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Abstract— Wearable motion sensing in daily life has attracted
attention in various disciplines. Especially, stretchable strain
sensors have been instrumented into garments (e.g. brace).
To estimate joint motions from such sensors, previous studies
have modelled relationships between the sensor strains and
motion parameters via supervised/semi-supervised learning.
However, typically these only model a single relationship as-
suming the sensor to be located at a specific point on the
body. Consequently, they exhibit reduced performance when
the strain-parameter relationship varies due to sensor shifts
caused by long-term wearing or donning/doffing of braces.
This letter presents a shift-adaptive estimation of knee joint
angle. First, a brace is instrumented with two stretch sensors
placed at different heights. Next, the different strain-angle
relationships at varying brace shift positions are learned using
Gaussian mixture models (GMMs). The system then estimates
the joint angle from the sensor strains through Gaussian
mixture regression using a maximum likelihood shift GMM,
which is identified by referring to the two strains in a previous
1 s period. Experimental results indicated that the proposed
method estimates the joint angle at multiple shift positions (0–20
mm) with higher accuracy than methods using a single model,
single sensor, or referring to the present sensor strains.

I. INTRODUCTION
Wearable sensing for the tracking and monitoring of

human motion has recently attracted attention in various
disciplines, including medicine and healthcare [1]–[3], sports
science [4]–[6], and human-computer interaction (e.g., vir-
tual/augmented reality [7], [8]). For example, in the field
of medicine and healthcare, assessing the kinematic gait
parameters such as the range of joint motion yields beneficial
information for tracking disease progression and evaluating
the effect of clinical interventions (e.g., rehabilitation) of
patients with musculoskeletal disorders [9]–[11].

Inertial measurement units (IMUs) integrating accelerom-
eters, gyroscopes, and magnetometers have achieved remark-
able development as wearable motion-sensing technologies
through advancements in electronic miniaturisation, signal
processing, and cost diminishment [12]. Such system re-
constructs the motion using the orientations of the IMUs
attached to the body segments. For the orientation estimation,
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a strap-down-integration of the angular rates and a drift
elimination using the gravitational acceleration and heading
determined from magnetometer measurements are typically
employed. Although many sensor fusion algorithms have
been proposed, drift elimination in long-term measurements
and compensation for magnetic disturbances inevitable in a
living environment are still attracting the interest of numer-
ous research groups [13]. In addition, IMUs are typically
made of rigid components and must be tightly attached
to the body because the motion reconstruction is based
on fixed sensor-to-segment frames and linked rigid-body
modelling. The restraints these introduce restrict their long-
term wearability in daily life.

As alternatives to IMUs, it has been proposed to use
wearable sensors that directly measure the changes in the
joint angles, such as electrogoniometers (rotational poten-
tiometers) [14], [15], flex sensors [16]–[18], fibre-optic sen-
sors [19]–[22], and stretchable strain sensors [23]–[29]. In
particular, the stretch sensor, which transduces a mechanical
deformation (sensor strain) to resistive or capacitive change,
can (i) comply with fabric stretch and capture motion, (ii)
avoid mechanical damage to the sensor, (iii) maintain user
comfort when incorporated into garments, such as gloves
[25], braces [26], or soft sensing suits [23], [28], [29].

To estimate joint motions from such sensors, previous
studies have modelled relationships between the sensor
strains and motion parameters (e.g. angles or positions)
via supervised/semi-supervised learning. However, typically
these only model a single relationship assuming the sensor
to be located at a specific point on the body. Consequently,
these approaches may exhibit reduced performance when the
strain-parameter relationship varies due to shifting of the
sensor with respect to the body, which is caused by long-
term wearing or donning/doffing of garments. Especially in
the brace, Brouwstein [30] reported that 15 min of exercise
induces the brace shift of up to 11 mm, and Singer et al.
[31] mentioned that individuals will likely stop their activity
to adjust the brace position when it has shifted by more than
20 mm distally on the leg. Thus, the previous single model-
based approaches may estimate the motion with low accuracy
when unnoticed brace shift occurs during long-term use.

To address this, this letter presents a shift-adaptive es-
timation of the knee joint angle. The key contribution is
the combination of the following to realise accurate es-
timation. First, a brace is instrumented with two stretch
sensors placed at different heights. The relationship between
the two sensor strains varies depending on the brace shift
position. Second, the different strain-angle relationships at
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Fig. 1. (a) A wrap-style brace is instrumented with two stretch sensors placed above and below the patella hole. (b) The capacitance (proportional to the
sensor strain) decreases more significantly in the lower sensor than the upper sensor (|Cl−C′l |> |Cu−C′u|) at the same joint angle when the brace shifts
downward. Consequently, the relationship between the two sensor capacitances and the joint angle varies depending on the brace shift position. The system
learns these different capacitance-angle relationships at varying brace shift positions using user-specific GMMs. (c) The system estimates the joint angle
adaptively to the brace shift through Gaussian mixture regression by identifying a maximum likelihood (ML) shift GMM. In practical use, the learning
scheme is applied only once at a clinic, and the system then estimates the joint angle without relearning in daily life.

varying shift positions (every 5 mm from 0 to 20 mm) are
learned using Gaussian mixture models (GMMs). Finally, the
system estimates the joint angle from the two sensor strains
through Gaussian mixture regression. The estimation uses a
maximum likelihood shift GMM identified by referring to the
relationships between the two sensor strains in a previous 1
s period. This aims at avoiding incorrect identification and
frequent switching of the maximum likelihood shift GMM
due to the proximity of the learned GMMs and noise of the
sensors.

II. RELATED WORKS

For estimating joint motions from the stretch sensors
instrumented into garments, previous studies have modelled
a relationship between the sensor strains and motion param-
eters using supervised/semi-supervised learning techniques.

Nakamoto et al. [25] constructed a glove instrumented
with a capacitive stretch sensor, whose capacitance was
proportional to the square of the stretch length. They applied
a linear least-squares technique and estimated the wrist
joint angle from the sensor with a root mean square error
(RMSE) less than 3°. Totaro et al. [26] integrated three/five
capacitive sensors into commercial knee/ankle braces. They
then combined sensor outputs using a third, fourth, and
fifth-order polynomials and estimated the angles of the
knee flexion/extension, ankle dorsi/plantar flexion, adduc-
tion/abduction, and rotation with high accuracy (at an RMSE
of less than 4°).

As other approaches, Kim et al. [28] modelled the high
nonlinearity and hysteresis of soft microfluidic resistive sen-
sors as temporal sequences using a recurrent long short-term
memory (LSTM) neural network. The authors predicted full-
body joint positions in a three-dimensional space from a soft
sensing suit instrumented with 20 stretch sensors. In addition,
to reduce both the size and number of the calibration datasets
required, they generated lower-limb joint motions from two
soft sensors attached to each thigh, based on semi-supervised
learning consisting of a deep autoencoder (AE) and a gated
recurrent unit (GRU) [29]. The AE embeds the joint positions
during gait into a latent motion manifold, and the GRU
reduces the computational complexity while maintaining the

performance of the LSTM. The RMSE of the estimated
terminal joint (toe) position is 30.53 mm.

As described above, there have been numerous studies
modelling the relationship between stretch sensor strains and
joint motion parameters using machine learning techniques,
such as linear/polynomial regressions or deep neural net-
works (DNN). However, most of them have modelled a sin-
gle strain-parameter relationship at the appropriate position
of the sensors and not supposed that the relationship varies
due to sensor shifts. Although a recalibration procedure using
a smartphone with a customised application was proposed
in [26], users may not notice sensor shifts and not execute
recalibration until the shift becomes much more than 20
mm distally on the leg [31]. In addition, DNN may induce
larger computational cost/complexity to learn a model, which
is adaptive to sensor shifts and corresponds to noncyclic
motion. Therefore, for continuous motion sensing in daily
life, the sensorised garments are required to identify their
own shifts by referring to the sensor strains and estimate
motion parameters adaptively to the shifts by changing the
model in accordance with the sensor position.

III. METHODS

The flow of the shift-adaptive estimation of the knee joint
angle is shown in Fig. 1. At a clinic, a user wears the instru-
mented brace on the knee and measures joint motions (e.g.,
squatting) in synchronisation with a ground truth device (e.g.,
motion capture cameras or IMUs). The different capacitance-
angle relationships at varying shift positions are then learned
using user-specific GMMs. In daily life, the system estimates
the joint angle adaptively to the brace shift using the GMMs
without relearning.

A. Instrumented Knee Brace With Two Stretch Sensors

An instrumented brace measuring the knee flex-
ion/extension angle was developed as shown in Fig. 1(a).
Flexion/extension occurs along the main axis of the knee
motion and is informative for monitoring a progressive gait
disorder (e.g., knee osteoarthritis [11]) in daily life. We used
a commercial wrap-style brace (Open Patella Knee Stabilizer,
Mueller Sports Medicine, Wisconsin, US) aiming for a daily
use sensorised treatment device. This type of brace is easily



donned/doffed, adjustable to achieve a comfortable restraint,
and effective for the treatment of disorders associated with
degenerative cartilage by stabilising the patella [32].

Two electro capacitive stretch sensors (C-STRETCH®,
Bando Chemical Industries, Kobe, JP) were placed above
and below the patella hole of the brace. The capacitance of
the sensor is proportional to the sensor strain. The sensor
installation is aimed at recognising brace shifts by referring
to the relationship between the two sensor strains while
avoiding artefacts from the physical contact of the sensors
and the skin. The mechanism of changes in the relationship
is illustrated in Fig. 1(b). The capacitance decreases more
significantly in the lower sensor than the upper sensor at the
same joint angle when the brace shifts downward. This is
due to the fact that the fabric of the brace deforms along
with the strain in the skin, which are high in the patella area
and rapidly decrease away from this region [33].

B. Learning User-specific GMMs from Multiple Brace Shifts

The learning flow of user-specific GMMs is shown in Fig.
1(b). First, a user wears the instrumented brace at the appro-
priate position on the knee (brace shift of 0 mm). Next, the
user performs joint motions including knee flexion/extension
(e.g., squatting) with the maximum viable range. The mo-
tions are measured by the brace in synchronisation with the
ground truth device. The measurement provides a dataset
z ∈ R3 consisting of the capacitance of the two stretch
sensors x ∈R2 and the ground truth of the joint angle y ∈R.
A GMM of K components is then fitted to the dataset z
using the iterative expectation-maximisation (EM) algorithm
with k-means clustering. The model is defined based on the
following probability density function:

p(z) =
K

∑
k=1

πkN (z |µk,Σk ) ,
K

∑
k=1

πk = 1 (1)

where πk indicates the prior probabilities and N (z |µk,Σk )
are the Gaussian distributions defined by the mean vectors
µk and covariance matrices Σk, whose components can be
represented separately as follows:

µk =
[

µx,k µy,k
]
, Σk =

(
Σxx,k Σxy,k
Σyx,k Σyy,k

)
(2)

Following collecting data at zero shift, the brace is migrated
to varying anticipated shift positions (every 5 mm up to 20
mm in this study). The knee flexion/extension angle is then
measured during the same joint motion, and a GMM is fitted
to the dataset of each shift position. Finally, the GMMs
at all shifts are integrated with equal mixing proportions.
Note that although increasing the number of considered
brace shift position may enhance the performance of the
system, it requires a larger computational cost for learning
and increases the physical burden on users.

C. Shift-adaptive Estimation of Knee Joint Angle

The system estimates the joint angle from the two sensor
capacitances according to brace shifts, by identifying the
maximum likelihood (ML) shift GMM from the integrated

GMMs. Although the identification typically refers to the
present sensor capacitances, the measurement error and
sensor noise may induce incorrect identification or frequent
switching when the relationships in two sensor capacitances
between the shift GMMs are proximate. Therefore, we
propose to identify the ML shift GMM by referring to the
two sensor capacitances within a fixed time window.

When given the capacitance of the two sensors x, the
probability of each component k of the integrated GMMs
is defined as follows:

βk =
p(k) p(x |k )

∑
nK
i=1 p(i) p(x |i )

=
πk p

(
x
∣∣µx,k,Σxx,k

)
∑

nK
i=1 πi p(x |µx,i,Σxx,i )

(3)

where n is the number of learned shift GMMs (five in this
study). Using βk, the system identifies the ML shift GMM
by referring to the summed probabilities of K components
of each shift GMM averaged in a certain time window T as
follows:

argmax
m

1
T

t0

∑
t=t0−T

K

∑
k=1

βk,m

m = {1,2, ...,n} , θ̂ (t)< θub

(4)

where t0 is the last frame and m is the ML shift GMM. The
time window T includes only frames in which the estimated
joint angle is lower than θub. This condition aims to exclude
datasets of larger joint angles when the sensor stretches are
close to maximum, in which capacitances of the shift GMMs
are proximate despite their differing angles.

Using the identified ML shift GMM, the system estimates
the joint angle from the present two sensor capacitances
through Gaussian mixture regression (GMR) [34].

IV. EXPERIMENT

A. Setup

Two healthy adults (male, age: 26±1 years, height:
1.78±0.5 m, body mass: 64.5±2.5 kg) participated in this
study. Ethical approval was obtained from Keio University
Research Ethics Committee (reference number 31–80) and
informed consent was provided by the participants prior
to the experiments. The participants wore the instrumented
brace on the right knee at a comfortable tightness. Hard
thin CEM-3 plates (95 × 72 × 1.6 mm) incorporating three
infrared reflective markers were then tightly attached to the
right thigh and shank. The positions of the plates were chosen
such that upper/lower markers on the thigh/shank were
located along a line connecting the greater trochanter and the
ankle joint. The capacitance of the two stretch sensors was
amplified and DA-converted using a dedicated module (KIT
BT01, Bando Chemical Industries, Hyogo, JP) placed on the
brace. A data logger (TSND151, ATR Promotions, Kyoto,
JP) on the thigh plate then AD-converted the voltage outputs
of the module and transmitted them to a laptop computer
at 200 Hz through Bluetooth communication. Additional
markers sets were attached to the front of the thigh and shank
and the upper/lower edges of the brace for measuring the
distances of brace shifts. Landmark stickers representing a
5 mm spacing from 0 to 20 mm also adhered to the thigh



and shank for manual brace shifting. The positions of the
reflective markers on the thigh and shank were obtained by
a motion capture system (Nexus, Vicon, Oxford, UK) at 100
Hz. All devices were synchronised using a voltage input.

B. Virtual Knee Joint Marker Generation
The ground truth of the knee joint angle can be calculated

as the angle between two vectors from the knee joint to the
greater trochanter and the ankle joint. However, a reflective
marker could not be attached to the knee joint directly
because the participants wore the knee brace and shifted it
during the experiment. Therefore, a virtual knee joint marker
was generated by referring to the positions of three markers
on the plates attached to the thigh and shank, which could
be modelled as rigid body segments.

The marker generation was executed through an optimisa-
tion inspired by a gap-filling algorithm [35]. The algorithm
fills a target marker unobservable at an interpolation frame
ti by using the positions of the target marker observable at
a reference frame tr and a rotation matrix of three reference
markers from tr to ti. At the reference frame tr and the
interpolation frame ti, the relative positions of the reference
markers M(tr/i) to their center O(tr/i) is defined as follows:

M̄(tr/i) = M(tr/i)−O(tr/i) = M(tr/i)−
1
3

3

∑
j=1

M j(tr/i) (5)

A rotation matrix R from tr to ti can be generated by
calculating a covariance matrix C and by applying a singular
value decomposition using the Kabsch algorithm as follows:

C = M̄(tr)TM̄(ti) = USVT (6)

R(ti) = V

 1 0 0
0 1 0
0 0 d

UT, d =

{
-1 (det(VUT)< 0)
1 (otherwise)

(7)
The target marker positions at ti are then calculated using the
rotation matrix R, the relative positions of the target marker
at the reference frame P̄(tr), and O(ti).

P(ti) = R(ti)P̄(tr)+O(ti)

= R(ti){P(tr)−O(tr)}+O(ti)
(8)

Based on the above algorithm, we identified the virtual
knee joint marker positions P(tr) through a nonlinear opti-
misation minimising the sum of the following two distances
during knee flexion/extension. One was the error between the
two virtual marker positions estimated from three reference
markers on the thigh and shank, respectively, and the other
was the distance from the upper marker on the thigh to
the lower marker on the shank through the virtual marker
(meaning all markers should be on the same plane). The
optimisation is defined as follows:

min
x
‖ f (x)‖2

2 = min
x

(
f1 (x)

2 + f2 (x)
2 + ...+ fn (x)

2
)

(9)

f (P(tr)) ={Rt(ti){P(tr)−Ot(tr)}+Ot(ti)}
−{Rs(ti){P(tr)−Os(tr)}+Os(ti)}
+{P(tr)−Ot(tr)}+{P(tr)−Os(tr)}

(10)
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Fig. 2. The participants were asked to perform two motions for each
brace shift position. (a) Standing still for measuring brace shift distances.
(b) FROM squat for generating a virtual knee joint marker shown in (a) and
learning and testing the estimation methods.

C. Study Procedure

For validating the proposed shift-adaptive estimation
method, the participants were asked to perform the following
tasks:
A) For generating the virtual knee joint marker as shown

in Fig. 2(a), the participants performed a full range of
motion (FROM) squat five times during a 20 s period
at the beginning of the experiment.

B) For measuring the brace position, the participants stood
still for 10 s while wearing the brace at the non-shift
position, as shown in Fig. 2(a).

C) For learning and testing the estimation method, the
participants performed a FROM squat five times within
a 40 s period, as shown in Fig. 2(b). During this motion,
they took a 2-s rest after every squat-stand motion.

D) The participants migrated the brace manually to the
anticipated shift positions (5, 10, 15, and 20 mm away
from the initial position) according to the landmark
stickers. They then repeated tasks B and C for each
brace shift position.

E) The participants returned the brace to the initial posi-
tion and performed tasks B–D once more to reenact
donning/doffing or position correction of the brace.

Tasks B–E indicate that standing still and the FROM squats
were measured for two sets of brace shifts (every 5 mm from
0 to 20 mm) in total.

D. Acquisition of Brace Shift Distance

The brace shift distance at each shift position was calcu-
lated as the mean distance between markers on the front of
the thigh/shank and on the upper/lower edges of the brace
during standing still for tasks B, D and E.

E. Preparation of Learning and Testing Datasets

Using the marker positions obtained in task A, the virtual
knee joint marker was generated through the optimisation (9),
(10) using MATLAB (MathWorks, Natick, MA, US) Opti-
mization Toolbox (lsqnonlin). The knee joint angle during the
squat for tasks C–E was then calculated as the angle between
two vectors, which are from the virtual knee joint marker,



generated by referring to the markers sets on the shank, to the
upper reference marker on the thigh and the ankle marker.
The AD-converted capacitances of the two stretch sensors
were filtered by moving average with a time window of 20
ms for reducing noise and then resampled at 100 Hz to match
the motion capture system.

The data sets consisting of the two sensor capacitances
and the joint angle during the squat were then divided into
the knee flexion (including rest) and extension motions by
referring to the plus/minus sign of the derivative capacitance
in the upper stretch sensor. This was aimed at modelling
the capacitance-angle relationships, which differ between the
stretch and relaxation owing to the different delay times for
the capacitance-to-voltage conversion of the amplifier. The
numerical differentiation was executed using the first-order
derivatives and a moving average filter with a time window
of 200 ms. Note that this operation will likely be unnecessary
in the future if an improvement in the processing speed of
the amplifier can be achieved. All datasets were scaled to
[0, 1] by referring to the measurement range for both sets of
brace shifts, and then homogenised using a box grid filter.

F. Training and Test of Proposed/comparative Methods

Datasets of each set of brace shifts (every 5 mm from 0
to 20 mm) were used for training, and datasets of the other
set were used for testing for cross-validation. For training,
user-specific GMMs were fitted to the datasets of the five
brace shift positions. The number of GMM components was
set to five such that the AIC and BIC values were sufficiently
small. For testing, the proposed method estimated the joint
angle of the datasets of each set by using the GMMs trained
using the other set. As described in section III.C, the ML shift
GMM was identified by referring to the average probability
of each shift GMM in a certain previous period of time. The
time window T was set to 1 s, and the upper limit of data
used for the identification was set to θub = 140°. Using the
identified ML shift GMM, the joint angle was estimated from
the present two sensor capacitances through GMR. The first
round of the squat was excluded from the test section as a
sufficient period of time for identifying the first ML shift
GMM.

To assess the advantages of the proposed method using
the previous ML shift model (PV), three comparative meth-
ods using the same datasets for learning and testing were
examined as follows:

• Single Model (SM): The method learns the relationship
between the two sensor capacitances and the joint angle
at non-shift (0 mm) position as a single GMM.

• Single Sensor (SS): The method learns the relationships
between only the upper sensor capacitance and the joint
angle at five shift positions. The joint angle is estimated
using the ML shift GMM identified by referring only
to upper sensor capacitance.

• Present ML Model (PS): The method learns the rela-
tionships between the two sensor capacitances and the
joint angle at five shift positions similar to PV. The joint

TABLE I
BRACE SHIFTS AND ERROR IN ESTIMATED JOINT ANGLES.

Sub
(Set)

Brace shift (mm) RMSE of estimated joint angle (°)
Target Measured SM SS PS PV

A
(1st)

0 - 3.7 4.5 3.7 3.7
5 8.8 6.3 6.7 5.9 4.7
10 13.2 10.3 7.4 3.2 4.2
15 17.6 15.0 5.8 4.4 4.2
20 26.9 23.6 9.7 10.5 4.0

Overall 11.8±7.9 6.8±1.9 5.6±2.9 4.2±0.4

A
(2nd)

0 2.9 2.7 4.6 5.0 3.1
5 10.3 19.6 4.3 2.7 3.2
10 18.0 36.0 4.9 4.1 3.9
15 19.1 39.3 6.3 5.4 3.5
20 29.9 23.9 9.3 4.0 3.7

Overall 24.3±14.6 5.9±2.0 4.2±1.1 3.5±0.3

B
(1st)

0 - 10.4 7.6 6.1 5.8
5 1.3 5.9 7.7 5.3 4.8
10 6.9 6.6 6.0 3.9 3.2
15 12.4 12.7 5.8 5.7 3.1
20 18.2 17.0 8.3 3.3 3.4

Overall 10.5±4.6 7.1±1.1 4.9±1.2 4.1±1.2

B
(2nd)

0 0.0 7.8 7.6 6.7 6.5
5 2.5 7.6 7.5 5.9 6.7
10 6.2 6.1 6.7 3.5 2.8
15 10.3 4.7 6.7 2.9 2.8
20 19.4 7.0 7.2 3.0 2.9

Overall 6.6±1.3 7.1±0.4 4.4±1.8 4.3±2.1

angle is estimated using the ML shift GMM identified
by referring to the present two sensor capacitances.

The effectivenesses of the multiple shift models, multiple
sensors, and the ML shift GMM in a 1 s window are assessed
through comparisons between SM–PS, SS–PS, and PS–PV,
respectively.

V. RESULTS

The relationships between the normalised capacitances of
the two stretch sensors and the joint angle during a knee
extension at five brace shift positions, the same datasets
plotted into each 2-D space, and the fitted GMMs are
illustrated in Fig. 3. The measured brace shift distances and
the accuracies of the joint angles estimated by comparative
and proposed methods during the squat motion are listed in
Table I. The method with the best performance at each shift
position is highlighted in bold. The joint angles estimated by
SS, PS, and PV, their absolute error, and ML shift models
identified during two rounds of the squat motion are shown
in Fig. 4. The results are for two brace shift positions (5 and
20 mm) of the first set for both subjects.

VI. DISCUSSION

In this study, we proposed the shift-adaptive estimation of
the knee joint angle by combining the following: (i) a brace
instrumented with two stretch sensors placed at different
heights, (ii) learning the strain-angle relationships at multiple
brace shift positions through user-specific GMMs, and (iii)
estimation using an ML shift GMM in a previous 1 s period.

As illustrated in Fig. 3, the relationship between the two
sensor capacitances and the joint angle varies depending on
the brace shift position. More specifically, the capacitance-
angle relationship for each sensor changes according to
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Fig. 3. Relationships between the normalised capacitances of the two stretch sensors (Cu,Cl) and the joint angle θ , the same datasets plotted into each
2-D space, and the fitted GMMs (±3σ ) during knee extension at five brace shifts (0–20 mm) of the second set for both subject A (top) and B (bottom).
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Fig. 4. Ground truth (GT) of the joint angles and estimates of the comparative and proposed methods (SS, PS, PV) (top), their absolute error (the second
row), and ML shift GMMs identified by each method during two rounds of the squat motion (the lower three). The results are for two brace shift positions
(5 and 20 mm) of the first set for both subjects.



the brace shift, and more significant change in the lower
sensor induces different relationships between the two sen-
sor capacitances at varying shift positions. In addition, as
indicated in Table I, SM has low accuracy at all brace
shifts except for 0 mm of subject A when compared with
PS. These results demonstrated that learning the strain-angle
relationships at multiple brace shift positions is required for
the shift-adaptive estimation.

Table I also shows that SS had a lower accuracy at most
brace shifts when compared with PS. As shown in Fig. 4,
SS did not identify the correct ML shift GMM according
to the brace shift even at larger joint angles, in which the
relationship between two sensor capacitances differed clearly
between GMMs in Fig. 3. These results demonstrated that
the two sensors placed above and below the patella hole are
essential for recognising the brace shift positions to identify
the correct GMM.

From Table I, PV exhibited an equivalent or higher per-
formance to that of PS at most shift positions of both sets
for both subjects. As shown in Fig. 4, although both PV
and PS identified the ML shift GMM according to the brace
shift, PS switched the GMM frequently and decreased the
accuracy due to incorrect identification of the GMM when
the angle was close to the maximum. These results were due
to the measurement error and noise of the sensors and the
proximity of the capacitances between the GMMs near the
maximum flexion angle, as shown in Fig. 3. In contrast to PS,
PV achieved higher performance through stable identification
of the correct ML shift GMM. These results indicate that
identification referring to the two sensor capacitances in a
previous 1 s period excluding data near the largest angle
enhances the estimation.

From the above results, we found that the proposed
method can estimate the joint angle with higher accuracy
than previous methods when the brace shifts downward,
and the three components are effective for the shift-adaptive
estimation.

Meanwhile, there are two limitations to this study. One is
that the methods were only tested for two healthy partici-
pants. Thus, the results do not provide strong statistical sup-
port for the proposed method. However, the cross-validation
using individual data is worthwhile since the proposed
method learns user-specific models. Although the method is
data-driven and its performance depends on training data, the
results indicate that the method can identify the correct shift
GMM and estimate the joint angle with high accuracy if the
brace position is not much away from the positions during
learning. As shown in Fig. 3, the relationships between the
two sensor capacitances and the joint angle exhibited differ-
ent tendencies between both participants. These results may
be due to the differences in the measured shift distances and
tightness of the brace. As shown in Table I, the brace shift
distances were larger in subject A and smaller in subject B
when compared with the targets because subject B preferred
tighter fitting of the brace than subject A. Nevertheless, the
finding of this study is that the proposed method can estimate
the joint angle adaptively to brace shifts using the ML shift

GMM identified by referring to the relationship between the
two sensor capacitances, regardless of the tightness of the
brace.

The other limitation is the reenactment of the brace shift.
In this study, the brace was shifted downward manually
because it is difficult to induce the intended quantitative shift
during long-term wearing of the brace. Moreover, changes
in tightness of the brace due to donning/doffing, which may
change the strain-angle relationship, was not examined since
this study focused on the adaptation to the brace shift. (Note
that the tightness can be kept constant by memorising the
wrap length during learning.)

Future work will examine the feasibility of tracking dy-
namic motion (e.g., walking) continuously and validate the
proposed shift-adaptive estimation during long-term wearing
and donning/doffing of the brace in daily life. The system
will then be expanded to an estimation of three-dimensional
joint motions such as the ankle and elbow joints. These
sensing systems can also be integrated into a robotic motion
assist/support system.
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