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Abstract— The interpretation of surface electromyographic
(sEMG) signals facilitates intuitive gesture recognition. How-
ever, sEMG signals are highly dependent on measurement
conditions. The relationship between sEMG signals and gestures
identified from a specific subject cannot be applied to other
subjects owing to anatomical differences between the subjects.
Furthermore, an sEMG signal varies even according to the
electrode placement on the same subject. These limitations
reduce the practicability of sEMG signal applications. This pa-
per proposes a subject-independent gesture recognition method
based on a muscle source activation model; a reference source
model facilitates parameter transfer from a specific subject,
i.e., donor to any subject, donee. The proposed method can
compensate for the angular difference of the interface between
subjects. A donee only needs to perform ulnar deviation
for approximately 2 s for the overall process. Ten subjects
participated in the experiment, and the results show that, in the
best configuration, the subject-independent classifier achieved
a reasonable accuracy of 78.3% compared with the subject-
specific classifier (88.7%) for four wrist/hand motions.

I. INTRODUCTION

Surface electromyographic (sEMG) signals contain infor-
mation on muscular contractions that can be used to predict
motion intention. As such, various robotics applications [1]–
[3] have adopted sEMG signal-based pattern recognition.

However, the complex characteristics of sEMG signals
have limited their applications. An sEMG signal recorded
during a muscle contraction is highly dependent on the elec-
trode placement. Thus, the placement of electrodes should
be carefully done to obtain reliable signals representing
the target motion; even a small displacement can cause
significant performance degradation [4]. For these reasons,
prostheses, one of the major applications of sEMG interfaces,
have adopted a socket interface [5] that is tailored to users’
specific needs based on their anatomical factors.

Most of all, a trained model for a specific user cannot
be applied to another user owing to anatomical differences
between the subjects, e.g., muscle parameters, including
muscle thickness [6] and innervation zone location [7], [8].
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Fig. 1. Overall diagram of the subject-independent gesture recognition
method based on a muscle source activation model.

Several techniques [9], [10], such as deep learning-based
transfer learning [11], have been proposed to address the
aforementioned problems. However, these model adaptations
require the subject to perform all the target motions, which
is time-consuming.

In this paper, we propose an automatic signal compen-
sation method. A trained pattern recognition model for a
specific user can be applied to other users by compensating
for the sEMG signals. The proposed method includes our
previous works: a muscle source activation model [12]–
[15], a motion intensity extraction method [15], and a noise
reduction method [15].

Fig. 1 presents overall diagram of the proposed method.
First, baseline noise is removed to minimize environmental
factors, such as skin conditions. Then, a muscle source acti-
vation model, motion intensity model, and motion intensity-
based classifier are computed. In addition to this, the param-
eter transfer of the muscle source activation model is applied,
which is a new method that facilitates the application of these
models to other subjects.

The principle of parameter transfer involves the use of a
reference model. In our previous muscle source activation
model, all the source parameters were automatically calcu-
lated according to the anatomical factors of a subject; hence,
a trained model on a subject cannot be applied to other
subjects owing to anatomical differences between subjects;
as a result, significantly poor performance was observed. To
resolve this issue, additional constraints are added. The num-
ber of sources were set to four, and the sources were evenly
distributed. The muscle source activation model consisting
of these predefined source parameters will be referred to
as the reference model. Although the use of a reference
model may reduce the signal decomposition performance
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compared with that of a user-specific model, the reference
mode has sufficient versatility to apply to other users. Thus,
the parameter transfer requires only a simple motion of
approximately 2 s, as applied to subject-specific rotation
compensation [13].

To demonstrate the proposed method, four hand motions
were considered: wrist flexion (w/e), wrist extension (w/e),
hand close (h/c), and hand open (h/o). Both a muscle source
activation model with a motion intensity model and a pattern
recognition model were trained on three subjects, and then
fitted to other subjects (all 10 subjects) by performing ulnar
deviation (u/d).

The proposed method has several advantages in teleoper-
ation and prosthesis control applications.

In the case of teleoperation, the proposed method facil-
itates plug-and-play motion recognition for complex tasks
beyond the simple command [16], [17] control. In addition,
a user is not required to pay attention to align the interface
rotation; the proposed method can compensate for the full-
range of rotation [13], whereas conventional methods can
only compensate for small displacements [18].

In the case of prosthesis control, a larger bank of donors
may prevent the need to identify recognition model pa-
rameters from scratch. During the calibration procedure, a
small subset of motions will be sufficient for the calibration
of all motions at once; and the calibration takes only a
few seconds. These benefits will enhance the efficiency of
sEMG-based pattern recognition algorithms [19], such as
prosthesis-guided-training [20]; these conventional methods
require users to perform muscle contractions corresponding
to the motions that need to be calibrated.

II. METHODS

A. Subjects

A total of 10 subjects participated in the experiments. The
subjects were divided into two groups. Those in group A
(subjects 1–3) were familiar with sEMG signal processing,
i.e., they had experience measuring sEMG signals for re-
search purposes. Subjects 1, 2, and 3 were proficient in that
order. On the other hand, the subjects in group B (subjects
4–10) did not have measuring experience. Subjects in groups
A and B will be referred to as the donors and donees,
respectively.

Reference models were constructed using sEMG signals
from donors, and the signals measured from donees were
used for performance evaluation. One of the purposes of the
study is to demonstrate the applicability of the proposed
method to users who are not familiar with sEMG signal
measurement. Therefore, the guidance given to donees was
minimized.

The experiments were approved by the Institutional Re-
view Board of the Korea Institute of Science and Technology,
Seoul, Korea.

B. Experimental Setup

sEMG signals were measured using an MYO armband
(Thalmic Labs Inc., Kitchener, Canada), which consists of

eight bipolar sEMG channels that can be wrapped around
the forearm. An integrated inertial measurement unit (IMU)
was used to compute the forearm orientation. If subjects
maintained the same postures during the model initialization
process, then the angular differences between subjects can
be calculated. The differences can also be used as the initial
value for the rotation compensation.

The sampling frequencies of the sEMG and IMU signals
are 200Hz and 50Hz, respectively, according to the limited
bandwidth of the MYO armband. Measured signals were
divided into windows of 200ms and extracted every 25ms;
the selected window length was acceptable for myoelectric
control [21]. Then, root-mean-square (RMS) envelopes of
the windows were used to train the models.

C. Experimental Procedures

Subjects were instructed to perform the motions displayed
on a monitor with moderate force to prevent muscle fatigue.
In experiments with donees, some timing differences were
observed between the measured signals and displayed motion
owing to the unfamiliarity of the subjects with sEMG signal
measurement. Therefore, the sEMG signals were manually
segmented.

Signals during resting conditions were measured to train
the model for noise reduction. This technique helps mini-
mize the effects of environmental conditions, such as skin
impedance variations due to skin conditions.

Target motions for the muscle source activation model
identification and u/d for compensation were performed. The
subjects were asked to perform for 3 s, and the last signal of
2 s was used.

Afterward, each target motion was repeated for 15 s, where
the contraction speed was not fixed. These signals were
used to train the model on the relationship between source
activation and motion intensity.

The model on the relationship between the motion inten-
sity and gesture was trained using single-layer perceptron.
Then, the offline classification performance was evaluated.

All procedures were conducted using MATLAB 2018a.
Specific MATLAB functions used to construct models are
described in our previous works [12]–[15].

D. Previous Works

This section briefly describes our previously proposed
methods for baseline noise reduction and motion intensity
extraction.

1) Baseline noise reduction: A baseline noise diminishes
the quality and reliability of sEMG signals. We developed a
noise reduction technique to eliminate a specific noise that
has a periodic pattern. The noise reduction is conducted in
the frequency domain as follows:



y = fft(x)

|y′| =

{
|y| − Ynoise, if (|y| − Ynoise) ≥ 0

0, otherwise

∠y′ = ∠y

x′ = ifft(y′) (1)

where x denotes the measured sEMG signal in windows;
y denotes the converted signal in the frequency domain;
Ynoise denotes the noise parameters; and x′ denotes the noise-
reduced signal. Ynoise can be obtained as follows:

yjnoise = fft(xjnoise)

Y lnoise = max
1≤j≤J

|yljnoise|, l = 1, · · · , L (2)

where J denotes the number of windows extracted from
a noise signal; xnoise and yjnoise denote an sEMG signal
and its converted form in the jth window, respectively;
|yljnoise| denotes the amplitude of the lth frequency component
computed in the jth window of the noise signal; and L
denotes the window length.

The proposed technique can reduce not only baseline noise
but also crosstalk noises, as described in [15]. However, this
study focused only on baseline noise reduction.

2) Muscle source activation model: sEMG signals can be
decomposed into source activations as follows:

VMi
=

∑
k

||di1k − dirk| − |di2k − dirk||VSk

=
∑
k

DikVSk
(3)

where VMi
denotes the RMS envelope of a noise-reduced

sEMG signal from the ith channel; and VSk
denotes the kth

source activation. di1k, di2k and dirk denote the distance
between the kth source and electrodes of ith channel (two
active electrodes and one reference electrode), which is
represented as follows:

dik = 1/

√
(xi − xk)2
eσxk

+
(yi − yk)2
eσyk

+
(zi − zk)2
eσzk

(4)

where xi, yi, zi, and xk, yk, zk denote the placement of the
ith electrode and kth source, respectively; and σxk

, σyk , and
σzk denote the directional conductivity of the kth source.

After parameter identification of Dik, source activations
can be extracted from sEMG signals.

3) Motion intensity extraction: Motion intensity was ob-
tained by training the model on the relationship between
source activations and a summation of RMS signals from
all channels during repetitive muscle contractions for a
particular motion as follows:

V tMI =
∑
i

V tMi
i = 1, · · · , N

= net(V tS) (5)
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Fig. 2. A detailed scheme of the model-based parameter transfer.

where V tMi
denotes the RMS envelope of a noise-reduced

sEMG signal from the ith channel during repetitive dynamic
muscle contractions for a particular t motion; N denotes the
number of sEMG channels; V tMI denotes the motion intensity
for a particular t motion; and V tS denotes a set of source
activations, where each source activation was normalized by
a maximum magnitude in a training set.

E. Reference Model-Based Parameter Transfer

The source parameters consist of the conductivity and
location. These parameters are subject-dependent in the case
of a conventional model, i.e., a subject-specific model. To
obtain the subject-independent model parameters, a refer-
ence model was developed. The model has four equally
distributed sources that have a constant conductivity of 0.
The placements of reference sources were arbitrarily set; and
the distance between a source and origin was 25mm.

Source activations corresponding to each motion can be
extracted based on a reference model in the same manner as
the conventional approach described in [12]–[15]. Afterward,
the model on the relationship between motion intensity and
gestures is trained.

Parameter transfer to other subjects requires a single-step
procedure, i.e., rotation compensation that can be performed
based on subject-specific muscle source activation model
parameters considering only u/d.

In conclusion, parameter transfer requires two muscle
source activation models from a donor: a reference model
for target motions and a subject-specific model that only
considers the u/d.

A detailed scheme of the muscle source activation model-
based parameter transfer is shown in Fig. 2.

III. RESULTS

This section can be divided into two main parts. Part one
(Sections III-A to III-C) describes how parameter transfer
works. The figures in this section were obtained from sub-
jects 1 and 2 as a donee and donor, respectively. Part two
(Sections III-D to III-E) addresses the performance of the
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(b) Noise-reduced signals
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(d) Normalized source activations
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Fig. 3. Signals obtained from a donor. Target motions were performed
sequentially. Motion intensity, extracted from sEMG signals, shows high
selectivity according to the corresponding motion. Each colored line repre-
sents one of the signals from sEMG channels ((a) to (c)) or extracted signals
((d) and (e)).

subject-independent classification method; reference models
were obtained from all donors, i.e., subjects in group A.

A. sEMG Signals to Motion Intensity

Fig. 3 describes sEMG signals and the corresponding
noise-reduced signals, source activations, and motion in-
tensity extracted from a donor; four target motions were
conducted in sequence. Source activations (Fig. 3(d)) showed
poor selectivity because the reference model failed to rep-
resent the anatomical factors of the subject. However, the
highly selective features can be extracted by applying the
motion intensity extraction method, as shown in Fig. 3(e).

B. Parameter Transfer

sEMG signals can be converted into source activations and
motion intensity after the construction of a reference model.
Fig. 4 describes the sEMG signals and converted source
activations for u/d.
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(a) sEMG signals from a donor
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(b) sEMG signals from a donee
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(c) Extracted source activations cor-
responding to (a)
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(d) Compensated source activations
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Fig. 4. Measured sEMG signals and corresponding source activations ob-
tained using a reference model. Ulnar deviation-based rotation compensation
was conducted on the donee. Each colored line represents one of the signals
from sEMG channels.
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(a) RMS envelopes of noise-reduced sEMG
signals
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Fig. 5. sEMG signals, corresponding motion intensity, and classified
gestures from a donee. Although sEMG signals showed a different pattern
compared with those from a donor, the proposed method compensates for
this difference. Each colored line represents one of the signals from sEMG
channels (a) or extracted motion intensity (b).

A donor and donee showed different sEMG patterns
(Fig. 4(a) and (b)) because they have different muscle
parameters, and there was a difference in interface rotation.
However, despite these differences, similar source activations
were obtained (Fig. 4(c) and (d)). The reference parameters
were robust against anatomical differences, and the rotation
compensation technique facilitated the transfer of parameters.

C. Subject-Independent Gesture Recognition

Fig. 5(a) describes sEMG signals obtained during se-
quentially performed target motions from a donee. The
pattern is different from that of a donor (Fig. 3(c)) due
to anatomical differences. The reference model compensated
for the difference (Fig. 3(e) and Fig. 5(b)), and a reasonably
classified gesture (Fig. 5(c)) was obtained.
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Fig. 6. Accuracy according to the reference model. The black line indicates
the accuracy of the classifier, which was trained using each subject’s RMS
envelopes of sEMG signals (i.e., a subject-specific classifier without the
application of the proposed method). Red, green, and blue lines indicate the
accuracy obtained by using reference models from donors: subjects 1, 2,
and 3.

In conclusion, the proposed reference model facilitates
subject-independent gesture recognition.

D. Performance Evaluation

The proposed method was applied to all 10 subjects who
participated in the experiment. Three reference models from
donors (subjects in group A) were used. The classification
accuracy according to each model is described in Fig. 6.

Classifiers trained using only each subject’s own RMS
envelopes of sEMG signals (i.e., a subject-specific classifier
without the application of the proposed method) showed
the highest accuracy in most cases; the average accuracy
obtained from all subjects was 88.7%. The accuracy obtained
using the proposed method depends on the reference model
used and varied by user. For all cases, the average accuracy
of the best and worst cases for each subject was 78.3% and
42.8%, respectively.

The difference in accuracy could be attributed to the
anatomical differences that the current model was unable to
compensate for. As a part of the investigation, the relation-
ship between the performance and angular differences of the
interface is discussed in III-E.

E. Effect of Angular Difference

One possible reason for the performance degradation is
that rotation compensation was not sufficient to fully transfer
the model. Fig. 7 describes the relationship between the
accuracy and angular differences of the interface between
donors and donees. The interface rotation was measured us-
ing an IMU integrated with an MYO armband. The accuracy
was normalized to subject-specific classification accuracy
(Fig. 6, black line). As the angular difference increased, the
accuracy decreased. Therefore, accuracy might increase with
an advanced reference model.

IV. DISCUSSION

A. Parameters for Reference Sources

In the proposed reference source model, both the number
of sources and the source locations were arbitrarily fixed.
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Fig. 7. Relationship between normalized accuracy and angular difference
of the interface between donors and donees. Red, green, and blue points
represent the adopted reference model from subjects 1, 2, and 3, respectively.
The black dashed line indicates the fitted line with a second-degree
polynomial.
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Fig. 8. Parameter tuning for subject-independent gesture recognition. Fine-
tuning of source parameters is needed.

These predetermined parameters affect not only signal de-
composition but also pattern recognition performance. The
selection method for source parameters should be further
investigated.

B. Limitation of Current Parameter Transfer

Parameter transfer is based on rotation compensation that
only requires u/d motion; hence, simple and fast compensa-
tion is possible.

However, the anatomical difference cannot be compen-
sated using only rotation compensation owing to significant
variations. For this reason, the accuracy ratio fell below 20%
in the worst case, which is unacceptable. Therefore, an addi-
tional parameter transfer method is required to compensate
for anatomical differences.

Fig. 8 shows the expected parameter transfer method: the
fine-tuning of source parameters, including source location
and source conductivity. In the case of rotation compensa-
tion, all relationships between sources and electrodes were
changed simultaneously. In the case of fine-tuning, each
source parameters will be adjusted independently.

C. Additional Experiments Needed

Reference models were constructed from three subjects;
each subject had a different level of familiarity with sEMG
signal measurements. We expected the subject who was
highly familiar with sEMG signal measurements to develop
a more reliable reference model than the subject with less



familiarity. However, the correlation between familiarity and
performance was weak.

Anatomical factors, such as muscle size and length, might
affect the performance. However, in this study, only the effect
of the angular difference of the interface between a donor and
donee was considered; thus, additional parameters should be
investigated.

Experiments with more subjects considering additional
wrist/hand motions frequently used in daily activities [22]
should be conducted to further validate the proposed ap-
proach. In addition, real-time estimations should be per-
formed.

D. Working on Amputees

One limitation of this study is that the proposed method
was applied only on non-amputees. There are anatomical
differences between non-amputee and amputee subjects; for
example, the muscle activity of residual limbs of amputees
may differ from that of intact limbs. Therefore, it remains
uncertain whether the proposed method is applicable to the
amputee population.

V. CONCLUSIONS

This study proposed a subject-independent pattern recog-
nition method based on a muscle source activation model.
The conventional model has subject-specific source param-
eters that cannot be applied to other subjects. To overcome
this limitation, we developed a reference model for subject-
independent processing.

A proposed method facilitates not only subject-
independent classification but also interface rotation-
independent processing. A new user can utilize sEMG
signals for motion recognition by simply wearing an
interface and performing a single motion.

To demonstrate the performance, subject-independent clas-
sification was conducted for 10 subjects. The results demon-
strated the feasibility of the proposed method. However,
additional experiments and concrete theoretical backgrounds
are required to further validate our proposed approach.

We expect that our proposed method will be able to
enhance the practicability of sEMG-assisted applications. For
instance, an amputee can adapt easily to a prosthetic hand
with less effort, and intuitive teleoperation can be achieved
with less configuration time, as compared to the exiting
methods.
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