
Minor Change, Major Gains:
The Effect of Orientation Formulation on Solving Time for Multi-body

Trajectory Optimization

Alexander Knemeyer∗1, Stacey Shield1, Amir Patel1,

Abstract— Many different coordinate formulations have been
established to describe the position of multi-body robot models,
but the impact of this choice on the tractability of trajectory
optimization problems has yet to be investigated. Relative
formulations, which reference the position of each link to its
predecessor, reduce the number of variables and constraints
in the problem, but lead to cumbersome expressions for the
equations of motion. By contrast, referencing the positions
to an absolute frame simplifies these equations, but necessi-
tates more coordinate variables and connection constraints. In
this paper, we investigate whether changing the orientation
coordinates of a multi-body system model from relative to
absolute angles can reduce the time required to solve the
problem. The two approaches are tested on a variety of two-
and three-dimensional models, with and without unscheduled
unilateral contacts. Across all cases, the absolute formulation
was found to be the more successful option. The performance
improvements increased with the complexity of the system and
task, culminating in the challenging example of a 60-degree turn
on a 3D quadruped model, which was only able to converge in
the allotted time when absolute angles were used.

I. INTRODUCTION

Trajectory optimization is a valuable tool that roboticists
and biologists alike use to investigate motion. It has a variety
of proven use-cases, including planning whole-body ma-
noeuvres [1][2][3], identifying efficient gaits that exploit the
body’s passive dynamics [4][5], devising control policies for
agile maneuvers [6], designing optimal robot morphologies
[7][8][9] and exploring more conceptual questions about
locomotion [10]. The major drawback, especially when more
elaborate whole-body models or long time horizons are
involved, is solving time.

Innovations such as improved integration methods [11],
contact-invariant approaches [12] and warm-starts with sim-
pler models [13] have made the generation of accurate
representations of poorly-specified, intricate tasks on detailed
models feasible, but an aspect of trajectory optimization that
has received little attention regarding performance improve-
ment is the kinematic formulation of the model itself.

Describing the robot’s position in the joint space has the
advantage of producing a minimal set of coordinate variables
and ensuring that the links in the system remain connected
without the need for explicit positional constraints, but it
produces complicated Coriolis terms when used to describe
long serial chains of links. While it has been observed that
removing these problematic terms can allow the model to
solve faster [14], neglecting them becomes detrimental to
the accuracy of the simulation as the movement becomes

𝜃1

𝜃2

𝜃𝑛

𝜃1

𝜃2

𝜃𝑛

𝑙

Absolute (A) Relative (R)

⋯ ⋯

A

R

Fig. 1. Diagram of a 2D n-link pendulum, contrasting the absolute (A) and
relative (R) angle formulations. The plot compares the number of operations
in the symbolic equations of motion (EOM) as the number of links increases.

more rapid and dynamic.
Formulations that reference positions and orientations to

the inertial frame, rather than relative to preceding links,
result in much simpler expressions for the equations of
motion (EOM), at the cost of many more coordinate variables
and explicit connection constraints. This is illustrated in
Fig. 1, which shows how many operations make up the
symbolic EOM for planar pendulums of increasing length
using two different orientation formulations. When the angles
are referenced to a world frame, each subsequent link adds
far fewer operations to the computational burden.

In this paper, we compare the performance of trajectory
optimization problems formulated using relative versus abso-
lute orientation coordinates. First, we discuss the differences
between the approaches we are considering and how they
might impact the tractability of the problem. We then test
the solving times using three models, each of which adds a

IEEE Robotics and Automation Letters (RAL) paper presented at the
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

Copyright ©2020 IEEE



new aspect to the challenge:
1) long serial chains,
2) unscheduled foot-ground contacts,
3) 3D locomotion.

Finally, we use a complicated manoeuvre on a high
degree-of-freedom (DOF) system to demonstrate that this
seemingly-minor adjustment affects the performance enough
to make or break the successful convergence of a demanding
problem.

These experiments contribute to the trajectory optimization
literature by showing that the choice of coordinates is a
significant aspect of problem design, and guiding readers to-
wards approaches that are conducive to fast, reliable solving.
While the examples we chose are specific to legged robotics,
the results are relevant to a broad range of motion planning
and optimal control problems.

II. MULTI-BODY DYNAMICS

Changing the orientation formulation of a model affects
two aspects of the trajectory optimization problem: the
equations of motion, and the joint constraints necessary to
restrict the movement of rigid bodies relative to each other.

A. Equations of motion

The dynamics of a rigid multi-body system are often
expressed in the manipulator equation form:

Mq̈+Cq̇+G = Bu+ JTLλ (1)

where q is the vector of generalized coordinates for the
system, M represents the mass matrix, C the Coriolis and
centrifugal matrix, G the gravitational force, B the input
mapping, and u the generalized input. Interactions with
objects and the environment are captured by the contact
Jacobian JL and the contact forces λ. n and p represent the
number of the input forces and contact points respectively.

Using an absolute orientation formulation makes the ele-
ments in these matrices easier for a nonlinear programming
(NLP) solver to process in two ways: it simplifies them - that
is, reduces the number of operations required to calculate
them (as shown in Fig. 1) - and improves their sparsity.

These improvements can be credited to changes in the
expressions relating the model’s coordinates to the world
frame. Consider the n-link pendulum in Fig. 1: when relative
angles are used, the absolute orientation of the nth link
must be calculated by adding the orientations of all previous
links. This leads to a Jacobian where the elements mapping
joint angles to translational degrees of freedom depend
on all preceding joint angles. Most importantly from the
solver’s point-of-view, this causes the equations of motion
and contact equations to have many more nonzero partial
derivatives.

When the orientation is already expressed in the world
frame, the corresponding Jacobian elements each depend on
only one angular position, and therefore, one non-zero partial
derivative is created where there would otherwise have been
n. As an illustration of how these improvements carry over

A
bs

ol
ut

e

1

R
el

at
iv

e

2 3 4

Fig. 2. Sparsity of the Hessians of the Coriolis terms for each link of
a planar 4-link pendulum arising from relative and absolute orientation
formulations.

A

JL

R

 

A

Hess(zc)

R

 

Fig. 3. Sparsity patterns for the contact Jacobian JL and Hessian of the
contact height zc for the 3D hopper using absolute (A) and relative (R)
orientation formulations.

to the equations of motion, Fig. 2 compares the sparsity of
each of the Coriolis terms Cq̇ for a 4-link planar pendulum.

Especially because contact interactions typically occur at
a robot’s extremities, simplifying the Jacobian also results in
a much more tractable contact model.

Fig. 3 compares the sparsity patterns for the contact
Jacobians, and the Hessians of the foot height for the 3D
monoped model described later in this paper. Depending
on how the model is configured, the Jacobian itself will
not necessarily have fewer non-zero elements, expressions
defining the auxiliary contact variables will have sparser
derivatives. The work of Geilinger, et al. [15] demonstrates
how a more favourable Hessian can have a notable impact on
the convergence of an optimal legged locomotion problem.

B. Joint constraints

In two dimensions, changing the orientation representation
to an absolute frame does not require any further modifica-
tion to the broader formulation: it is as simple as depicted in
Fig. 1. In 3D, however, motion constraints that are implicit in
the relative version must be included explicitly, together with
the constraint forces necessary to facilitate them [16]. These
forces are added to the state vector at each collocation point,
and chosen by the solver as needed to satisfy the constraints.
In the absence of added joint constraints, all connections
behave as spherical ”ball-and-socket” joints.

This is no longer a minimal coordinate representation: a
body connected to its predecessor by a single-DOF rotary



.
𝑗𝜃𝑖

𝜏𝑎

𝑦

𝑧

𝑥 𝜃

𝜓

𝜙

𝑥𝑗 𝑦𝑗

𝑧𝑗

𝜏𝑐𝜙

𝜏𝑐𝜓

.
𝑗𝜓𝑖 𝑦𝑖

.
𝑗𝜙𝑖

𝑧𝑖

𝑥𝑖

𝑦𝑗
𝑧𝑗

𝑥𝑗

𝑥𝑖
𝑦𝑖

𝑧𝑖
𝜏𝑐

𝜏𝑎𝜃

𝜏𝑎𝜙

.
𝑗𝜃𝑖

.
𝑗𝜓𝑖

.
𝑗𝜙𝑖

Rotary joint

Hooke’s joint

Fig. 4. Variables associated with two types of joint used in 3D systems.
The additional angular coordinates required in an absolute formulation are
noted in grey, and the constraint torque variables are shown in red.

joint requires an additional two coordinates when its ori-
entation is expressed in world-frame terms. Redundant co-
ordinates managed by connection constraints and constraint
forces are an aspect this approach shares with the maximal
coordinate representations used in areas such as computer
graphics [17]. Since the translational coordinates are still
referenced recursively, the connections between links remain
implicit, and there is no need for the positional constraints
that would be required to keep the links joined in a fully
global formulation.

The canonical form of the manipulator equation, modified
to include these constraint torques, is as follows:

Mq̈+Cq̇+G = Bu+ JTLλ+ JTc Tc (2)

where Tc is a vector of constraint forces and torques
mapped into the equations of motion via the Jacobian of
the angle constraints, Jc. Note that, although we use the
same names for these components because they fulfil the
same general roles, the matrices in the modified manipulator
equation are not the same as those in (1) - they are the ones
generated using absolute referencing. Similarly, to preserve
familiarity, we use q to symbolize the vector of coordinates
including the absolute angles, not the joint-space coordinates.

The following examples describe the constraints that must
be added for two kinds of joint, shown in Fig. 4 and used in
models in this paper. A rigorous treatment with more joint
types can be found in [18].

1) Rotary joint: A rotary joint (also known as a hinge or
revolute joint) allows to bodies to rotate about a common
line x̂i = x̂j (using the example in Fig. 4). This type of
joint might be used to remove two degrees of freedom from
a knee in a biped. The constraints to enforce this are:

x̂i · ŷj = 0 x̂i · ẑj = 0 (3)

They are implemented by means of the constraint torques
τcφ and τcψ that act on the restricted degrees of freedom.

2) Hooke’s joint: A Hooke’s joint (also known as a
universal joint) permits two successive rotations between
rigid bodies. A defining result is that lines ẑi and ẑj remain
perpendicular. This type of joint might be used to remove one
degree of freedom from a hip in a quadruped. The constraint
to enforce this is calculated using,

ŷi · x̂i = 0 (4)

Once again, the constraint torque τc is required to make the
constraint feasible.

Particularly for systems that largely consist of single-
DOF joints, the number of decision variables in the problem
will be much larger when the absolute formulation is used.
Considering positions, velocities and accelerations for each
coordinate, the formulation change adds eight variables for
each rotary joint. It also adds more constraints, as range-
of-motion restrictions that could be imposed with variable
bounds in a relative formulation now require equations to
specify. Depending on the NLP solving algorithm used, this
change from variable bounds to constraint equations could
affect the way these constraints are handled.

The possible advantage of absolute over relative coordi-
nates hinges on one question: will the simplified expression
of the dynamics offset this many-fold increase in problem
size?

III. METHOD

In this section, we describe the approach to trajectory
optimization used for the experiments that follow. The mod-
els used and the tasks they perform are described in the
context of each experiment. In each case, we compare the
same system using relative angles against the absolute angle
formulation. Some familiarity on the subject is assumed - for
a detailed introduction, the reader is referred to the tutorial
in [19].

A. Direct collocation

Direct collocation is used to formulate the dynamics
constraints without the need for forward integration as used
by shooting methods, which have known disadvantages [19].
Specifically, we use the Radau quadrature-based approach
described in [11]. This has an accuracy of order O

(
(h2K−1

)
[20] where h is the duration of each time step and K is the
number of collocation points in each finite element. We use
a three-point formulation.

To improve performance, we use a two-stage solving
approach: first, a coarse solution is generated using implicit
Euler integration, then the values at each element are used
to seed the values at all three collocation points of the
corresponding element for the subsequent Radau stage.

B. Contact-invariant Approach

Some of the models incorporate unilateral contact con-
straints to model foot-ground impacts. We enforce these



A R
2

100

101

102

103

so
lv

e 
tim

e 
[s

]

A R
4

A R
6

A R
8

number of links

Fig. 5. Solving time for planar n-link pendulums, using absolute (A) and
relative (R) angle formulations. The circle and bar represent the median and
interquartile range, respectively.

through complementarity constraints, using the method de-
scribed in [12] adapted to work with higher-order collocation
[11]. This models the contacts as inelastic collisions and
incorporates sliding corresponding to a Coulomb coefficient
of friction µ. We use a penalty method to make the associated
equality constraints more tractable for the solver [21]. This
involves setting the jth such constraint at the ith collocation
point equal to some penalty variable pij, and then minimiz-
ing the sum of these penalties (P ) to below the constraint
tolerance as a term in the objective function. A tunable scalar
ρ is used to weight P to at least two orders of magnitude
larger than the objective term.

A variable time step is also used in all problems involving
such constraints. For a problem consisting of N elements,
this is implemented by using a nominal timestep hn = T

N ,
where T is a reasonable approximation of the total time
required for the manoeuvre, and allowing the timestep hi
at each element to take on values within 20 percent of hn.
Since the contact states can only change from timestep to
timestep, this eliminates some unnatural movements which
might otherwise arise.

C. Initialization

Unless otherwise specified, the state variables of all mod-
els are initialized from vectors of small random values prior
to the first-order pre-solve stage. The same seeds are applied
to both configurations in each test, to prevent the perfor-
mance of either from being biased by an especially poor
starting point. In general, ten random seeds were attempted
for each configuration.

D. Solving

All experiments were written in the Python optimization
library Pyomo [22][23]. The NLP solver IPOPT [24] with the
linear solver MA86 [25] was used for all tests. The solving
times stated were observed on an AMD Ryzen 7 1700 Eight-
Core Processor. Animations showing sample results from
each experiment are included in the supplementary video.

IV. EXPERIMENTS

A. Planar n-link pendulum swing-up

The first test system is a planar n-link pendulum, shown
in Fig. 1. There was no actuator at the base joint, and the
torque at all other joints was limited to the product of the
weight and length of one link.

1) Experiment: The model performed a swing-up maneu-
ver from rest, minimizing

J =

m∑
j=2

N∑
i=1

τ2ji (5)

where τji is the torque acting at the top of the jth link at
element i. The swing-up was specified by having all links
start at rest at zero radians, and end at rest at π radians
relative to the inertial frame. A fixed time of 3 seconds
discretized into N = 50 elements was allocated for the
motion.

2) Results: The results in Fig. 5 show that the absolute
angle formulation solves significantly faster, and scales better
with an increasing number of links. We observed that both
formulations required around the same number of algorithm
iterations to solve, with each iteration for the absolute angle
model completing far faster. This is further supported by
the solver log files, which show an average of 86% of the
solving time for the relative-angle model being spent on NLP
function evaluations, compared to 52% for the absolute-angle
model. This mirrors the observation about the number of
operations in the equations of motion, shown in Fig. 1.

B. Planar monoped hopper

The second test system is a planar monoped hopper with
a two-link leg, shown in Fig 6A. The three serial links in
the system are similar to a 3-link pendulum with an added
unilateral foot-ground contact. This similarity is highlighted
so that any performance differences due to the addition of a
contact model can be better isolated.

1) Experiment: The model performed a 5 meter missing
the boat [10] sprint from rest, minimizing actuator effort
according to

J =

N∑
i=1

τ21i + τ22i + ρP, (6)

where τ1i and τ2i are the input joint torques at the ith element
of the hip and knee respectively. A total time of T = 2
seconds, discretized into N = 100 elements, was allocated
to perform the maneuver. The initial and final poses were
not specified beyond the requirement that it start at x = 0m
and finish with x = 5m.

2) Results: The solving times for each angle configuration
are shown in Fig. 7. Again, the absolute formulation performs
better, but the more interesting aspect is how much better:
compared to the relatively minor difference in the case
of similarly-sized pendulum models, the improvement is
greater. This indicates that the contact constraints specifi-
cally are made more tractable by the change. As with the



𝜃𝑙1

𝑥, 𝑦

𝜃𝑙2

𝜃𝑏

(A)

𝑥

𝑧

𝜃𝑏 𝜙𝑏

𝜓𝑏

𝜃𝑙1
𝜙𝑙1

𝜓𝑙1

𝜓𝑙2

𝜙𝑙2
𝜃𝑙2

(B)

𝑦

𝑥

𝑧

𝑦

𝜓𝑏1
𝜙𝑏1

𝜃𝑏1

𝜃𝑏2 , 𝜙𝑏2, 𝜓𝑏2

𝜃𝑡1 , 𝜙𝑡1, 𝜓𝑡1

𝜃𝑡2 , 𝜙𝑡2, 𝜓𝑡2

𝜃ℎ𝑟1 , 𝜙ℎ𝑟1 , 𝜓ℎ𝑟1

𝜃ℎ𝑟2 , 𝜙ℎ𝑟2 , 𝜓ℎ𝑟2

𝜃𝑓𝑟1 , 𝜙𝑓𝑟1 , 𝜓𝑓𝑟1

𝜃𝑓𝑟2 , 𝜙𝑓𝑟2 , 𝜓𝑓𝑟2

(C)

Fig. 6. Models used in each experiment: (A) planar monoped, (B) spatial monoped, (C) spatial quadruped, with its left side coloured gray to differentiate
from its right. The parameters of the models are provided in the Appendix.

A R
2D

102

103

so
lv

e 
tim

e 
[s

]

A R
3D

Fig. 7. Solving time for planar and spatial monoped models. The circle
and bar represent the median and interquartile range, respectively.

pendulum, a smaller portion of the solving time was spent
on NLP function evaluations for the absolute-angle model.
It used an average of 20%, while the relative-angle model
used 46%.

C. 3D monoped hopper

Our third test is of a 3D monoped hopper, shown in
Figure 6B. It is similar to the planar model with an additional
input torque for abduction. Put another way, a Hooke’s joint
was used for the hip while a rotary joint was used for the
knee. The floating base body of the hopper is exactly the
same for both formulations: qb = [x y z φ θ ψ]T where φ, θ
and ψ are the roll, pitch and yaw in the 3D rotation Euler-321
[26] and (x, y, z) is the absolute position in space.

The approaches differ significantly for the leg, however.
The absolute angle model was constrained using the equa-
tions described in sections II-B.1 and II-B.2. This resulted
in 6 angles in the leg’s state vector, along with the definition
of three additional constraint forces.

In contrast, the top link in the relative-coordinate model

was expressed as two rotations from the base, while the
bottom link was a single further rotation from the top link.
This means that the position of the foot in this relatively
simple model is separated from the inertial frame by six
successive rotations - three for the body, two at the hip and
one at the knee.

1) Experiment: The hopper was made to find a minimum-
effort periodic gait with an average velocity of 5m/s. Peri-
odicity was enforced by constraints specifying that the initial
and final position and velocity values were equal. The initial
and final states were not specified otherwise. We allocated
T = 0.7 seconds for the stride, discretized into N = 30
elements. The cost function was the same as for the planar
monoped and the implicit Euler method was used in the pre-
solve stage.

2) Results: The results in Fig. 7 show that the absolute
angle formulation converges significantly faster, often finding
minimum-effort gaits in under 3 minutes. As in previous
tests, 65% of the solve time spent on NLP function evalua-
tions for the absolute-angle model was significantly less than
the 83% spent by the relative-angle one.

D. 3D quadruped
Besides the ability to find trajectories that minimize some

cost, in many applications, simply the ability to find tra-
jectories at all is what makes optimization such a useful
tool. By solving the forward and reverse kinematics problems
simultaneously, it allows feasible motions to be simulated
when neither the actions nor the forces required to drive them
are known beforehand. This is especially valuable when the
motions-of-interest are dangerous or difficult to coax out of
human or animal subjects.

One such example is dynamic quadrupedal turning. Sev-
eral aspects make it an especially challenging trajectory
optimization problem:

• It cannot be reduced to a single plane of motion, so a
3D model with many degrees of freedom is required.

• The optimal foot contact order is not known a priori.
• It potentially requires a time horizon equivalent to

several gait cycles.



X [m]
4 6 8 10 12

Y 
[m

]

−1
0
1
2
3
4
5
6

Z 
[m

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 8. Keyframes of a 3D quadruped performing a dynamic 60◦ turn to its left. The final stance on the right side at t = T was constrained to be the
same as the initial stance at t = 0, but rotated by 60 degrees about the vertical axis.

Previously, we attempted to generate this motion using a
model with a relative angle configuration, but it could not
successfully converge even when allowed 12 hours to solve.
Here, we demonstrate that the changes described in this paper
have made it possible to find a trajectory for a 3D quadruped
performing a dynamic 60 degree turn with an unscheduled
contact order.

Each leg of the quadruped contains the same degrees of
freedom as the monoped leg. The body consists of four links
connected by Hooke’s joints (two for the spine, and two for
the tail) modelled in the same way as the legs.

1) Experiment: Since the relative-angle model was not
able to solve the turn in a reasonable time, we selected a
simple dropping motion to provide a performance compari-
son and to show that both can converge. For this task, the
initial state of the model is set to rest in a fixed position
a short distance above the ground, while the final state is
unspecified. The cost function was the same contact penalty
as the 3D monoped hopper, for all four legs. The relative-
angle quadruped converged in an average of 1240 seconds,
while the absolute-angle quadruped took an average of 47
seconds. There was little variance in the solve time for both.

The quadruped turn proof-of-concept was solved in two
stages: first, a straight-line N = 50 element, 8 m/s periodic
gallop was found using the same weighted contact penalty
with minimum torque effort cost as was used for the 3D
monoped.

Next, the turn: the position and velocity data of a point
sampled from the periodic gait were used to fix the initial
and final points, with the final position corresponding to a 60
degree yaw rotation of the initial orientation. The final x, y
position was unspecified as the amount of space required to
perform the turn was not known. An approximate version of
the turn, created by concatenating 3 constant-speed gallops
(for a total of N = 150) and interpolating the rotation

linearly over the course of the trajectory, was used as an
initial seed for the second stage. Random noise was added
and several such seeds were tried to reduce the chances of
optimizing into a poor local minimum, and the same cost
function was used.

2) Results: The periodic gait for the absolute-referenced
quadruped reliably converged in under 30 minutes, while the
rapid turn converges in one to three hours (depending on the
initial seed). An image of keyframes from an optimal solution
can be found in Fig. 8.

E. Summary

The results for all models and configurations are summa-
rized in Table I. It shows that the absolute-angle formulation
allows trajectories of equivalent quality to be generated in
less time.

TABLE I
AVERAGE SOLVE TIME AND COST OF ALL EXPERIMENTS

Time [s] Cost
Absolute Relative Absolute Relative

pend. 2 0.437 0.441 1549 1247
pend. 4 6.31 37.8 1788 1504
pend. 6 16.5 194 1288 1213
pend. 8 40.7 1066 1314 1223
mono. 2D 125 500 2.25 2.21
mono. 3D 120 401 3.23 4.74
quad. 3D 1240 47 0 0

V. DISCUSSION

A. Build time

Table II gives the build time for each of the models. This
is the time required to generate the symbolic equations and
construct the optimization problem as an object that can be
passed to the solver.



TABLE II
AVERAGE BUILD TIME FOR ALL EXPERIMENTS

Absolute [s] Relative [s]
pend. 2 0.620 1.00
pend. 4 2.61 7.94
pend. 6 3.09 23.5
pend. 8 4.73 78.4
mono. 2D 3.93 1.00
mono. 3D 369 5913
quad. 3D 3360 23790

For the 3D models, simplifying the symbolic EOM us-
ing functions included in Sympy (the Python symbolic
mathematics library) was found to improve performance
significantly. This is an extremely time-consuming process,
however, which accounts for the large increase in the stated
build times for the 3D monoped over its 2D counterpart.
Without simplification, the 3D monoped can be built in 140
seconds for the absolute-angle model or 155 seconds for the
relative-angle model.

For the quadruped, the relative-angle model could not
be fully simplified within 12 hours, despite simplifying the
equations in parallel on a 16-core computer. The stated build
time for the model corresponds to a version where all terms
in the EOM were simplified except the Coriolis term, which
would have pushed the build time far beyond 12 hours.

B. Maximal coordinates

If the idea that simpler equations leads to better solver
performance is taken to its logical conclusion, the next step
would be to try a maximal coordinate [17] formulation:
representing each 3D body as an individual 6-DOF system
(with 3-DOF for 2D bodies) referenced to the world frame,
connected by constraint forces included in the state variable
at each collocation point. This results in extremely simple
equations of motion, though many more variables and con-
straints are required to implement the connections.

As an experiment, we repeated the planar pendulum test
with this configuration but the results were not promising:
the maximal model required much longer times to solve
than either the relative or absolute angle coordinate options,
and was far less robust, often failing to solve altogether.
Further research is required to see whether the maximal
formulation is beneficial in other cases, and whether there are
modifications that can be made to improve its performance.

C. Limitations of the study

Only the IPOPT algorithm was considered in this study. It
is indeed possible that the difference in performance between
the two configurations might not be as notable for a different
solver. We repeated the pendulum swing-up comparison for
4-link pendulums across a range of available linear solvers
for IPOPT: MUMPS, MA57, MA77, MA86 and MA97 [25].
Although there were differences in the overall performance,
the relative performance between the configurations did not
significantly change.

TABLE III
PARAMETERS FOR EACH LINK IN THE 3D QUADRUPED MODEL

mass [kg] length [m] radius [m]
fr1, fl1 0.171 0.254 0.012
fr2, fl2 0.068 0.247 0.005
hr1, hl1 0.210 0.281 0.010
hr2, hl2 0.160 0.287 0.011

t1 0.400 0.380 0.005
t2 0.200 0.380 0.005

b1, b2 13.00 0.310 0.080

VI. CONCLUSION

Trajectory optimization is a useful tool, but its major
drawback is its potentially slow convergence times for large
multi-body systems. Methods to decrease the time until
convergence often sacrifice accuracy, which may invalidate
the generated trajectories if they differ too much from reality.
Here, we have shown how a minor modelling change -
writing the orientation of every rigid body as a rotation
from the inertial frame, instead of as a relative rotation -
more efficiently deals with the complex Coriolis terms that
arise from long serial changes. This formulation opens up the
possibility of applying trajectory optimization to new, large,
high-speed models in both two and three dimensions.

VII. APPENDIX

A. Pendulum parameters

Each link of the pendulum is modeled as a infinitesimally
thin rod with unit mass and unit length.

B. Monoped parameters

The 2D monoped has a body segment of mass mb = 5 kg
and length lb = 1 m. Both leg segments have mass ml = 1
kg and length ll = 0.5 m. All segments are assumed to be
thin rods.

The parameters of the 3D monoped are the same, but the
body is modelled as a cube with a side length sb = 0.4 m,
and the leg mass is reduced to ml = 0.5 kg.

C. Quadruped parameters

The parameters of the 3D quadruped share the subscripts
associated with the coordinates shown in Fig. 6. All links
are modeled as cylinders.

The values of the parameters are provided in Table III.

REFERENCES

[1] M. Kudruss, M. Naveau, O. Stasse, N. Mansard, C. Kirches,
P. Soueres, and K. Mombaur, “Optimal control for whole-body motion
generation using center-of-mass dynamics for predefined multi-contact
configurations,” in 2015 IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids), pp. 684–689, IEEE, 2015.

[2] K. Mombaur, “Using optimization to create self-stable human-like
running,” Robotica, vol. 27, no. 3, pp. 321–330, 2009.

[3] G. Schultz and K. Mombaur, “Modeling and optimal control of human-
like running,” IEEE/ASME Transactions on mechatronics, vol. 15,
no. 5, pp. 783–792, 2009.

[4] W. Xi and C. D. Remy, “Optimal gaits and motions for legged robots,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3259–3265, IEEE, 2014.



[5] M. Srinivasan, “Fifteen observations on the structure of energy-
minimizing gaits in many simple biped models,” Journal of The Royal
Society Interface, vol. 8, no. 54, pp. 74–98, 2010.

[6] C. Gehring, S. Coros, M. Hutler, C. D. Bellicoso, H. Heijnen,
R. Diethelm, M. Bloesch, P. Fankhauser, J. Hwangbo, M. Hoepflinger,
et al., “Practice makes perfect: An optimization-based approach to
controlling agile motions for a quadruped robot,” IEEE Robotics &
Automation Magazine, vol. 23, no. 1, pp. 34–43, 2016.

[7] A. Blom and A. Patel, “Investigation of a bipedal platform for rapid
acceleration and braking manoeuvres,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 426–432, IEEE,
2018.

[8] C. Fisher, S. Shield, and A. Patel, “The effect of spine morphology on
rapid acceleration in quadruped robots,” in 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 2121–
2127, IEEE, 2017.

[9] C. Paul and J. C. Bongard, “The road less travelled: Morphology
in the optimization of biped robot locomotion,” in Proceedings 2001
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Expanding the Societal Role of Robotics in the the Next Millennium
(Cat. No. 01CH37180), vol. 1, pp. 226–232, IEEE, 2001.

[10] C. Hubicki, M. Jones, M. Daley, and J. Hurst, “Do limit cycles matter
in the long run? stable orbits and sliding-mass dynamics emerge in
task-optimal locomotion,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), pp. 5113–5120, IEEE, 2015.

[11] A. Patel, S. L. Shield, S. Kazi, A. M. Johnson, and L. T. Biegler,
“Contact-implicit trajectory optimization using orthogonal colloca-
tion,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2242–
2249, 2019.

[12] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[13] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in 2014 IEEE-RAS
International Conference on Humanoid Robots, pp. 295–302, IEEE,
2014.

[14] A. Hereid, O. Harib, R. Hartley, Y. Gong, and J. W. Grizzle, “Rapid
bipedal gait design using c-frost with illustration on a cassie-series
robot,” arXiv preprint arXiv:1807.06614, 2018.

[15] M. Geilinger, R. Poranne, R. Desai, B. Thomaszewski, and S. Coros,
“Skaterbots: Optimization-based design and motion synthesis for
robotic creatures with legs and wheels,” ACM Transactions on Graph-
ics (TOG), vol. 37, no. 4, pp. 1–12, 2018.

[16] D. T. Greenwood, Advanced dynamics. Cambridge University Press,
2006.

[17] D. Baraff, “Linear-time dynamics using lagrange multipliers,” in
SIGGRAPH, vol. 96, pp. 137–146, Citeseer, 1996.

[18] C. Roithmayr, Relating constrained motion to force through Newton’s
second law. PhD thesis, Georgia Institute of Technology, 2007.

[19] M. Kelly, “An introduction to trajectory optimization: How to do your
own direct collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904,
2017.

[20] L. T. Biegler, Nonlinear programming: concepts, algorithms, and
applications to chemical processes, vol. 10. Siam, 2010.

[21] Z. Manchester and S. Kuindersma, “Variational contact-implicit trajec-
tory optimization,” in International Symposium on Robotics Research
(ISRR), Puerto Varas, Chile, 2017.

[22] W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil,
B. L. Nicholson, and J. D. Siirola, Pyomo–optimization modeling in
python, vol. 67. Springer Science & Business Media, second ed., 2017.

[23] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: modeling and
solving mathematical programs in python,” Mathematical Program-
ming Computation, vol. 3, no. 3, pp. 219–260, 2011.

[24] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[25] HSL, “A collection of fortran codes for large-scale scientific compu-
tation,” See http://www.hsl.rl.ac.uk, 2007.

[26] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and
rotation vectors,” Matrix, vol. 58, no. 15-16, pp. 1–35, 2006.


