 units), Dropout,0.25

Dense, Softmax
(num_class)

output

LSTM/GRU (30 units)

LSTM/GRU (30 units)

input
(10 frames * num_feature)

Timedistributed(Conv2D,ReLU
(32 filters, size = 3*3))

Timedistributed(MaxPool2D
(size = 2*2))

Timedistributed(MaxPool2D
(size = 2*2))

Timedistributed(Conv2D,ReLU
(32 filters, size = 3*3))

LSTM/GRU(30 units)

Dense, Softmax (num_class)

output

LSTM/GRU(30 units)

Dense (50 units),Dropout 0.25

Fig. 4: CRNN architectures: CNN1DLSTM (or CNN1DGRU) on the left
and the CNN2DLSTM (or CNN2DGRU) on the right. The four CRNN
architectures consist of eight hidden layers, including two convolution
layers, two recurrent layers, two max-pooling layers, and two dense layers.

E. Deep Neural Networks Training
This Section describes how the deep neural network

architectures have been trained. The training was done on
the cloud computational platform provided by Kaggle (www.
kaggle.com), with a single K80 GPU and 13 GB RAM.

1) Experiment Procedure: Since nine neural networks are
under investigation, in order to simplify the experiment, a
random subject has been selected in the ENABL3S data-set
(i.e., subject AB156) to perform the first comparison. The
three architectures, which performed the best on this subject,
have been trained and tested again on the other nine subjects
for the final comparison and evaluation.

2) Epoch: The complete data-set is presented 150 times
(i.e., epochs) to the neural networks during training to
prevent under-fitting and/or ineffective use of training data.
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3) Batch Size: The parameters in the neural networks’
neurons are updated after a batch of samples is processed.
The batch size is chosen to be 128, and the samples of one
batch are usually shuffled from the training set. Using a batch
approach is equivalent to artificially introducing sampling
noise on the gradient, so it is more difficult to fall into a
local minimum.

4) Shuffling: The input data have been shuffled when
feeding the neural networks. The goal of shuffling is to
increase the generalization ability of an architecture. In the
training step, the data is usually fed to the architecture batch
by batch. The distribution of the samples within a batch could
be a problem. If the input data is not shuffled, the training
will make the model linger between two over-fittings, and it
would not perform well. After shuffling, the distribution of
the samples in a batch is closer to the actual distribution of
the data, which makes the trained architecture more adaptive
on the data. Consequently, it also increases the speed of the
convergence of the neural networks.

5) Loss Function: The categorical cross-entropy has been
used as the loss function to train the neural networks.

6) Optimizer: The optimizer is the advanced algorithm
to optimize the gradient descent and, thus, to speed up the
convergence of a neural network and to save the computa-
tional power. In this study, the Adaptive Moment Estimation
(Adam) has been used as the optimizer [26]. Adam computes
individual adaptive learning rates for different parameters
from estimates of first and second moments of the gradients.

7) Learning Rate: The learning rate is initialized to the
trade-off value 0.001. A higher learning rate means faster
learning, but if it is too high, the architecture can hardly
converge. If it is too low, the loss function can fall into a
local minimum or the learning time becomes too long.

8) Class Weighting: The amounts of different classes,
i.e., the locomotion actions, is imbalanced in the data-set.
Therefore, in the training phase, the classes are weighted
differently in the loss function, i.e., according to their ratio.
This way the neural networks can pay more attention to the
under-represented classes.

9) Early Stopping: The number of training epochs is
usually set high to ensure the data is fully utilized, and
the architecture is not under-fitting. However, continuing the
training after the model converges could cause an overfitting.
Thus, the early stopping approach has been used, by moni-
toring the accuracy on the validation set of each epoch. In
these experiments, if after 10 epochs the accuracy has not
increased, the training stops, and the architecture would be
the final. The number of epochs is empirically set slightly
larger than the number of the jitters observed in early epochs.

F. Evaluation

The F1-score is the metric used to assess the performance
of the neural networks. The F1-score is calculated as:

F1 = 2 · precision · recall
precision + recall

with

precision =
tp

tp+ fp
, recall =

tp

tp+ fn

where tp is the number of true positive results in the
locomotor intention prediction, fp is the number of false
positive, and fn is the number of false negative.

The k-fold cross-validation is used to assess the effective-
ness of the neural networks. In this work, k is set to 5. This
means that the data-set is divided equally into 5 subsets,
then the neural network uses four of them as the training
set and one as the testing set, so that the process of training
and testing is repeated 5 times in total. The final result is
the F1-score averaged from the sub-results. This way, every
data sample has contributed as training sample, avoiding the
waste of data and increasing the reliability of the evaluation
since each testing is differently set.

III. RESULTS AND DISCUSSION

In this Section, the proposed neural networks are com-
pared according to the F1-score metric. The results are
reported separately for the cases of features from only one
IMU (on the upper right leg) and two IMUs (one on the
upper right leg and one on the lower right leg).

A. One IMU (on the Upper Leg)

Figure 5 shows the F1-scores (mean and standard deviation
SD), with a 5-fold cross-validation, of all the designed deep
neural networks on the subject AB156, when only features
from one IMU on the upper right leg are used. It can be
noted that the WaveNet outperforms the other architectures.
The CNN2DLSTM and CNN2DGRU architectures also per-
form well. Thus, the three best architectures, i.e., WaveNet,
CNN2DLSTM, and CNN2DGRU, have been selected to be
tested on the other nine subjects.

0,7109 0,7345 0,7525 0,7639 0,7748 0,7892 0,8165 0,8295 0,8325

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

CNN1D GRU LSTM CNN1DGRU CNN2D CNN1DLSTM CNN2DGRU CNN2DLSTM WaveNet

Fig. 5: F1-score (mean and SD), with a 5-fold cross-validation, of all the
neural networks on the subject AB156. Only features from one IMU on the
upper right leg are used.

Figure 6 shows the F1-scores, with a 5-fold cross-
validation, of the three outperforming deep neural networks
(i.e., CNN2DGRU, CNN2DLSTM, and WaveNet), on all the
ten subjects, when only features from one IMU on the upper
right leg are used. The statistic comparison is made using
the results of the subjects excluding the subject AB156. The
best performing network is the WaveNet, with an average
F1-score of 83.0% (with SD of 0.052), which outperforms
both the CNN2DLSTM (average F1-score of 81.55%, with
SD of 0.064) and the CNN2DGRU (average F1-score of
79.86%, with SD of 0.068). A paired t-test shows that the
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Fig. 6: F1-score (mean and SD), with a 5-fold cross-validation, for the
outperforming deep neural networks (i.e., CNN2DGRU, CNN2DLSTM, and
WaveNet) per subject. The inputs to the neural networks are data from one
IMU on the upper right leg.

WaveNet has a significant difference with respect to the
CNN2DLSTM (p = 0.003 < 0.05). The CNN2DLSTM
has a significant difference with respect to the CNN2DGRU
(p = 0.029 < 0.05).

B. Two IMUs (on the Upper and Lower Leg)

Figure 7 shows the F1-scores, with a 5-fold cross-
validation, of the three deep neural networks (i.e.,
CNN2DGRU, CNN2DLSTM, and WaveNet), on all the ten
subjects, when features from two IMU (one on the upper
right leg and one on the lower right leg) are used. Compared
to the results with only one IMU, the F1-score increases
by 0.12 in average. The statistic comparison is made using
the results of the subjects excluding the subject AB156. The
best performing network is the WaveNet, with an average
F1-score of 95.58% (with SD of 0.05), which outperforms
both the CNN2DLSTM (average F1-score of 92.53%, with
SD of 0.059) and the CNN2DGRU (average F1-score of
92.0%, with SD of 0.064). A paired t-test shows that the
WaveNet has a significant difference with respect to the
CNN2DLSTM (p = 0.006 < 0.05). The CNN2DLSTM
does not have a significant difference with respect to the
CNN2DGRU (p = 0.697 > 0.05).

0

0,1
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0,4

0,5

0,6

0,7

0,8

0,9

1

AB156 AB185 AB186 AB188 AB189 AB190 AB191 AB192 AB193 AB194

CNN2DGRU
CNN2DLSTM
WaveNet

Fig. 7: F1-score (mean and SD) with a 5-fold cross-validation, for the
three neural network (i.e., CNN2DGRU, CNN2DLSTM, and WaveNet) per
subject. The inputs to the neural networks are data from one IMU on the
upper right leg and one IMU on the lower right leg.

C. Running Time
Table I shows the running time (in ms) of the three outper-

forming deep neural networks when individually classifying
10.000 samples. The samples are randomly chosen over the
ten healthy subjects. It can be noted that, when features from
two IMUs are used, the classification performance improve
significantly, but also the processing time increases.

TABLE I: Average running time (in ms) of three outperforming models
when individually classifying 10.000 samples.

IMUs CNN2DGRU CNN2DLSTM WaveNet
Upper leg 7.03 ±0.14 7.61 ±0.15 4.75 ±0.11
Upper & lower leg 7.96 ±0.12 8.84 ±0.13 6.11 ±0.09

D. Results Summary
Table II summarizes the results of the two experimental

scenarios (one or two IMUs), which have been analyzed
in this study. The WaveNet outperforms all the other deep
neural networks in the locomotor intention prediction. More-
over, the running time of the WaveNet is shorter of some
milliseconds when compared to the other architectures. The
main drawback of the WaveNets is that it took about ten
hours to train. However, the training will occur only at the
beginning of the use of this deep neural network architecture.

TABLE II: Summary of the results of two experiments, i.e., one IMU (on
the upper right leg) and two IMUs (one of the upper right leg and one on
the lower right leg).

Locomotion intention prediction
Features Raw IMU data + Quaternions
N. of features (per sample) – 10 (using one IMU):

6 features of raw data and
4 features of quaternions
estimated from raw data
– 20 (using two IMUs):
each IMU uses 6 features of raw
data and 4 features of quaternions
estimated from raw data

N. of frames (per sample) 10
N. of samples (per subject) About 0.5 million
N. of locomotion actions 7
Data-set partitioning 5-fold (80% training, 20% testing)
F1-score (mean and SD) CNN2DGRU: 79.86%, SD = 0.068
for nine subjects (excluding CNN2DLSTM: 81.55%, SD = 0.064
AB156), with one IMU WaveNet: 83.00%, SD = 0.052
F1-score (mean and SD) CNN2DGRU: 92.0%, SD = 0.064
for nine subjects (excluding CNN2DLSTM: 92.53%, SD = 0.059
AB156), with two IMUs WaveNet: 95.58%, SD = 0.05

Table III shows the confusion matrix of one random result
in the experimental scenario with features from one IMU and
two IMUs on the subject AB156. It can be noticed that two
IMUs can make the locomotor intent recognition more stable
among different locomotion actions. The neural networks can
generally recognize a sample within a short interval, e.g.,
WaveNet only used about 4.75 ms to predict an input frame.

E. Discussion
With a peak F1-score of 97.88% for subject AB194, the

designed WaveNet, with inputs from two IMUs (one on the
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TABLE III: The confusion matrices of one random result, when using
WaveNet on the features from one IMU and two IMUs on the subject
AB156.

1 IMU S LW RA RD SA SD St
S 0.97 0 0 0 0 0 0.02

LW 0 0.89 0.02 0.05 0 0.01 0.02
RA 0 0.09 0.88 0 0.01 0 0
RD 0 0.14 0 0.83 0 0.01 0.01
SA 0 0.05 0.09 0.02 0.81 0 0.02
SD 0 0.07 0 0.0 8 0 0.83 0
St 0.05 0.12 0 0.02 0 0 0.80

2 IMUs S LW RA RD SA SD St
S 0.98 0 0 0 0 0 0.02

LW 0 0.96 0.01 0.02 0 0 0
RA 0 0.02 0.98 0 0.01 0 0
RD 0 0.02 0 0.98 0 0.01 0.01
SA 0 0.02 0 0 0.98 0 0.00
SD 0 0.01 0 0.0 8 0.01 0.98 0
St 0.03 0.02 0 0.00 0 0 0.95

upper leg and one on the lower limb), has a performance
comparable to the machine learning classifiers in [5] and
to the CNN in [14], with the major difference that our
study uses two IMUs instead of several IMUs. Moreover,
the designed WaveNet outperforms: (i) CNNs that use one
IMU [11], [12], where 91.97% and 96.7% have been found,
respectively; (ii) RNNs that use one IMU [16], where 96.3%
has been found; (iii) CNNs that use several IMUs [13], [15],
where 97.06%, and 94.15% have been found, respectively.

IV. CONCLUSION

This paper presented a comparison of different deep neural
networks architectures for the real-time locomotor intention
prediction. The inputs to the architectures are features in the
time-domain from IMU data, i.e., raw data and quaternions.
Two scenarios have been compared based on either input data
from one IMU (on the upper right leg) or from two IMUs
(one on the upper right leg and one on the lower right leg).
The architectures have to predict seven locomotion actions,
i.e., sitting, standing, ground-level walking, ramp ascent and
descent, stair ascent and descent. The study shows that the
WaveNet, i.e., a full CNN, achieves an average F1-score of
83.0% (with SD of 0.052) in the case of one IMU, and an
average F1-score of 95.58% (with SD of 0.05) in the case
of two IMUs. Moreover, the WaveNet achieves a peak F1-
score of 87.17% on subject AB193 (one IMU), and a peak
of 97.88% on subject AB194 (two IMUs).

The potential of the present method to predict the locomo-
tion intent of amputees and to control lower limb prostheses
is left as future work.
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