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Abstract— Maintaining dynamic balance is an important
requirement for bipedal robots. To deal with large disturbances,
the footsteps need to be modified depending on the disturbance.
Currently, there are few methods that determine footsteps by
considering foothold constraints and the balance of the robot. In
this paper, we propose a footstep modification method that con-
siders the steppable region. In certain situations, robots cannot
maintain balance due to the limitations of the landing position
on sparse footholds, such as stepping stones. Therefore, our
proposed method modifies not only the step position, but also
the step timing and the angular momentum, and balance can be
maintained even on the footholds where the steppable region
is strictly limited. These walking parameters are analytically
calculated by representing the steppable region as convex hulls
and applying our previously utilized method. We verified the
effectiveness of the proposed method in an experiment where a
life-sized humanoid robot walked on stepping stones consisting
of unsteady blocks and was able to recover when pushed.

I. INTRODUCTION

A humanoid robot will easily fall over because it is not

fixed to the environment and the height of its center of gravity

(COG) is high for its support area. Robot’s dynamic balance

is, therefore, important especially for practical applications,

and thus balance control is widely being researched [1], [2].

In addition, there are many studies on footstep modification

methods [3], [4] to withstand larger disturbances and the

control method [5], [6] that integrates three strategies: ankle

strategy, hip strategy, and stepping strategy [7]. However,

most studies assume that the robot’s surroundings are almost

flat, and they consider only the robot’s state. Therefore, these

studies are not comparable to real environments that have

steps, ditches, etc. For example, the robot will fall if it steps

into a gap between stepping stones as shown in Fig.1.

As a robot cannot walk considering only the robot’s state

in a real environment, it has to determine its surrounding by

using external sensors. Thus, many studies have also been

conducted on footstep planning by using visual information

[8]–[10]. However, these methods could not immediately

change the position where the current swing foot lands, and

did not consider robot’s balance in real-time. Moreover, they

used a stabilization controller, which was unable to adjust

the footsteps. Specifically, Griffin et al. [10] stated that the

robot could traverse on stepping stones in their experiments,

but with a low success rate due to balancing errors.

In this study, we combine footstep determination con-

sidering foothold information and balance control including
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Fig. 1. Robot walking under disturbances on stepping stones.

modifications of the landing position, timing, and centroidal

angular momentum. Thus, a humanoid robot is able to walk

stably on areas where the steppable region is restricted.

In the next section, we further compare our work with

previous studies, as well as summarize our method. Our

proposed method is validated through an experiment where

a humanoid robot walks on stepping stones.

II. INTEGRATION OF REAL-TIME BALANCE CONTROL

AND VISION RECOGNITION

Recently, vision-based online footstep modification has

been studied [11]–[13]. In this section, we outline previous

works, and describe the specific approach and contributions

of our method.

A. Related Works

Hildebrandt et al. [11] proposed a footstep modification

method using model predictive control (MPC) to minimize

the inclination of the robot. The researchers also added

penalty term to the optimization to avoid collision with ob-

stacles during push recovery. However, this solution does not

necessarily satisfy the steppable region since this considera-

tion is not a constraint but rather a penalty. In addition, their

method only modified the landing position. Other strategies

are required in such situations where visual information is

needed as the robot cannot freely select the position.

Yamamoto et al. [12] presented a landing position de-

termination method using a terrain map, which finds the

position that satisfies dynamic balance and steppability by

a breadth first search around the virtual rail [14]. The

researchers performed a push recovery simulation on rough

terrain. Additionally, there are some studies on acquiring

not only the geometries but also the physical properties of

the surroundings using vision or force sensors [15], [16].

It makes the robot more stable to determine footsteps by

utilizing the property information obtained from the database
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or online estimation. In addition, adjusting gait depending

on the footholds can be beneficial. Therefore, it is desired

to determine footsteps considering steppable polygons rather

than to sequentially check whether the position is steppable

per grid. Furthermore, compensation due to a lack of the

landing position was not addressed in [12].

There are many researches on an online walking parame-

ters modification considering inequality constraints by using

an MPC framework [17], [18]. However, these approaches

are difficult to apply to a real-time step timing adjustment

because changing the step timing affects the state in the

other axis and makes the problem nonlinear. Jeong et al. [6]

enabled to numerically calculate the landing position, timing,

and angular momentum by linearizing the problem with some

assumptions. In addition, the method was extended to include

the upper and lower limits of the steppable region as the

landing position constraint [13]. However, their method still

assumes that the sagittal and lateral planes of the steppable

region are independent. Although they imposed a conserva-

tive constraint so that the stepping constraint was not violated

even near concave obstacles, this was equivalent to only

dealing with rectangular obstacles. Moreover, it is difficult

to determine the landing position on sparse footholds.

B. Overview of the Proposed Method

In this paper, we propose a footstep modification consid-

ering the steppable region, which is expressed as a series

of polygons. We proposed a real-time modification method

that analytically solves the step position, time, and centroidal

angular momentum [19]. We extend our method so that the

robot can calculate all the walking parameters considering

the steppable region at high speeds. Thus, the robot can

handle large disturbances even on sparse footholds where

there are stringent constraints.

III. WALKING PATTERN GENERATION THAT ENSURES

DYNAMIC BALANCE AT EVERY STEP WITH DOUBLE

SUPPORT PHASE

A. Walking Pattern Generation

This subsection gives a brief description of our walking

pattern generation method [19] that extended the controller

by Sugihara et al. [20].

The motion of COG of the linear inverted pendulum model

(LIPM) [21] in the sagittal plane is obtained as follows:

ẍG = ω2(xG − xZ) (1)

ω :=

√

g

zG − zZ
(2)

where x, y, z are the components of the position vector

and subscripts G,Z denote the COG and Zero Moment

Point (ZMP), respectively. g is the acceleration of gravity.

Although the equations in this subsection are formulated for

the x component, they apply to the y component as well with

the same step time. Pratt et al. [22] presented the Capture

Point (CP), which is a point where the ZMP should be placed

for the COG to stop. In our method, we ensure the walking

balance by controlling the ZMP so that the middle of the

supporting foot corresponds to the CP at every step.

By letting Ts be the time when the current swinging foot

lands and Td be the time when the current supporting foot

lifts off the ground, we define the ZMP reference xref
Z (t) in

the double support phase as the following linear function:

xref
Z (t) = at+ b (3)

a :=
xnext
Z − xcur

Z

Td − Ts

, b := xcur
Z −

xnext
Z − xcur

Z

Td − Ts

Ts (4)

where xcur
Z , xnext

Z are the constant ZMP references of the

current and next steps respectively. We generate the ZMP so

that the next supporting foot position corresponds to the CP

when the current supporting foot is lifted. The optimization

problem for keeping the ZMP as close as possible to the

ZMP reference is expressed as follows:

xZ(t) = arg min
xZ

1

2

∫ Td

t

(xZ(τ)− xref
Z (τ))2dτ (5)

s.t. ẍG(t) = ω2(xG(t)− xZ(t)) (6)

xCP (Td) = xf (7)

where

xCP (t) = xG(t) +
ẋG(t)

ω
(8)

xref
Z (t) =

{

xcur
Z (t ≤ Ts)

at+ b (otherwise)
(9)

xf is the landing position. In the case of more dynamic

walking, the landing position can be set to be behind the CP

depending on the maximum step length and minimum step

time. The problem stated above can be solved as follows:

xZ(t) =















































xref
Z (t) +

2(xZ
CP (t)− xZ

f e
−ω(Td−t))

1− e−2ω(Td−t)

+
2a
ω
(e−ω(Td−t) − e−ω(Ts−t))

1− e−2ω(Td−t)
(t ≤ Ts)

xref
Z (t) +

2(xZ
CP (t)− xZ

f e
−ω(Td−t))

1− e−2ω(Td−t)

+
2a
ω
(e−ω(Td−t) − 1)

1− e−2ω(Td−t)
(otherwise)

(10)

xZ
CP (t) := xCP (t)− xref

Z (t) (11)

xZ
f := xf − xref

Z (Td) = xf − xnext
Z (12)

Thus the walking pattern to maintain balance is instantly

calculated from the nominal landing position, timing, and

measured CP.

The differential of CP is obtained from Eq.(1) and Eq.(8).

ẋCP = ω(xCP − xZ) (13)

Assuming that the ZMP reaches the edge of the support

polygon and is constant, CP at Td is solved by using Eq.(13).

xCP (Td) = eω(Td−t)(xCP (t)− xZ) + xZ (14)

We utilized this relational expression to derive a real-time

modification for step position, time, and angular momentum.
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Fig. 2. Target point projection to convex hull. pc is an arbitrary point
contained in V , which can be calculated from the center of the vertices.
Inside/outside determination is conducted by calculating a cross product
from p and the two adjacent vertices vR,vL obtained by using a binary
search. We defined a symbol × as a × b = axby − aybx for 2D vectors

a = (ax ay)T , b = (bx by)T .

B. ZMP Projection to Support Polygon

As Eq.(5) does not include a constraint for the support

polygon, the ZMP generated from Eq.(10) can be outside

this region. If the ZMP is outside the region, we project it

onto the nearest point at the edge of the region so that the

robot can keep walking without tilting. We define the support

polygon V
sup by using the horizontal vertices v

sup.

V
sup =

{

v
sup
1 ,vsup

2 , . . . ,vsup
n | vsup

k ∈ R
2
}

(15)

We check whether or not the point is outside the convex

hull based upon an algorithm by Preparata et al. [23]. The

algorithm binary searches the two adjacent vertices so that

the target point is included in the region formed by half line

created from the vertices and any inclusive point (Fig.2).

Therefore, the nearest neighbor edge to the target point is

obtained secondarily using this algorithm.

The original target point is defined by p
orig , the projected

point is p
proj , and the nearest neighbor vertices are vR,vL.

If the perpendicular line to the nearest neighbor edge inter-

sects the edge as shown in Fig.2 (i), the intersection point is

the projected point. Otherwise, as illustrated in Fig.2 (ii), the

nearest neighbor vertex is the projected point. Thus, when

p
orig is outside the convex hull, pproj is obtained as follows:

p
proj =











vR (d < 0)

vL (d > 1)

vR + d(vL − vR) (otherwise)

(16)

d :=
(vL − vR) · (p

orig − vR)

∥vL − vR∥2
(17)

IV. GENERATION OF STEPPABLE REGION

It is possible to represent any complex footholds as a set of

steppable polygons. Additionally, any polygon can be divided

into a set of convex hulls. We reduce the computational time

of a real-time walking parameters modification by processing

the surrounding footholds to be a set of convex hulls in

advance. In this section, we assume that the steppable object

has already been recognized as the 2D polygon obtained by

projecting the 3D steppable object upon a horizontal plane.
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Fig. 3. Black area indicates a rec-
ognized steppable object. Blue area
indicates the shrunk region used for
a footstep determination.

Fig. 4. Steppable region is obtained
by calculating the intersection of the
steppable object and the reachable
region.

The recognition method of steppable object will be reported

in our future paper.

A. Convex Partition of Steppable Object

In this study, we treat the landing position as a point,

and we determine whether the position satisfies a stepping

constraint by using this point. However, since the ZMP

is changed within the sole by stabilization controller, it is

desired that not only the point but also the whole sole are

inside the region as much as possible. Therefore, we shrink

the region of the steppable object for a footstep determination

as shown in Fig.3. Then the shrunk region is divided into

a set of convex hulls. In our implementation, we divide

the shrunk region into triangle meshes and then combine

the meshes to be a minimum number of convex hulls. This

process is executed online at approximately 15Hz.

B. Generation of Steppable Region by Calculating Convex

Hull Intersections

The steppable region is defined as the intersection of the

range where the foot is geometrically reachable and the

region obtained by IV-A. Fig.4 illustrates an example of the

steppable region. In this paper, we simply set the reachable

region as a rectangle relative to the supporting foot, and the

intersection is also convex.

V. MODIFICATION OF WALKING PARAMETERS

CONSIDERING STEPPABLE REGIONS

A. Modification of Walking Parameters for Single Region

The algorithm described in III-B gives the following

solutions according to time complexity O(log n): (i) whether

the point is outside the region or not, (ii) the edge of its

closest neighbor, and (iii) the projected point to the region.

Making use of this, we derive a fast modification method

considering the steppable region. In this subsection, we

present the modification method when only one steppable

region is given. First, we determine whether or not the

original reference landing position pf = (xf yf )
T is outside

the steppable region V
sr:

pf ∈ V
sr (18)

If pf is given to maintain balance and Eq.(18) is satisfied, the

footstep does not need to be changed (Fig.5 (a)). Otherwise,

the footstep is recalculated.



sup

(a)

V

pf = pf
'

(Td = Td)
'

sr

vR

vL

2r

 e     pCP

pCP

ωTd  

pf

pf = pf
'

(Td = Td)
'

ptmp'

CCR

(b)

vR

vL

2r

 e     pCP

pCP

ωTd

pf

pf = pf
' ptmp

 e     pCP
ωTd

' tmp

'

(c)

(Td =Td        )
' ' unlim

vL

2r

 e     pCP

pCP

ωTd

pf

pf = pf
'

(Td   (Td     )
'

ptmp'
'  tmp

 e     pCP
ωTd

' tmp

pf 
'

RCR

(d)

(Td =Td        )
' ' unlim

2r

 e     pCP
ωTd

pf

pCP   (Td     )

ptmp'
'  tmp

vR
vL

 e     pCP
ωTd

' tmp

 e     pCP
ωTd

' unlim

pf 
'

(Td =Td        )
' ' unlim

(e)

vL

2r

pCP

vR

 e     pCP
ωTd

pf

 e     pCP
ωTd

'

 e     pCP
ωTd

' tmp

pf
des pf 

'

(Td )
' unlim

pf =      ー ⊿ pf pf
'des

(f)

Fig. 5. Modification of footstep with landing timing and angular momentum
considering one steppable region. The following parameters are modified.
(a) : Nothing. (b) : Landing position. (c), (d), (e) : Landing position and
timing. (f) : Landing position, timing, and angular momentum.

1) Modification Using CCR: To analytically determine

the footstep considering the steppable region, we roughly

calculate it by temporarily approximating the supporting

sole as a circle with a radius of r. We call this Circular

Capture Region (CCR), which is the Capture Region [22]

using the circular sole, as shown in Fig.6. For simplicity,

we regarded the current time as t = 0. The superscript

min/max of ZMP represents the edges of the supporting

sole, and the variables in this subsection are expressed

in the foot coordinate frame. CCR forms a circle with a

radius of (eωTd − 1)r and a center at eωTdpCP , which is

derived from Eq.(14). If the landing position is inside CCR

and steppable region, dynamic balance is guaranteed when

landing. Therefore, letting the vertices obtained by III-B be

vR = (xR yR)
T ,vL = (xL yL)

T , we can deal with

conditions of the landing position {xf , yf} and timing Td

considering the region V
sr by using the following equation:

{

(

xf − eωTdxCP

)2
+

(

yf − eωTdyCP

)2
=

(

eωTd − 1
)2

r2

yf = axf + b

(19)

a :=
yL − yR
xL − xR

, b := yR −
yL − yR
xL − xR

xR (20)

xmax
Z

xmin
Z

ymin
Zymax

Z

2r

 e     pCP
ωTd

pCP

CCR

RCR

(e     -1)rωTd

Fig. 6. CCR and RCR. pCP represents the current CP and the green
area indicates the supporting sole. CCR is the region where the robot can
recover balance with one step when approximating the sole as a circle, and
RCR is the region when approximating it as a rectangle.

xf , yf , and Td can be changed from the original values

according to the procedure below.

When Eq.(19) has a real number solution regarding the

original step position and time, namely:

Ae2ωTd +BeωTd + C ≥ 0 (21)

A :=
(

a2 + 1
)

r2 − (axCP − yCP )
2

(22)

B := −2
[

abxCP − byCP +
(

a2 + 1
)

r2
]

(23)

C :=
(

a2 + 1
)

r2 − b2 (24)

the equation is satisfied, CCR already intersects the steppable

region without changing the step time. Therefore, the pro-

jected point of eωTdpCP to the region is the temporarily

modified landing position ṕ
tmp
f and the step time is not

adjusted (Fig.5 (b)). On the other hand, when Eq.(21) is not

satisfied, CCR is transferred so that it just touches the line of

its nearest neighbor by changing the step time. The condition

where the step time is calculated is as follows:

D := B2 − 4AC ≥ 0 (25)

Then the landing timing and position are modified as follows

(Fig.5 (c)):

T́ tmp
d =

{

1
ω
log −B+

√

D
2A (|(a2 + 1)r > |axCP − yCP |)

1
ω
log −B−

√

D
2A (otherwise)

(26)

x́tmp
f =

(xCP + ayCP )e
ωT́

tmp

d − ab

a2 + 1
(27)

ýtmp
f =

a(xCP + ayCP )e
ωT́

tmp

d + b

a2 + 1
(28)

When Eq.(25) is not satisfied, the robot cannot recover its

balance by only modifying the position and timing under a

step condition. At such times, we consider them to be as

follows, and proceed to the next procedure:

T́ tmp
d = Td, x́tmp

f = xf , ýtmp
f = yf (29)

In the procedure above, it is not necessarily guaranteed that

the obtained step position will be inside the region because

we considered the point of tangency not with the nearest



neighbor edge but with the line. Hence, we move the position

to be inside the region by limiting it (Fig.5 (d)).

x́f =

{

max {xR, xL} (x́tmp
f > max {xR, xL})

min {xR, xL} (x́tmp
f < min {xR, xL})

(30)

The y component of the point is limited as well.

2) Modification Using RCR: We regard the supporting

sole as a rectangle, which is similar to the shape of the

actual sole. We call the Capture Region using the rectangle

sole Rectangular Capture Region (RCR), and the following

derivation of the modification method using RCR is based

on our previous method [19]. We then check whether the

position ṕf that was calculated by the procedure above is

realized according to the original step time Td. For instance,

if the robot is pushed forward, the step time needs to be

modified based upon the following condition from Eq.(14):

x́f < eωTd(xCP (t)− xmax
Z ) + xmax

Z (31)

The modified time is derived as follows:

T́unlim
d =

1

ω
ln

smax
x − xmax

Z

xCP (t)− xmax
Z

(32)

The modified step time has a lower limit, and the limited time

of T́unlim
d is the determined step time T́d. In the experiments,

the lower limit is heuristically set such that joint velocities

and torques do not exceed the hardware specification. If the

time is modified for both axes, the lower time is used [19].

When the step time is not restricted by a lower limit as

shown in Fig.5 (e), the step position is no longer modified,

and the determined step position and time are ṕf , T́d re-

spectively. On the other hand, when the step time is limited,

the step position can change depending on T́d. Therefore,

we recheck whether ṕf is realized according to T́d. If the

robot is pushed forward, the desired step position to maintain

balance xdes
f differs from x́f in the following condition as

well in Eq.(31):

x́f < eωT́d(xCP (t)− xmax
Z ) + xmax

Z (33)

In such cases, xdes
f is derived as follows:

xdes
f = eωT́d(xCP (t)− xmax

Z ) + xmax
Z (34)

xdes
f − x́f is the deficient length for T́d, and we compensate

for it using the torque around the COG τy (Fig.5 (f)).

τy =
Mg(xdes

f − x́f )

1− eωT́d

(35)

The torque is realized through whole-body inverse kinemat-

ics (IK) with constraints on angular momentum [19].

In this way, introducing CCR and RCR enables to fast

calculate the step position and timing in both axes consider-

ing the steppable region. In addition, the robot can recover

its balance through the use of centroidal angular momentum

even if modifying just the step position and timing is insuf-

ficient for gaining dynamic balance. Therefore, modifying

all the walking parameters increases the possibility that the

robot will maintain its balance on complex footholds, even

when the steppable region is severely restricted.

Fig. 7. Push recovery while walking on the spot in the presence of a ditch.
For the first push, the robot took a 0.22m step and generated the angular
momentum to compensate for the deficient step length. For the second push,
it took a 0.52m step without the angular momentum because the step length
was sufficient for dynamic balance.

B. Modification of Walking Parameters for a Set of Regions

In the previous subsection, we described the modification

method, which consisted of walking parameters for a single

steppable region V
sr. In this subsection, we present the

method for a set of regions C
sr = {Vsr

1 ,Vsr
2 , . . . ,Vsr

m}.

We sequentially apply the method described in V-A to the

steppable regions V
sr
k (k = 1, 2, . . . ,m). If the region that

can satisfy Eq.(18) is found, the process is finished, and the

walking parameters do not need to be changed according to

visual feedback. Letting the walking parameters according to

the k− 1th process be W = {ṕv
f , T́ v

d , τ
v}, the parameters

are updated when satisfying the following condition:

ṕ
ref
f · ṕf,k > ṕ

ref
f · ṕv

f (36)

This way, the determined parameters will be as close to the

desired walking direction as possible.

Likewise, it is possible to determine the landing position

considering the foothold safety Csf [15] as an extension of

our proposed method:

ṕ
ref
f · ṕf,k + wsfCsf,k > ṕ

ref
f · ṕv

f + wsfC
v
sf (37)

where wsf is the weight for the foothold safety.

C. Simulation Verification

We validated the proposed method by using Choreonoid

[24]. Fig.7 shows the simulation result in which the robot

was twice pushed forward in an environment with a ditch.

Also, the video is attached to this paper. The landing position,

timing, and torque around the COG are shown in Fig.8. The

nominal step cycle was set to 0.7 s, and the width of the

ditch was 0.35m. An external force of 400N was applied

to the upper body for 0.1 s. The actual CP (COG state) is

calculated from the body posture estimated by IMU [1]. The

foot is controlled in impedance mode.

For the first external force, the robot withstood the dis-

turbance by generating the centroidal angular momentum

instead of making a long-distance step as there was a ditch

in front of the robot. The robot mainly swung its arms for

generating the angular momentum because we set the weight

for arms in IK to a small value. However, for the second

force, the robot took a big step to clear the ditch without

generating the angular momentum. Rather, the step time was
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Fig. 8. Landing position, time, and torque around the COG during push
recovery considering the steppable region.

enlarged because the step length was more than adequate

for maintaining balance. Thus, our proposed method enables

modification of the online walking parameters considering

the robot’s current balance and the steppable region.

VI. VISUAL ADAPTATION TO HEIGHT AND INCLINATION

OF FOOTHOLDS

Because the landing position can be modified during each

control cycle, it is required to instantaneously deal with

the height and inclination of foothold corresponding to the

landing position.

We accumulate terrain information using a heightmap. The

horizontal landing position is determined by the method pre-

sented in V. We calculate the average height and inclination

around the horizontal position from the heightmap, and the

robot adapts to the road shape by updating the reference

height and inclination of the landing foot accordingly.

Fig.9 (a) shows the simulation results, which combined the

method in this section with the online footstep modification

method detailed in the previous section. Five gray blocks

formed the steppable regions, two of which were tilted by

± 10 deg around the roll and pitch axes. The blocks were

modeled as static objects and friction coefficients were 0.5.

In our implementation of the walking pattern generation, we

assumed that the supporting soles contacted with the same

horizontal plane and the COG height moved on the constraint

plane. Fig.9 (b) shows the steppable regions recognized by

using vision sensors. Note that the steppable regions are

used for a horizontal footstep modification and not for a

height/inclination adaptation. The robot was programmed in

advance to walk forward on a flat floor with a step length of

0.15m, and the footsteps were automatically adjusted online

based upon vision recognition. Thus, the robot was able to

traverse across complex footholds, including those with an

inclination, while considering the robot’s real-time state.

(a) Snapshot of simulation
(b) 2D convex steppable

region

Fig. 9. Visual adaptation to height and inclination of footholds. (a) : Gray
objects can be stepped upon. (b) : Regions are generated through shrinking
and convex partition of the recognized footholds.

(a) Drawing of footholds
in point cloud

(b) Projection of 3D footholds in
horizontal plane

Fig. 10. Identification of steppable objects as stepping stones.

VII. EXPERIMENTAL RESULTS

A. Real Hardware

We verified our proposed method by using the life-sized

humanoid robot JAXON [25]. The robot is 188 cm tall,

weighs 127 kg, and has 33 DOF. It is equipped with IMU at

its waist. Additionally, it has a LiDAR and stereo camera at

its head. The footstep modification is executed at 500Hz.

B. Vision-Aided Walking on Unsteady Stepping Stones

1) Experimental Set Up and Recognition of Steppable

Region: We conducted a series of experiments in which the

robot traversed on stepping stones consisting of two layers

of concrete blocks. The blocks wobble when the robot steps

on them as they are not fixed to the ground. Therefore, the

robot needs to walk considering real-time balance.

In these experiments, we simply used color recognition

to determine which objects could be stepped upon. To

begin with, the robot visualized the 2D steppable objects

by using an RGB camera, and then it mapped the vertices of

these objects into point cloud by using data acquired from

LiDAR. The obtained footholds are shown in Fig.10 (a). By

projecting the points in 3D point cloud onto a horizontal

plane, the regions could be obtained, as shown in Fig.10 (b).

Lastly, by applying the method in IV-A to the horizontal

regions, they were converted into the steppable regions as a

set of convex hulls.

2) Experiment of Online Walking Parameters Generation

on Stepping Stones: Fig.11 shows a snapshot of the ex-

periment. Although the robot was nominally commanded to

walk forward at a constant step length, the step position was

changed online considering vision recognition and dynamic



Fig. 11. Walking on unsteady stepping stones using vision recognition.

Fig. 12. Walking on closely placed stepping stones.

balance. In this way, the robot was able to walk on unsteady

sparse footholds. In particular, even though the blocks under

the supporting foot were tilted as shown in Fig.11 (d) and

(e), the robot dealt with the influence by modifying footsteps.

Fig.12 shows the experiment in which the placement of the

blocks was different than in Fig.11. By connecting the near

footholds compared with the size of the foot sole by using

the process such as closing when generating the steppable

region, it is possible for the robot to land on two or more

footholds at the same time.

Fig.13 shows a failure case, similar to the previous ex-

periment as shown in Fig.11. In Fig.13 (a), although the

block under the right foot was significantly tilted, the robot

could still maintain its balance by modifying the next landing

position backward. On the other hand, in Fig.13 (b), the left

swinging foot accidentally touched the tilted block under the

right foot. As a result, the robot fell along with the block,

and thus it could not recover its balance. Therefore, not only

geometrical information, but also the physical properties of

the footholds are needed for the robot to walk in various

real environments stably. For example, setting limits of the

horizontal floor reaction forces may be effective for this type

of situation.

C. Push Recovery on Stepping Stones

We carried out the push recovery experiment on stepping

stones. We pushed the back of the robot with a bar while it

was standing still. The robot started stepping based on the

measured CP and support polygon, and kept walking until it

could regain dynamic balance. Fig.15 shows the generated

landing position and timing. The parameters were instantly

(a) Recovery (b) Inability to recover

Fig. 13. Limitation of walking stabilization using only geometrical
information.

Fig. 14. Push recovery on stepping stones.
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Fig. 15. Step position and timing on stepping stones during push recovery.

adjusted according to the robot’s current state. In addition,

the robot changed its whole-body motion so that constraints

on the steppable region and step time were not violated, as

can be seen in Fig.14. Thus, our proposed method is effective

even on sparse footholds during push recovery situations,

where immediate footstep modification is required.

VIII. CONCLUSIONS

In this paper, we proposed a real-time footstep modi-

fication method considering footholds. We expanded upon

our previous methods which allowed for the robot to in-

stantaneously control the landing position, timing, and cen-

troidal angular momentum, depending on the disturbance.

The method in this paper allowed us to determine the

parameters under constraints of the steppable region. The



landing position to satisfy the steppability is analytically cal-

culated by using a set of convex steppable regions and CCR.

Following this, we calculated the corresponding step time for

the determined landing position using RCR, which enabled

the robot to adequately utilize ankle strategy. Additionally,

the robot compensated for an insufficient landing position

due to the limit for step time by using the centroidal angular

momentum. We demonstrated that the robot was able to

walk in the presence of 3D footholds by updating the height

and inclination of the landing foot according to information

acquired from a heightmap.

This method can instantly determine the walking parame-

ters in an environment, even when there are many footholds,

as the computational cost is very low. Moreover, this method

means that the robot can maintain its balance on sparse

footholds, as it can change all of its walking parameters,

including step time and angular momentum. We realized

push recovery by using a real humanoid robot on stepping

stones, which has not been achieved before.

Our proposed method can potentially determine footsteps

considering the physical properties of footholds, as this

method explicitly deals with steppable polygons. Besides,

the conventional locomotion planner for humanoids needs to

strictly plan future footsteps whereas our planner generates

only a rough path and steppable regions by using the

proposed method, which makes the locomotion system more

robust. We are going to report on the path planner and the

integration of object transportation in another paper.
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