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Abstract— This work proposes a method of footstep place-
ment that controls system energy to enable a dynamically-
safe walking behavior. Contrasting many other works that
treat rough terrain as a series of disturbances that need to
be mitigated with control, we provide some insight into how
energy-targeted foot placement is enough to allow a passive
system to transit over rough terrain. This work explores
the underlying complexities of one of the simplest walking
models, the inverted pendulum, which, in its various forms,
is the skeleton behind all bipedal robots, from Asimo to Atlas.
Troubling all of these humanoids is the foot placement problem,
especially when the terrain is not flat. This work uses analysis
of the system energy to divide the feasible stepping area into
regions that would either enable dynamic walking or cause a
fall. Second we subdivide the walking region into sectors that
promote the accumulation or dissipation of energy, stimulating
or inhibiting future steps. Third, we introduce a method of
global energy management using a moving reference point over
rough terrain. We present results on how these concepts can
be used to prevent falls, accumulate energy to cross gaps, and
even enable a passive system to walk uphill.

I. INTRODUCTION

Consider a child racing down the side of a hill, running
and jumping with little cognitive thought and attention into
the mechanics of running, yet motion is natural, dynamic
and graceful. The child quickly grasps that long steps slow
or stop her while short steps speed her up. Intrinsically, the
child adjusts step length to maintain a constant, comfortable
speed. Using foot placement to control energy and change
speeds is a foundation for dynamic legged motion and the
central idea of this work.

Our core contribution is a method that uses foot contacts
to steer the body center of mass (COM) along energy profiles
over rough terrain. We use a simplified model to illustrate
how leg placement affects system energy and movement.
This work derives two boundaries that are fundamental to
walking: the first separates walking from falling while the
second subdivides walking into slowing down and speeding
up. We develop strategies for accumulating energy prior to
gap crossing and walking uphill.

It is the authors’ understanding that the following contri-
butions are new to dynamic walking over rough terrain. We
demonstrate how energy-centric foot placement can permit
a passive system to move over rough terrain, rather than
rejecting terrain through feedback. Through an analysis of
the post-impact energy, we show that the reachable foothold
positions can be divided into regions that permit walking
or cause falling per Fig. 1. Step placement is not simply
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Fig. 1. The space of kinematically-feasible footstep regions can be divided
by the curve of capture into regions that either promote dynamic walking
or falling backwards.

determining whether the system will fall or not, but also
where it can step to ensure future steps have enough energy
to succeed. We then subdivide the walking region into sectors
that either assist, maintain, or hinder walking. It will be
shown that knowledge of these sectors are imperative to the
accumulation or dissipation of energy, even if the terrain map
is not perfect. Finally, we generate a strategy of tracking a
moving global reference point, enabling a passive robot to
follow a constant energy profile across rough terrain in the
same way it would as if the ground were flat.

The paper is structured as follows. Sect. II describes
related works. We separate the kinematically-feasible step
region into areas of dynamic relavance using a curve of
capture and curve of equal energy, defined in Sections III-A
and III-B. In Sect. III-C, we present a method for maintaining
equivalent energy to some moving global reference. We
present results for these methods using a passive nonlinear
inverted pendulum (NIP) model walking over very rough
terrain in Sect. IV. Our Conclusions and proposed future
work are in Sections V and VI. In the Appendix, we include
additional regression details and a link to the code for
duplicability of results.

II. BACKGROUND

One of the greatest strides in biped walking came forth
in the early 1990s when McGeer introduced the passive
kneed walker [1], [2], a system of two interacting pendula
using gravity as a means of compelling forward motion.
The system balanced energy through an interplay of ground
contacts (kinetic energy [KE] lost) and traveling down a
slope (potential energy [PE] gained), starting a trend of
passive walking analysis [3]–[10]. By interacting with the
ground by passive dynamics alone, this system was robust
to minor disturbances, asymptotically stable around a limit
cycle. Although using a relatively simple yet elegant model,
the body of works most importantly demonstrated that walk-
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Fig. 2. Simple Walking Models with Massless Legs. a) LIP legs provide
the vertical force (F = mg) necessary to maintain the COM at a constant
height z, smoothly moving through elastic contact with the ground.b) The
rigid NIP system pivots about the stance foot, moving the COM along an
arc with nonlinear dynamics f . At swing foot contact, the system loses
energy through a discontinuous, inelastic collision M .

Fig. 3. Passive NIP Biped. Point mass at the hip, with pin joint at
stance foot. Massless swing leg can be arbitrarily placed without dynamic
implications.

ing does not always require control. In a similar way, this
work takes a step back to the passive NIP model walking
down a hill.

A. System Model

The simplest approximation of a walking system is a
point mass with massless legs, of which there are two basic
variants: the LIP and the NIP, shown in Fig. 2. The linear
inverted pendulum (LIP) model consists of a point mass at
the hip with variable-length legs that have enough control
authority to maintain the COM at a constant height z [11],
[12], Although this model seems overwhelmingly simple,
the LIP model is heavily used for footstep planning and
trajectory control [13]–[20]. Key LIP assumptions are that
step impact is smooth and continuous, creating no discrete
events. The LIP model is powerful since it allows the system
to be approximated completely using linear dynamics.

The NIP model handles walking motion instead with a
stiff stance leg with its COM traveling along an arc of
length l. The stiff leg creates an arcing motion at the hip
that is much more human-like than walking with constant
height hips. Although more lifelike, this bio-mimetic motion
complicates the dynamics such that they are no longer linear
and no longer restricted to the horizontal plane. Additionally,
the continuous dynamics are interrupted by the swing leg
impacting the ground, creating hybrid dynamics. Similar to
[12], [21]–[26], the following assumptions are made:

1) The body consists of a point mass, modeled at the hip.
The legs are massless.

2) At impact, there is an instantaneous transfer of support
from the old stance leg to the new stance leg (old swing
leg). Only one leg is in contact with the ground at a
time (no double support phase).

3) Ground impact is inelastic and the system does not
rebound/bounce upon impact.

4) The stance foot does not slip and acts as an uncon-
trolled pin joint (some of the referenced papers use
friction models and/or ankle control).

B. Continuous Dynamics

The single support, or swing phase, of the legged NIP is
given by the Lagrangian L

L = T − U (1)

T =
ml2

2
θ̇2 U = mgl cos θ, (2)

where T and U are the system KE and PE, l is the length
from the stance foot pivot to mass m, and Angle θ is the
rotation of the pendulum per Fig. 3. The dynamic equations
derived from (1) are shown to be

d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= 0 (3)

ml2θ̈ = mgl sin θ (4)

For state space x =
[
θ θ̇

]T
, the NIP double integrator can

be rewritten as

ẋ =

[
θ̇

g
l sin θ

]
(5)

C. Impact Dynamics

The swing leg impacts the ground with a rigid and non-
conservative impact, wherein kinetic energy (KE) is lost from
the system and an instantaneous change in pivot point occurs.
Although energy is lost into the ground at foot contact,
momentum is conserved about the foot touchdown point and
thus the momentum about the swing toe before impact L−

is equal to the angular momentum about the stance foot after
impact L+, where the nomenclature −,+ is used to describe
information immediately before or after collision.

The angular momentum L for a system can be given by

L =mrcom × (ω × ro) (6)

Where rcom =
[
−l sin(θ) l cos(θ) 0

]
is the vector from

point of rotation to the COM, ro is the vector from the
touchdown point to the COM, and ω =

[
0 0 θ̇

]T
is the

rotation rate vector. Applying (6) to the system shown in
Fig. 4, the pre- and post-collision angular momentum can be
given by

L− =m

−l sin θl cos θ
0

−

×


0

0

θ̇

−

×

l sin(θ + φ)
l cos(θ + φ)

0

−


=
[
0 0 ml2 cos(φ−)θ̇−

]T
(7)



Fig. 4. Angular Momentum About Impact Foot showing Pre- and Post-
Impact Configurations. (a) Pre-Impact State x−. (b) Post-Impact State x+.

L+ =m

−l sin θl cos θ
0

+

×


0

0

θ̇

+

×

−l sin θl cos θ
0

+


=
[
0 0 ml2θ̇+

]T
(8)

By equating (7) and (8), we can relate the velocity before
impact θ̇− to the velocity after impact θ̇+. Additionally,
through the kinematics seen in Fig. 4, we can relate the
pre- and post-collision configurations, (θ+ = θ− + φ−) and
(φ+ = −φ−). Together, these kinematic and momentum
relationships form the discrete impact map function M

x+ = M(x−)θφ
θ̇

+

=

1 1 0
0 −1 0
0 0 cosφ−

θφ
θ̇

−

. (9)

It is important to note that since the swing leg is considered
massless and can be placed arbitrarily, the inter-leg angle φ
does not appear in the continuous dynamics (5) but does
appear in the discrete impact map (9).

D. Capture Point

Based on the dynamics of a LIP, capture point (CP) [12]
was developed as a means of controlling a force disturbance.
A CP is a terrain location that the robot can step in order to
come to a complete stop. Although the idea of CP can apply
to all forms of dynamic walking, researchers have used the
concept primarily around the simplified dynamics model of
the LIP during zero moment point (ZMP) [27] walking. ZMP
walking maintains the ZMP within the support polygon, but
allows the floor projected COM to deviate during a gait. For
a known COM trajectory, the CP is very fast to calculate and
therefore very useful in push recovery [12], [28]–[34], i.e.
step on CP to cease movement.

We borrow the CP concept from these ZMP LIP bipeds
and extend it to a NIP biped for a different purpose. Rather
than using CP to cease motion on the NIP, this work uses
CP as a stability metric to ensure motion is occurring at
each step. Given a CP over some terrain gradient, it can be
quickly computed whether the current step size will result
in forward motion, stopping, or falling backwards, as shown

Fig. 5. Stepping Relative to Capture Point xcp. (a) Overstepping the CP
results in falling backwards. (b) Stepping directly onto a CP results in the
NIP stopping at the unstable equilibrium point. (c) Stepping before the CP
results in a walking behavior.

in Fig. 5. This paper will show that many CPs exist along a
curve herein known as the curve of capture. By monitoring
this curve for each step, this paper will demonstrate online
step sequence generation over uneven terrains.

III. TECHNICAL APPROACH

A. Curve of Capture

Pratt [12] introduced the idea of capture point (CP) to the
LIP model. The core use was foot placement as a means
of push recovery. Other works extended the idea of CP to
the NIP [25], [35] as a target for foot placement to cease
motion. This work uses the idea of CP as a boundary for
successful walking over uneven terrain. Instead of just a
theoretical means of stopping motion, the CP can be defined
as a boundary between walking and falling backwards as
shown in Fig. 5.

Computing the NIP CP is relatively straight forward, but
there is no analytical solution. It begins with an understand-
ing that capture occurs when the post-collision energy is
equal to the max PE of the system (E+ = Umax) when the
NIP is stationary and vertical (see Fig. 5). The local change
between foot origin horizontal position ∆x and height ∆h
in the global frame (xo, ho) (see Fig. 4) is described by

∆x = x+
o − x−o = l sin (θ− + φ−)− l sin θ−

∆h = h+
o − h−o = l cos θ− − l cos (θ− + φ−) (10)

This section assumes that E refers to the local energy
of a step (Sect. III-C introduces the concept of energy
relative to some other reference point). Assuming we know
the pre-impact energy of a step E−, we need to determine
foot placement to dissipate all of the KE at the unstable
equilibrium point T = θ̇+ = 0 and E+ = U . Using (5), we
can determine the post-collision energy relationship in terms
of pre-collision components

∆E =
(
T + + U+

)
−
(
T − + U−)

mgl − E− =− ml2

2

(
θ̇−
)2

sin2 θ−

+mgl
(
cos (θ− + φ−)− cos θ−

)
. (11)



Since the system is passive, we can compute the impact
velocity

θ̇− = −
√

2

ml2
(E− −mgl cos θ−). (12)

Substituting (12) into (11) yields an expression that is
dependent only upon pre-collision configuration

mgl − E− =−
(
E− −mgl cos θ−

)
sin2 θ−

+mgl
(
cos (θ− + φ−)− cos θ−

)
. (13)

By substituting (10) into (13)

mgl (1 +mgl∆h)− E− =
(
mgl cos θ− − E−) sin2 θ−,

(14)

it becomes clear that there is a matching leg position for a
given toe height ∆h, assuming only walking configurations
(−π2 < θ− < π

2 and E− > E+). Since (14) does not
have a closed-form solution, this work uses a least-square
polynomial regression of sampled points in the space to
determine the relationship between energy and configuration
that reaches the CP, whose coefficients are shown in the
Appendix

∆xcp = Rcp
(
E−,∆h

)
. (15)

The shape of the regression Rcp is shown in Fig. 6. As
energy increases, the biped can step higher and further prior
to reaching the CP.

Fig. 6. Curve of Capture

This curve provides a very intuitive meaning: everything
to the left of the curve results in a walking behavior and
everything to the right results in falling backwards as seen
if Fig. 7. As a robot is walking and looking for a safe place
to step that ensures forward motion, this curve creates the
boundary for dynamically-safe walking behavior.

B. Curve of Equal Energy

Another important step location for a system is the location
where local energy is conserved. Consider a biped walking
down a slope. The system gains PE by walking down
the slope, but loses KE at impact. Short steps result in a
quick-stepping behavior that increases energy (E+ > E−).
Stepping too far, but not yet to the CP, results in the system

Fig. 7. Energy Variation with Step Location. (a) Stepping on terrain
beyond the curve of capture means the system does not have the energy
to reach the vertical position and results in falling backwards. (b) Stepping
onto the curve of capture is the exact energy required to stop at the unstable
equilibrium point. Stepping below this curve results in walking. (c) Stepping
into the dissipate region results in walking, but a loss in energy. (d) Stepping
directly onto the curve of equal energy means the KE lost through impact
is equal to the PE gained. (e) Stepping into the accumulate region results
in speeding up, where subsequent steps have more local energy than the
previous step.

Fig. 8. Curve of Equal Energy

losing energy (E+ < E−), but still takes a step. There is
a specific step length that corresponds to a steady-state gait
(vn+1 = vn) or (E+ = E−) (equivalent to a fixed point on
a return map). By setting ∆E = 0 for the NIP, we arrive at
the expression

mgl∆h =
(
mgl cos θ− − E−) sin2 θ−. (16)

Similar to (14), this work uses a least-square polynomial
regression to determine the relationship between energy and
configuration that reaches the equal energy, whose coeffi-
cients are shown in the Appendix

∆x∆E=0 = R∆E=0

(
E−,∆h

)
. (17)

The shape of the regression R∆E=0 is shown in Fig. 8.
This curve denotes an important concept: step to the left to

speed up or to the right to slow down. Although qualitative,



Fig. 9. Phase Portrait with Step Location. These red paths represent what
happens when stepping into the regions shown in Fig. 7 with mgl = 10.
Contours represent energy levels. (a) Overstepping the curve of capture
results in oscillation (falling backwards). (b) Stepping onto the curve of
capture takes the system up the homoclinic orbit to the separatrix. (c) Losing
energy with a long step, but still walking. (d) Stepping onto curve of equal
energy returns to same rotation orbit. (e) Gaining energy with a short step.

not quantitative in nature, this curve helps inform us where
to step to increase or decrease system energy. If the robot
must speed up to overcome an approaching obstacle, it can
accumulate energy by taking several steps to the left of the
curve. Likewise, if moving too fast, step to the right of the
curve to dissipate energy.

The regions separated by the curve of capture and curve
of equal energy can be depicted by the phase portrait [36] of
a simple pendulum (see Fig. 9). Stepping directly onto the
curve of equal energy results in maintaining the same energy
level as the traveling orbit. Stepping short/long result in en-
ergy increase/decrease. Stepping on the curve of capture puts
the system directly onto the homoclinic orbit which takes it
to the unstable equilibrium point (separatrix). Stepping past
the curve of capture results in an pendulum-like behavior
(walker falling backwards).

C. Equivalent Energy

The final idea to develop is the idea of equivalent energy.
Consider the same passive NIP walking down a hill, but
this time over uneven terrain with an uphill section (see
Fig. 10). Ensuring individual step placement is below the
curve of capture or in vicinity of the curve of equal energy
does not guarantee that the biped will be able to make it
over the hump. This is because the previous two curves are
local energy curves and we require an additional strategy of
tracking the global energy required to overcome the global
PE at the hump. It is already known that if the robot walks
along the constant slope from origin to the hump by stepping

Fig. 10. Equivalent Terrain Slope over Concave Section. By following the
curve of equal energy, the biped can walk down the slope −γ that connects
the current position and the future uphill hump. The robot increases KE as
it travels along the terrain under the slope to maintain the energy equivalent
to walking along the artificial terrain slope.

along the curve of equal energy it will reach the hump with
the original system energy E−. We use this as a basis to
derive a strategy that ensures the system maintains the energy
equivalent to walking down this slope at steady state velocity.
At points below the curve, the system must speed up (add
KE to make up for lost PE), and slow down above the curve.

The target energy at any point ∆x varies with ∆h along
the equivalent terrain slope γ. Therefore as the biped steps
some distance ∆x, it must expect a global loss of PE that
must be stored in the form of KE

−∆Uγ = −mg∆hγ

= −mg∆x tan γ = ∆Tε, (18)

where ∆Uγ is the expected PE loss due to the change in
slope γ and ∆Tε is the equivalent increase in KE. Similar
to the equal energy approach, the goal is to balance the total
energy. Though, instead of local energies E− and E+, we
must refer to the equivalent terrain slope as a reference. This
allows us to know whether we are above or below the target
energy required to traverse the hump. In order to compute
the equivalent PE at impact, the equivalent height ∆h+

ε must
be computed

∆h+
ε = ∆h−ε + ∆h−∆hγ . (19)

To illustrate this idea, consider the change in height relative
to the target slope (see Fig. 11). If the next foothold location
is closer to the equivalent terrain slope than the previous step
(∆h < ∆hγ results in ∆h+

ε < ∆h−ε ), then the system will
be able to lose KE and maintain the same equivalent energy
(E+

ε = E−
ε ). Using (19), the post-collision equivalent energy

E+
ε can be computed relative to the equivalent terrain slope

E+
ε = mg (∆h−ε + ∆h−∆x tan γ) + m

2

(
l cos θ−θ̇−

)2

.

(20)

In order to make use of equivalent energy, it is necessary
to not only identify the configuration(s) where our post-
collision equivalent energy is equal to the desired energy
along the slope (E+

ε = Eγ), but also it is important to know
the foothold positions in which E+

ε increases or decreases



Fig. 11. Equivalent Height ∆hε shows the height relative to the target
slope. This is essential in computing the equivalent PE.

Fig. 12. Equivalent Energy (cutout from Fig. 10) represents the energy
equivalent to walking down the terrain slope relative to a desired energy level
Eγ . The contours equate to the difference E+

ε − Eγ . (a) The blue region
has higher energy (E+

ε > Eγ ). (b) Stepping along this equivalent energy
curve results in the same energy as required along the curve (E+

ε = Eγ )
or (∆KE + ∆PE = 0). Stepping from this curve results in achieving
Eγ as if stepping directly onto the equivalent terrain slope. (c) By stepping
into the pink region, the robot loses more energy than required to transit
the equivalent terrain slope (E+

ε < Eγ ). (d) The curve of equal energy
and the equivalent terrain slope intersection defines the energy baseline
for this figure. (e) Desired stepping point for this terrain, in which energy
is equivalent to walking along the equivalent terrain slope at steady state
velocity.

relative to Eγ . For a single step, the difference E+
ε − Eγ

is represented in the contours of Fig. 12. This plot shows
the curve in which the equivalent energy is less than, equal
to, or greater than the energy required on the slope. Stepping
anywhere along the black curve equates to stepping along the
slope at (d). The system will gain or lose E+

ε by stepping in
the blue or pink regions, respectively. While it this method
can be done with only a one-step terrain horizon, the steps
can be better sequenced using a horizon of the entire terrain
map. Underlying this curve is an exchange of local KE and
PE that will be shown in Section IV.

IV. RESULTS

A. Using the Curve of Equal Energy and Curve of Capture
to Cross a Gap

This first test consists of accumulating energy to cross a
gap in the terrain (see Fig. 13). Initially, the reference gap
curve of capture is well below the lip of the far side of the

Fig. 13. Using Energy Control for Gap Crossing. Emin = mgl = 10J .
For step (1), the robot starts with energy = 10.5J at steady state. During
steps (2)-(8), the robot steps to the left of the curve of equality to accumulate
energy. As the robot accumulates energy, the curve of capture across the
gap incrementally pushes up. At step (9), the biped has just enough energy
to cross the gap (E+ = 10.05J). For steps (10)-(11), the biped returns to
step locations that result in the nominal walking energy.

gap. For 7 steps, the robot places its foot to the left of the
curve of equal energy, adding local energy to the system. At
each step, the gap curve of capture expands, pushing upward.
By step 9, the gap curve of capture pushed over the far side
of the gap, ensuring the system could safely step. Depicted
by the transition from x−

9 to x+
10 in the corresponding phase

portrait, the system lost 4.5J of energy crossing the gap,
indicating that the capture point energy was approximately
14.5J . The system did not have enough energy to cross the
gap in the first 8 steps. This demonstration assumes that the
gap position and height is known in advance. If the gap came
sooner, then the system would have to step further to the left
of the curve of equal energy to accumulate energy quicker.
Link to video.

B. Crossing a Valley with Equivalent Energy

For this final test, we use the metric of equivalent energy
to assist the passive robot on an uphill section. As shown
in Fig. 14, the robot sets a target location on the horizon
and draws an equivalent terrain slope. The strategy here is
simple: as long as the biped can maintain its total equivalent
energy at or above the desired energy level of this slope,
it will be able to summit the uphill section. We start the
robot at vo = 1m/s, or E− = 10.5J , barely enough energy
to passively walk down the slope. In order to maintain its
equivalent energy, the biped must add KE to account for
the lost PE (relative to the equivalent terrain slope above
the terrain). In order to keep walking, the energy in local
coordinates must always be above the max PE of the system
E > 10J .

This result shows the trade-off between KE and PE. As
noted in Section III-C, the equivalent energy curve only
keeps the robot walking at exactly the equivalent energy



Fig. 14. Managing Equivalent Energy. Robot starts with barely enough
energy to maintain forward motion E = 10.5J . (m = l = 1,g = 10)
(a) Passive biped walking down a slope, then up another. The biped uses
foothold placement along equivalent energy curves to ensure the desired
energy (10.5J) along the equivalent terrain slope is maintained. (b) System
energy, with PE measured locally from foothold position. (c) System energy,
with PE measured from equivalent terrain slope. Robot maintains total
equivalent energy at 10.5J throughout. Notice symmetry of PE/KE curves.
As the robot loses PE, the robot must add KE to make up for it.

of the slope. In this experiment, the robot strategy was to
step directly onto the curve, but it could have used far more
aggressive strategies to maximize energy. If the robot were
to step into the interior of any of the curves, the equivalent
energy would have increased above 10.5J , giving the system
additional energy to accomplish more challenging terrains.
It is important to note that this KE/PE tradeoff also works
above the equivalent terrain slope. If the terrain is higher
than the slope, the biped must lose KE to balance the gained
PE, but be very careful to always step behind the curve of
capture to ensure it has enough energy to continue walking.

V. CONCLUSION

This work proposed a method of footstep placement that
controls system energy to enable a dynamically-safe walking
behavior. We separated the kinematically-feasible foothold
locations into regions defined by energy levels. Based on
the notion of capture point, we constructed the curve of
capture that divides the walking and falling regions for a
NIP biped. We developed a curve of equal energy that further
separates the walking region into areas that either increase
or decrease the level of energy. By tracking the energy of a
global moving reference, we unfolded the equivalent energy,
a technique that allows passive systems to overcome uphill
sections in rough terrains through proper foot placement in
the preceding steps. Knowledge of these regions empower
energy-based foothold positioning that steers the body COM.

Fig. 15. The flywheel helps return the system to an energy orbit during
the swing phase of an orbit.

We demonstrated that a passive NIP-inspired centroidal biped
can walk robustly over uneven terrain by using only footstep
placement under various scenarios.

VI. FUTURE WORK

This work can be extended to 3D walking, wherein the
robot must be able to maintain its footsteps behind the
curve of capture in the sagittal plane while simultaneously
over the curve of capture in the frontal plane. This would
ensure forward motion while maintaining stability through
oscillating back and forth between left and right feet.

Although these energy regions were only demonstrated
on a passive system traveling downhill, the concepts apply
directly to actively-controlled systems as well. By adding an
energy-stabilization technique such as swinging a leg mass,
bending a torso, or spinning a flywheel, the fairly small
regions identified in this work can be significantly expanded.
For example, by adding a simple flywheel as per [12], [25],
[37], [38] and a simple energy-based control algorithm, the
energy level can be stabilized as seen in Fig. 15. It was
beyond the scope of this paper to include active stabilization
and foothold positioning, it is imperative to mention that
these ideas work well together. Finally, we are building a
robot to demonstrate the ideas covered within this work.

APPENDIX

This section contains the regression data to reconstruct the
curve of capture and curve of equal energy. The regression
data below matches the results from Figures 6 and 8. The
input regression data is normalized by its mean µ and
standard deviation σ as follows.

E−
∗ =

E− − µE
σE

∆h−∗ =
∆h− − µ∆h

σ∆h
, (21)

where E−
∗ and ∆h∗ represent the normalized input data.

The respective mean and standard deviation data are located
in Tables I and II. The normalized data can be taken to
their respective power and multiplied by the coefficients of
regression from the tables.

∆x =

O∑
m=0

O∑
n=0

cm,n
(
E−

∗
)m

(∆h∗)
n (22)

Where O represents the order of the system as listed in
Section III. Using (22) and information from Tables I and II,
the ∆x footstep positions for (15) and (17) can be recreated
very quickly. The regression code is available at this link.



TABLE I
COEFFICIENTS FOR Curve of Capture POLYNOMIAL
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6 -0.0002 E− ∆h
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power coefficient m of the scaled pre-collision energy (E−

∗ )m

TABLE II
COEFFICIENTS FOR Curve of Equal Energy POLYNOMIAL

po
w

er
co

ef
fic

ie
nt

n
of

th
e

st
ep

he
ig

ht
(∆

h ∗
)n 4 0.0133 E− ∆h

3 -0.0935 0.0001 µ 18.2337 -0.2576

2 0.2021 0.0401 -0.0390 σ 8.0842 0.1616

1 -0.2750 0.0563 -0.0198 0.0498

0 0.4126 -0.0507 -0.0681 -0.0018 -0.0088

0 1 2 3 4
power coefficient m of the scaled pre-collision energy (E−

∗ )m
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