
  

  

Abstract—Hyper-redundant manipulators driven by cables 
are used in minimally invasive surgery because of their flexibility 
and small diameters. In particular, manipulators composed of 
many rigid links and joints have the advantages of high stiffness 
and payload. However, these manipulators have difficulty in 
estimating their positions and shapes using calculations based 
only on the kinematics model that assumes all joint angles are 
equal. In this paper, we present a method for estimating the 
position and shape of the rolling joint in hyper-redundant 
manipulators by minimizing the joint moments. This allows the 
determination the equilibrium position of all segments of the 
rolling joint, and therefore an estimation of its shape. We 
experimentally determine the position and shape of a prototype 
of the rolling joint and compare them to a simulation of our 
method. The maximum error between the simulation and the 
experimental results is 4.13 mm, which is a 77.22% improvement 
over the kinematic model that calculates the same joint angle. 
This verifies that our method accurately estimates the position 
and shape of the rolling joint. 

I. INTRODUCTION 

Hyper-redundant manipulators (HRMs) composed of 
many rigid links and joints without a backbone are widely used 
in minimally invasive surgery (MIS) [1]. These manipulators 
have flexible bodies, which are advantageous in preventing 
damage to organs. Furthermore, manipulators driven by thin 
cables with redundant degrees of freedom have small 
diameters and bend in various directions with high stiffness 
and payload capacities. These advantages are fitting for 
medical instruments used in MIS, which requires minimal 
scarring to reduce surgical trauma. For these reasons, a variety 
of HRMs have been developed for MIS worldwide. Shang et 
al. implemented a triangular approach with two HRMs and 
confirmed the potential for performing surgical operations [2]. 
Similarly, in order to overcome the limitations of the typical 
endoscopic system, Thompson et al. demonstrated various 
surgical functions by operating two HRMs [3]. In addition, 
Degani et al. performed laparoscopic preclinical experiments 
of pigs with a snake-like, highly articulated endoscopic 
instrument using two concentric tubes [4]. Some researchers 
have studied the rolling joint mechanism since it has low 
buckling as well as high dexterity. In the previous study, we 
presented a block mechanism with a high stiffness based on a 
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rolling joint [5]. Berthet-Rayne et al. proposed a snake-like 
robot using a rolling joint optimized in workspace, dexterity, 
precision and operability [6]. 

There are several challenges to automating surgical robots 
using HRM. One of them is that it is difficult to predict the 
position and the shape of the HRM because the number of 
actuator cables is less than the manipulator's joint. Therefore, 
there is a limitation in estimating the position of the end 
effector and the shape of the HRM based on a kinematic model 
that assumes that all joint angles are equal. For example, when 
operators drive the HRM, they predict that the manipulator 
will move in a way that is similar to the kinematic model 
assumes all joint angles are equal. The operating cable length 
determines the shape and end effector position of the HRM, as 
shown Fig. 1(a). However, the HRM changes its actual shape 
and position based on the effects of the tensions and extensions 
of the cables, as shown in Fig. 1(b). In particular, if the 
manipulator meets an obstacle, the shape of the manipulator is 
significantly different compared to the kinematic model, as 
shown in Fig. 1(c). Therefore, in order to use the HRM 
precisely, it is necessary to analyze its actual shape and 
position.  
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Figure 1.   Concept of the bending motion of hyper-redundant manipulators 
(HRMs), which are composed of many rigid links and joints without a 
backbone. (a) Desired bent position and shape of an HRM. (b) Equilibrium 
position and shape of an HRM bent by cable tensions. (c) Position and shape 
of an HRM when it meets an obstacle. 
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Some researchers have estimated and simulated the 
movement of HRMs. Lei and Du predicted the bending 
curvature and path of an HRM by the kinematic model [7]. 
This method’s weakness is that it cannot consider the change 
in the cable tension nor the external force on the HRM. Song 
et al. presented the shape reconstruction method based on the 
quadratic Bézier curves [8], and Xu et al. showed the deviation 
between the model derived by the dynamics equation and the 
HRM prototype [9]. Both studies found small differences 
between the model and the prototype. However, neither study 
considered external forces. Kim et al. demonstrated that the 
stiffness of the manipulator can be increased by changing the 
cable tension, and they also showed that the displacement 
decreased when the cable tension increased [10]. This study 
did not consider the extension of the cable at its initial position 
induced by the external force in the lateral direction.  

In this paper, we measure the position and shape of the rolling 
joint of a backboneless HRM composed of many rigid links 
and joints as a function of bending angle. Since the object 
moves to the position where the sum of the force and the 
moment is zero, the rolling joint also moves to the equilibrium 
position where all joint moments are zero. The equilibrium 
position of the rolling joint can be derived by using the statics 
equation. However, it is difficult to calculate the position 
directly because of the nonlinearity of the rolling joint. To 
solve this problem, we present a method to find the 
equilibrium position of the rolling joint by minimizing the 
joint moments with forward kinematics, statics, and 
optimization. We use simulations to verify our experimental 
results for the prototype of the rolling joint.  

II. METHOD 

A. Forward kinematics of the rolling joint 
We constructed a kinematic model to calculate the forward 

kinematics of the rolling joint. Fig. 2(a) shows two frames, 
{𝑖𝑖𝑢𝑢𝑢𝑢} and {𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑}, located at the centers of the rolling surfaces 
in the 𝑖𝑖𝑡𝑡ℎ segment. The �𝑖𝑖𝑢𝑢𝑢𝑢� frame is located at the center of 
the upper rolling surface, and the {𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} frame is located at 
the center of the lower rolling surface in the 𝑖𝑖-th segment. 
When the two segments of the rolling joint contact and rotate 
each other, the {𝑖𝑖 + 1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} frame in the (𝑖𝑖 + 1)th segment 
has a relationship with the �𝑖𝑖𝑢𝑢𝑢𝑢� frame in the 𝑖𝑖-th segment, as 
shown in Fig. 2(b). First, the distance between the frames is 
fixed at 2𝑟𝑟, where 𝑟𝑟 is the radius of the rolling surface in the 
segment. Second, the location of the {𝑖𝑖 + 1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} frame is the 
position rotated by θ𝑖𝑖

2
 over a distance of 2𝑟𝑟 in the �𝑖𝑖𝑢𝑢𝑢𝑢� frame. 

Third, the {𝑖𝑖 + 1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} frame is rotated by θ𝑖𝑖  relative to the 
orientation of the �𝑖𝑖𝑢𝑢𝑢𝑢� frame. Considering these relationships, 
we assumed two segments of the rolling joint formed a rigid 
arm with two revolute joints, as shown in Fig. 2(c). The first 
revolute joint is located at the position of the �𝑖𝑖𝑢𝑢𝑢𝑢� frame and 
rotates by θ𝑖𝑖

2
 over a distance of 2𝑟𝑟  in the link. The second 

revolute joint is located at the end position of the link and also 
rotates by θ𝑖𝑖

2
 at that location. From these assumptions, the 

position and orientation of the {𝑖𝑖 + 1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑}  frame can be 
expressed in the �𝑖𝑖𝑢𝑢𝑢𝑢�  frame. The �𝑖𝑖 + 1𝑢𝑢𝑢𝑢�  frame has the 
same orientation as the {𝑖𝑖 + 1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} frame, and is located at 
the distance 𝑑𝑑 from the �𝑖𝑖 + 1𝑢𝑢𝑢𝑢� frame in the –Z direction, as 

shown in Fig. 2(d). As a result, the �𝑖𝑖 + 1𝑢𝑢𝑢𝑢� frame can be 
expressed in the �𝑖𝑖𝑢𝑢𝑢𝑢� frame with two revolute joints and one 
prismatic joint.  

We used the Product of Exponential (PoE) formula to 
illustrate frames of the segment from the fixed frame {𝑠𝑠}. The 
configuration of the link frame {i} relative to the fixed frame 
when the mechanism is in the zero position is denoted as 𝑀𝑀𝑖𝑖 ∈
𝑆𝑆𝑆𝑆(3) and is expressed by: 

𝑀𝑀𝑖𝑖 = �𝑅𝑅𝑖𝑖
𝑀𝑀 𝑃𝑃𝑖𝑖𝑀𝑀

0 1
� ∈ 𝑆𝑆𝑆𝑆(3).                   (1) 

The orientation 𝑅𝑅𝑖𝑖𝑀𝑀 of 𝑀𝑀𝑖𝑖 is the same for all segments in 
the {𝑠𝑠} frame as 𝑅𝑅𝑖𝑖𝑀𝑀 = diag(1,1,1) ∈ 𝑠𝑠𝑠𝑠(3). The position 𝑃𝑃𝑖𝑖𝑀𝑀 
of 𝑀𝑀𝑖𝑖 are related by 𝑃𝑃𝑖𝑖𝑀𝑀 = 𝑃𝑃𝑖𝑖−1𝑀𝑀 + [0 0 (2𝑟𝑟 − 𝑑𝑑)]𝑇𝑇. 

 We set the odd joint of the rolling joint as the pan motion 
joint and the even joint as the tilt motion joint. Because the 
joint between the segments is assumed as the two rotate in one 
prismatic joint, the homogeneous transformation matrix 𝑇𝑇𝑖𝑖(θ) 
of the pan and tilt joints in the {𝑠𝑠} frame are derived as follows: 

𝑇𝑇2𝑖𝑖−1(θ) = 𝐶𝐶1(θ)⋯𝐶𝐶2𝑖𝑖−1(θ)𝑀𝑀2𝑖𝑖−1 at the pan point,   (2) 

𝑇𝑇2𝑖𝑖(θ) = 𝐶𝐶1(θ)⋯𝐶𝐶2𝑖𝑖−1(θ)𝐶𝐶2𝑖𝑖(θ)𝑀𝑀2𝑖𝑖 at the tilt joint,  (3) 

where 

𝐶𝐶2𝑖𝑖−1(θ) = 𝑒𝑒�𝑆𝑆2𝑖𝑖−1
𝑎𝑎 �

θ2𝑖𝑖−1
2 𝑒𝑒�𝑆𝑆2𝑖𝑖−1

𝑏𝑏 �
θ2𝑖𝑖−1
2 𝑒𝑒�𝑆𝑆2𝑖𝑖−1

𝑐𝑐 �(−𝑑𝑑),       (4) 

𝐶𝐶2𝑖𝑖(θ) = 𝑒𝑒�𝑆𝑆2𝑖𝑖
𝑎𝑎 �

θ2𝑖𝑖
2 𝑒𝑒�𝑆𝑆2𝑖𝑖

𝑏𝑏 �
θ2𝑖𝑖
2 𝑒𝑒�𝑆𝑆2𝑖𝑖

𝑐𝑐 �(−𝑑𝑑),    𝑖𝑖 = 1, … , 𝑛𝑛
2
.       (5) 

The screw axes of the joints as expressed in the {𝑠𝑠} frame 
are 𝑆𝑆𝑖𝑖𝑎𝑎 = (𝑤𝑤𝑖𝑖𝑎𝑎 , 𝑣𝑣𝑖𝑖𝑎𝑎)𝑇𝑇 , 𝑆𝑆𝑖𝑖𝑏𝑏 = �𝑤𝑤𝑖𝑖𝑏𝑏 , 𝑣𝑣𝑖𝑖𝑏𝑏�

𝑇𝑇
, and 𝑆𝑆𝑖𝑖𝑐𝑐 = (𝑤𝑤𝑖𝑖𝑐𝑐 , 𝑣𝑣𝑖𝑖𝑐𝑐)𝑇𝑇 . 

The variables 𝑤𝑤2𝑖𝑖−1𝑎𝑎  and 𝑤𝑤2𝑖𝑖−1𝑏𝑏  are the same for the 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 =
 (1,0,0)𝑇𝑇 , 𝑤𝑤2𝑖𝑖𝑎𝑎  and 𝑤𝑤2𝑖𝑖𝑏𝑏  are the same for the 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 =
 (0,1,0)𝑇𝑇 , and 𝑤𝑤𝑖𝑖𝑐𝑐  is 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 =  (0,0,1)𝑇𝑇 . In addition, 𝑣𝑣𝑖𝑖𝑎𝑎 =
−𝑤𝑤𝑖𝑖𝑎𝑎 × 𝑝𝑝𝑖𝑖𝑎𝑎, 𝑣𝑣𝑖𝑖𝑏𝑏 = −𝑤𝑤𝑖𝑖𝑏𝑏 × 𝑝𝑝𝑖𝑖𝑏𝑏, and 𝑣𝑣𝑖𝑖𝑐𝑐 = (0,0,1)𝑇𝑇, where 𝑝𝑝𝑖𝑖𝑎𝑎 =
(0, 0, 2𝑟𝑟)𝑇𝑇 and 𝑝𝑝𝑖𝑖𝑏𝑏 = (0, 0, 0)𝑇𝑇. The angle 𝜃𝜃𝑖𝑖 is the rotational 
pan joint angle and d is the distance between the frames 
{𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} and {𝑖𝑖𝑢𝑢𝑢𝑢}. Finally, [𝑆𝑆] of 𝑆𝑆 = (𝑤𝑤,𝑣𝑣)𝑇𝑇 is 

[𝑆𝑆] = �[𝑤𝑤] 𝑣𝑣
0 0

� ∈ 𝑠𝑠𝑠𝑠(3),                               (6) 

where 

Figure 2.   Schematics of the rolling joint. (a) Position and orientation of the 
{𝑖𝑖𝑢𝑢𝑢𝑢} and {𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} frames in the segment of the rolling joint (front and side 
views). (b) Relationship between the segments with contacts on the rolling 
surfaces. (c) Assumptions of the rolling joint as a two-joint rigid arm. (d) 
Position and orientation of the {𝑖𝑖 + 1𝑢𝑢𝑢𝑢} and {𝑖𝑖 + 1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} frames. 
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[𝑤𝑤] = �
0 −𝑤𝑤3 𝑤𝑤2
𝑤𝑤3 0 −𝑤𝑤1
−𝑤𝑤2 𝑤𝑤1 0

� ∈ 𝑠𝑠𝑠𝑠(3).            (7) 

Eight points configure the hole in the segment, and the 
positions 𝑝𝑝𝑗𝑗 of these points are defined based on the position 
of the {𝑖𝑖𝑢𝑢𝑢𝑢} frame. The positions of the points 𝑃𝑃𝑖𝑖

𝑗𝑗 generated by 
the bending of the rolling joint are calculated in the fixed frame 
{𝑠𝑠} as  

𝑃𝑃𝑖𝑖
𝑗𝑗 = 𝑅𝑅𝑖𝑖

𝑇𝑇(θ)𝑝𝑝𝑗𝑗 + 𝑃𝑃𝑖𝑖
𝑇𝑇(θ), 𝑖𝑖 = 1, … ,𝑛𝑛, and 𝑗𝑗 = 1, … ,8,  (8) 

where 𝑅𝑅𝑖𝑖
𝑇𝑇(θ) and 𝑃𝑃𝑖𝑖

𝑇𝑇(θ) are obtained by 𝑇𝑇𝑖𝑖(𝜃𝜃) as  

𝑇𝑇𝑖𝑖(θ) = �𝑅𝑅𝑖𝑖
𝑇𝑇(θ) 𝑃𝑃𝑖𝑖

𝑇𝑇(θ)

0 1
� ∈ 𝑆𝑆𝑆𝑆(3).                      (9) 

B. Statics of the rolling joint 
The equilibrium position of the rolling joint is derived from 

statics. Since the thin cables are extended by tension, the 
equilibrium position of the rolling joint differs from the 
position derived by the kinematic model. As the cable lengths 
change, the cable tensions also change. In turn, the cable 
tension affects the joint moment and equilibrium position of 
the manipulator. 

 We modeled the cable as a linear spring to calculate the 
tension in the cable. The cable stiffness 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is derived using 
the cable initial length 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖  from the actuator to the end effector, 
the diameter 𝐷𝐷 of the cable, and Young’s modulus 𝐸𝐸 of the 
cable: 

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝐸𝐸𝐷𝐷2π
4𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖

.                                  (10) 

The tension in the cable, 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , is computed using the 
pretension 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and the difference in cable length due to 
the change in the posture of the rolling joint: 

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑙𝑙𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�.     (11) 

Here, 𝑙𝑙𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  is the cable length calculated from the changed 
position of the rolling joint, and 𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is the cable length based 
on the kinematic model of the rolling joint. While the cable 
can pull, it cannot push; if 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is negative, the cable tension 
is set zero. The joint moment 𝑀𝑀𝑖𝑖

𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  is obtained by 

𝑀𝑀𝑖𝑖
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = � 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗

4

𝑗𝑗=1
× 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 × 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 ,       (12) 

where 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 3 × 1  is the position of the contact point 
between the cable and the 𝑖𝑖-th segment based on the center of 
the contact line, and 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 ∈ 3 × 1 is the position of the end 
effector applied by an external force based on the center of the 
contact line. Since each joint can only rotate in one direction, 
the joint moments calculated from (12) are removed, except 
for the moments in the same direction as the joint rotation. 

C. Optimization for minimizing the joint moments 
Due to the nonlinearity of the rolling joint, we chose the 

method of finding the equilibrium position by minimizing the 
joint moments, rather than directly calculating the static 
formula. If the joint moment of the rolling joint is minimized, 
the optimized position is the equilibrium position of the rolling 
joint. Fig. 3 shows the algorithm we used for determining the 
equilibrium position, which we now describe. 

Figure 4.  (a) Prototype of the rolling joint and (b) experimental setup for 
driving the prototype. 

Figure 3.   Algorithm to find the equilibrium position of the rolling joint by 
minimizing the joint moments. 
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First, the initial joint angle determines the position and  
orientation of the rolling joint segment. This position and the 
orientation of the segment determine the position of the cable 
hole and the cable length. Second, the cable length determines 
the cable tension, and the cable tension and external force 
determine the joint moment of the rolling joint. Third, if the 
statically calculated joint moment is not minimized, the 
calculation is repeated until the joint moment is minimized. 
When the joint moment is minimized, the equilibrium position 
is derived, as shown in Fig. 3. 

 We simulated the optimization simulation to minimize the 
joint moments by sequential quadratic programming (SQP) 
using Matlab's fmincon function. We used the joint angles as 
the design parameters of the optimization, the object function 
for which is expressed as:  

𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑀𝑀𝑖𝑖
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�.

𝑛𝑛

𝑖𝑖=1

                             (13) 

 Since the joint moments are in both positive and negative 
directions, simply summing the joint moments misrepresents 
their magnitudes. Therefore, we used the sum of the absolute 
values of the joint moments as the objective function to 
minimize the magnitude of the joint moments. 

III. EXPERIMENTAL RESULTS 

We fabricated a stainless steel prototype of the rolling joint, 
as shown in Fig. 4(a). The diameter of the prototype is 4.5 mm, 
and the length of the prototype is 43 mm. The radius of the 
rolling surface of the segment is 7 mm. The number of the 
segments is 11, including the proximal and end segments. 
There are five pan joints and five tilt joints. By constructing 
the same number of joints and the segment’s lengths, the 
prototype has the same bending motions in the up, down, left, 
and right directions. The cable hole has a diameter of 0.4 mm 

and is located at a distance of 1.8 mm from the center of the 
segment. The end effector is 15 mm from the distal joint, 
which is considered the location of the surgical instrument. In 
addition, the end effector is 7 mm in diameter and has a hole 
designed for a cable that only pulls the end effector. The cable 
diameter is 0.228 mm, and we cut the cable to be 350 mm long. 
The cable is made of stainless steel and manufactured by Carl 
Stahl (part number: 2009). The available bending angle of the 
prototype was set to ±90°. The available strength of this 
cable is 4.54 kgf. 

The experimental equipment is shown in Fig. 4(b). We 
used a laptop as the main controller to drive the prototype with 
sampling time of 10 ms. We used an EPOS4 50/5 
manufactured by Maxon as the position controller for the 
linear actuators. The communication type was a controller area 
network (CAN). The linear actuators to drive the prototype 
were composed of a brushless DC motor manufactured by 
Maxon (part number: 539487) and a linear guide 
manufactured by Misumi (part number: LX1502C). We used 
a load cell manufactured by Dacell (part number: UU3-K20) 
and an indicator manufactured by Das (part number: Dscale2) 
to measure the feedback of the cable tension. The external 
force on the end effector was implemented using a weight 
attached to the cable. We obtained the shape and position of 
the prototype using a telecentric lens and camera manufactured 
by Edmund optics (part numbers 58259 and EO-1312, 
respectively). 

We simulated the bending motion of the rolling joint using 
two models. The bending motion was the same in all directions, 
so the simulation and experiments were performed in one 
direction. One model was based on the kinematic model that 
assumes all joint angles are equal (see Fig. 5(a)). The other was 
constructed by finding the equilibrium position using the 
minimization of the joint moment, as shown in Fig. 5(b). We 
obtained the position and shape of the end effector at six 

Figure 5.   Bending motion of the rolling joint from 0-90 degrees. Position and shape (a) based on the kinematics, (b) based on the optimization, and (c) 
captured from images during the experiment using the prototype of the rolling joint. The yellow dot marks the end effector position. 
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bending angles separated by 18 degrees from 0 to 90 degrees. 
We determined that the model based on the optimization bent 
less than did the model based on the kinematics. This implies 
that the rolling joint does not bend to the desired position 
derived by the kinematics when there is no external force.  

Furthermore, we bent the prototype from 0 to 90 degrees 
using the actuation module in the absence of an external force. 
We captured images of the prototype and marked the end 
effector position by a yellow dot, as shown in Fig. 5(c). The 
prototype did not bend to the desired position based on the 
kinematics, similar to the simulation result shown in Fig. 5(b). 
The end effector of the prototype was bent less than the end 
effector in the optimized simulation because the cable tension 
was reduced by the friction between the cable and the segment. 
The end effector position of the simulation based on the 
optimization was closer to the position of the experimental 
result than that of the simulation based on the kinematics.  

We then carried out experiments to bend the prototype of 
the rolling joint in the presence of an external force. The 
bending angles of the rolling joints were set to 0, 30, 60, and 
90 degrees. The external force acting on the prototype was 
implemented by pulling the cable. The magnitude of the 
external force was changed by hanging different weights at the 
end of the cable. For each bending angle, the weight of the 
external force was increased from 0 to 100 g in 20 g increments. 

The external force acted on the end effector in a direction 
perpendicular to the direction that the rolling joint was pointed. 
For each combination of external force magnitude and bending 
angle, we captured images of the shape of the prototype and 
marked its end effector positions, as shown in Fig. 6. 

To compare the simulation and the experimental results, 
we overlaid the shape of the optimized simulation onto the 
images of the experiment and marked the end effector 
positions as green dots, as shown in Fig. 6. In that figure, we 
also marked the end effector positions calculated by the 
kinematics as red dots. By comparing the shapes of the rolling 
joint from the optimized simulation and the prototype with the 
external force applied, it is apparent that both shapes were 
similar at each bending angle shown in Fig. 6. As the force 
increases in both the simulation and the experiment results, the 
rolling joint is pushed backward in the direction of the external 
force. 

We compared the end effector positions between the 
simulation results and the experimental results. For a given 
bending angle, the positions calculated by the kinematics do 
not change as the external force increases. By contrast, the end 
effector positions of the optimized simulation and the 
experiment changed significantly (by more than 10 mm in 
some cases) as the external force increased. The end effector 
positions derived by the optimized simulation were similar to 

Figure 6.   Position and shape of the end effector from simulations (colored lines) and experimental results (images) in which both the bending angle (y-
axis) and external force (x-axis) are changed. The positions of the end effector in the optimized simulation results (marked by a green dots) are added to 
the images using the same scale and base position. The red dots are the end effector positions calculated based on the kinematics, and the yellow dots are 
the prototype's end effector positions. The external force is perpendicular to the direction in which the rolling joint is pointed (marked by the blue arrows 
in the first column). The bending angles are (a) 0 degrees, (b) 30 degrees, (c) 60 degrees, and (d) 90 degrees. 
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those from the experimental results, even as the external force 
changed for the same bending angle. 

Fig. 7 shows the error of the end effector positions, defined 
as the difference between the simulations and experimental 
results. The solid blue line with circles is the error between the 
optimized simulation and the experimental results, and the 
dotted red line with triangles is the error between the 
kinematics simulation and the experimental results. The figure 
demonstrates that the errors of the kinematics simulation 
increase monotonically with bending angle, while the errors of 
the optimized simulation remain relatively constant. 

 The average error between the optimized simulation and 
the experimental results is 2.11 mm, and the maximum error is 
4.13 mm. By contrast, the average error between the 
kinematics simulation and the experimental results is 8.73 mm, 
and the maximum error is 18.17 mm. Therefore, with 
optimization, the average error is reduced by 75.74%, and the 
maximum error is reduced by 77.22%. These results 
demonstrate that the optimized simulation accurately 
estimates the shape and position of the rolling joint when the 
bending angle and external force are changed. 

IV. CONCLUSION 

In this paper, we presented an optimization method to find 
the equilibrium position of the rolling joint in HRMs. The 
latter was found by minimizing the sum of the absolute values 
of the joint moments. The error between the optimized 
simulation and the experiment results was less than 4.13 mm, 
which was 77.22% better than the kinematic simulation that 
assumed all joint angles are equal. The way that the shape of 
the rolling joint changed in the optimized simulation was very 
similar to the way that the shape of the experimental prototype 
changed. This verifies that our method for finding the 
equilibrium position accurately estimates the bending 
movement of the rolling joint in the presence of an external 
force. 

 Our method for estimating the shape and position of the 
rolling joint can be applied to HRMs with multi-segments, 
which is not limited to the rolling joint. On the other hand, our 
study has a limitation that it is difficult to control in real-time 
because it requires sufficient time for the optimization. 

We believe this study is the starting point for future 
research on the control technology of HRMs for the 
automation of microsurgical robots. In future work, if the 
optimization calculation speed is fast, and the sensor attached 
to the tip observes the reaction force, this study will contribute 
to the real-time control and the automation of the surgical 
robots. 
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