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Abstract— Predicting the future is an important aspect for
decision-making in robotics or autonomous driving systems,
which heavily rely upon visual scene understanding. While prior
work attempts to predict future video pixels, anticipate activities
or forecast future scene semantic segments from segmentation
of the preceding frames, methods that predict future semantic
segmentation solely from the previous frame RGB data in a
single end-to-end trainable model do not exist. In this paper,
we propose a temporal encoder-decoder network architecture
that encodes RGB frames from the past and decodes the future
semantic segmentation. The network is coupled with a new
knowledge distillation training framework specific for the fore-
casting task. Our method, only seeing preceding video frames,
implicitly models the scene segments while simultaneously
accounting for the object dynamics to infer the future scene
semantic segments. Our results on Cityscapes and Apolloscape
outperform the baseline and current state-of-the-art methods.
Code will be available soon.

I. INTRODUCTION

Prediction of dynamics in visual scenes is one of the
crucial components of intelligent decision-making in robotics
and autonomous driving applications [1]. To this end, learn-
ing useful representations that enable reasoning about the
future has recently been of great attention. Example appli-
cations are predicting visual context [2], forecasting human
dynamics [3], tracking dynamics in scenes [4], [5].

In recent years, semantic and instance segmentation of
videos [6] have become the leading methods to transform
the scene into its semantic components, such as street, tree,
vehicles, pedestrians, and obstacles. These semantic entities
provide a high-level interpretation of the scene and hence
predicting them can be of great interest. We argue that predic-
tion of pixels in the RGB space is an overly perplexing task,
while predicting high-level scene properties is sufficient, can
be more useful, and is easier to interpret for decision-making
purposes. Towards this direction, previous work predicted
future semantic segments given the segmentation of the
preceding frames [4], [7], or more sparsely predicted future
instance segmentation from previous frames [5]. In contrast,
we (1) do not require segmentation of previous frames and
(2) provide a dense forecast for all regions in the frame.

Some other motion prediction methods used in existing
robotics and autonomous driving systems apply object de-
tection and tracking algorithms first [8], [9]. Then each
of the tracked object future positions is predicted by state
estimation approaches such as Kalman Filters or learning-
based approaches with recurrent neural networks (RNN).
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Fig. 1. We obtain future semantic segmentation directly from past frames
in a single end-to-end trainable model. Our method implicitly infers the
scene semantic segments while also forecasting the future configuration.

However, those methods can only forecast the motion of lim-
ited categories of objects, which can be detected and tracked.
They neglect other categories such as roads and buildings.
To correctly predict the position and shape of those objects
relative to the ego-camera are also important for autonomous
driving systems to navigate safely. Besides, the extra need
for object detection and tracking modules could increase
the computation overhead, system complexity, and memory
usage, thus making the deployment more challenging. On the
contrary, we focus on the semantic segmentation forecasting
task that predicts the future high-level scene understanding
for all objects. Furthermore, our proposed method does not
depend on object detection or tracking, potentially avoiding
the aforementioned disadvantages.

In this paper, we propose a model that predicts the future
semantic segmentation in a video directly from pure RGB
data of the previous frames (see Fig. 1). One relevant
work [4] adopted a two-stage approach, first using the past
RGB sequences to predict the future RGB frame, and then
generating the future segmentation on top of that. On the
contrary, one of our key observations is that future frame
pixel values are not necessary for generating future semantic
segmentations, which is itself an easier task than generating
future pixel values. We propose a single stage end-to-end
trainable model that learns to implicitly model the scene seg-
ments, and simultaneously account for the intrinsic dynamics
of semantic maps for several object categories to predict
future segmentation. In particular, this is a challenging task
as objects in the semantic maps can significantly deform
over the video frames due to changes in camera viewpoint,
illumination, or orientation. To alleviate these challenges, our
architecture encodes the sequence of input frames in a multi-
resolution manner into a collective latent representation,
and then decodes this representation to the future semantic
map. We propose a novel knowledge distillation training
framework that extracts future information to further refine
the future semantic map. During the training stage, we utilize
a fixed pre-trained single frame segmentation model and use
it as a ‘teacher network.’ Taking the future frame as the input,
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it predicts the future segmentation. The predicted output
from the teacher network provides additional information to
guide the training of our main forecasting model, denoted
by ‘student network.’ This introduces one more training
loss component, called distillation loss, which measures the
difference between the outputs of the teacher and student
networks. During inference, the teacher network is not used
and the student network itself forecasts the future semantic
segmentation using only the past RGB sequence as the input.
This new distillation training framework further improves the
forecasting performance.

To evaluate the performance of our method, we use the
Cityscapes [10] and the Apolloscape [11] datasets under
several scenarios, and compare our results with baseline
methods. We predict the future semantic segmentation maps
at three different temporal horizons (i.e., , short-term, mid-
term, and long-term) from the preceding RGB frames. Our
method outperforms the previous methods although solving a
much harder problem of predicting all semantic segments by
only using past raw image sequences as input. Not only we
define this harder problem and achieve the state-of-the-art,
but we also outperform prior works under the simpler task
that uses past semantic segmentation to forecast the future,
even without modifying any part of our model.

In summary, our contributions are three-fold. First, we
propose a single-stage end-to-end trainable model for the
challenging task of predicting future semantic segmentation
based on only the preceding RGB frames. Second, we
propose a new knowledge distillation training framework that
better uses future information. We introduce an additional
distillation loss using a teacher network during training. We
show that our method can uncover the relations between the
previous and future frames while taking the motion into
account. Third, our proposed model also outperforms the
previous state-of-the-art methods on the simpler setting that
uses past semantic segmentation to forecast the future.

II. RELATED WORK

Semantic and Instance Segmentation: Several works show
that intermediate visual representations, including seman-
tic and instance segmentation, are significantly useful for
robotics systems to learn better policies of indoor naviga-
tion [12], urban driving, and off-road trail traversal [13].
Semantic segmentation problems are often modeled by fully
convolutional networks (FCN) [6], [14], U-net [15], [16], or
by larger receptive fields [17]. On the other hand, instance
segmentation often maintains a strategy to generate instance-
proposal regions [18] as part of the segmentation pipeline.

Other works have explored the utilization of temporal in-
formation and consistency across frames [19], based on CRF
models [20] or optical flow [21]. More recently, a number
of methods utilize predictive feature learning techniques to
enhance video segmentation [22].
Video Forecasting: Visual forecasting tasks were defined as
extrapolating video pixels to create realistic future frames
[14], [2]. Prediction future pixels can also be used in robot
learning with model predictive control for manipulation tasks

TABLE I
TASK SETTING COMPARISON WITH PRIOR WORK. WE PROPOSE AN

END-TO-END TRAINABLE MODEL FOR FORECASTING FUTURE SEMANTIC

SEGMENTATION (SEG) GIVEN ONLY PAST RGB SEQUENCES.

Model Input Output
X2X [4] RGB RGB
S2S [4] Seg Seg
XS2X [4] RGB+Seg RGB
XS2S [4] RGB+Seg Seg
XS2XS [4] RGB+Seg RGB+Seg
ConvLSTM [7] Seg Seg
Ours RGB Seg

[23]. Although those video forecasting methods have some
success in predicting the future at the pixel-level, modeling
raw RGB pixel values is rather cumbersome in comparison
with predicting future high-level properties of the video [24].
These high-level properties, such as semantic segmentation,
can not only be sufficient for analysis in applications but also
be more beneficial due to the higher level of abstraction.

Recently, a few works proposed techniques for predicting
semantic segmentation in videos. For instance, [4] predicted
future scene segmentation either from segmentation of the
preceding frames or from the combination of segmentation
and RGB data of the previous frames. They also presented
a two-stage approach that first predicts the future frame
pixel values, and then generates segmentation maps on top
of the predicted future frame. Three other relevant works
[25], [7], [26] predicted the future segmentation from pre-
vious frame segmentation maps. The first [25] developed a
method based on flow anticipation. The second and third
[7], [26] developed convolutional LSTM (ConvLSTM) and
deformable convolutional models respectively. Another work
[5] developed a predictive model with Mask R-CNN for
future instance segmentation. Their work can only predict
the future movement for limited types of objects, but not for
other critical classes of importance for autonomous driving
applications, such as roads and buildings. In addition to using
only the segmentation and RGB data, [27], [28] include extra
ego-motion information to further improve the prediction ac-
curacy. In summary, we mainly use X2X [4] and ConvLSTM
[7] as the baselines, since they are the closest works to ours.
However, their models rely on sequences of past semantic
segmentation as the input [7], or a two-stage approach by
forecasting the future RGB frame as an intermediate step
[4] (see Table I). In contrast, we introduce an end-to-end
trainable model for predicting the future segmentation solely
based on the preceding RGBs.

Knowledge Distillation: Knowledge distillation [29] was
originally proposed to compress the knowledge from an
ensemble of models into a single model during the training.
This idea was extended to distill knowledge from different
data modalities, such as optical flow and depth information
for action recognition and video classification tasks [30].
Different from the previous work, we propose a teacher
network that takes the input from the same modality, the
RGB frame, but in a different temporal range.



III. METHOD

Our goal is to build a model to forecast the future semantic
segmentation given the past RGB sequence. Our proposed
architecture involves two networks, the student network
and the teacher network. The former performs our main
forecasting task and the latter, during training, uses the future
RGB frame to provide additional guidance to help the student
network. At inference, only the student network is used to
complete the semantic forecasting task, as shown in Fig. 2.

The student network, as shown in the upper half of Fig. 2,
has three main components: encoder, forecasting module, and
decoder. The encoder generates feature maps in multiple
resolutions from each input frame. For a video observed
up to time t, the inputs are Xt�3d, Xt�2d, Xt�d, and Xt,
where d denotes the displacement between each pair of the
preceding frames. The forecasting module uses the feature
maps (the lowest level maps from each past frame pathway)
to learn a latent-space representation by consolidating tem-
poral dynamics across them. This module uses a temporal
3D convolution structure and acts as a predictive feature
learning module integrating feature maps from the preceding
frames. Finally, the decoder combines the spatial feature
maps (through skip connections to the encoder) and the
temporal features (output of the Conv3D module) to generate
the final semantic segmentation of the future frame at time
t+ d0. Note that d0 denotes the time delay in the future for
which the semantic segmentation is sought. The ground-truth
future segmentation is referred to by St+d0 and the prediction
by ˆSt+d0 . The choice of d0 defines how far in the future we
plan to segment. We experiment on three different settings
of the combinations of d and d0 for short-term, mid-term,
and long-term semantic segmentation forecasting.

The lower half of Fig. 2 shows how the teacher network
generates the additional loss to help train the student net-
work. Unlike X2X [4] that used the future RGB frame as an
intermediate training target, our model uses the future frame
in a new knowledge distillation approach during training. The
teacher network can be any fixed pre-trained single frame
semantic segmentation network. It uses the future frame
Xt+d0 as the input to predict the future segmentation. The
difference between the pre-softmax output features from the
teacher network and the one from the student network is used
as the additional training loss. During inference, the student
network alone predicts the future segmentation as the output.

A. Student Network

This network contains three main components: past en-
coder, forecasting module, and future decoder to perform our
main forecasting task, as shown in the upper half of Fig. 2.
Encoder: In contrast to the previous semantic segmentation
methods, which are based on encoder-decoder FCN models,
our encoder module contains parallel pathways, one for each
input preceding frame. Each pathway contains a series of
fully convolutional networks, non-linearity layers, and max-
pooling layers, to generate multi-resolution feature maps.
The encoder can be designed using the common image clas-
sification models, such as VGG [31] or ResNet [32], where

the feature maps in different resolutions can be extracted
right before each max-pooling layer. In our proposed method,
we choose VGG19 with batch normalization as our encoder
backbone. Refer to the appendix for the architecture details.
Forecasting Module: We introduce a forecasting module
to learn predictive features and representations of temporal
dynamics. For this purpose, we choose a 3D convolution
network Conv3D to combine the encoded feature maps in
the lowest resolution of each encoder pathway. This is a
simple design choice, but proves to be more accurate than
LSTM [33] or ConvLSTM [34] in our experiments. The
intuition behind using a Conv3D forecasting module is that
it is able to learn more various motion dynamic information.
On the contrary, the LSTM-based models always encode all
the past information into a fixed size embedding at every
timestep. The Conv3D module can access features from any
past timesteps and learn to combine them in various ways
to model the scene dynamics. This motivates our design of
using Conv3D as the forecasting module. In addition to the
3D convolution pathway, skip connections provide another
set of interactions between the encoder and the decoder.
Decoder: The decoder takes the encoded feature maps at
each resolution and the temporal dynamics representation as
inputs and generates the future semantic segmentation, ˆSt+d0 .
Different decoder structures are used in previous works. As
an example, ConvLSTM [7], reused the decoder of FCN [6]
to obtain the segmentation at the original resolution.

We build our decoder symmetric to the encoder module
sequence. This choice gives us more computation capacity
than the FCN decoder. Furthermore, the feature maps from
different resolutions of the encoder can be directly con-
catenated with their counterparts in the decoder pathway,
maintaining fine boundary information. As a result of this
structure, the lower level feature representation can be fed
to the transpose convolution layer, which contains trainable
parameters and upsamples the lower resolution feature to a
higher resolution. Then, it is concatenated with the encoder
feature maps of the corresponding resolution from the latest
past time-step followed by 2D convolution modules.

To construct the future segmentation from the decoder,
the final convolution layer of the decoder generates a pre-
softmax output tensor O 2 RH⇥W⇥C , where H and W
are the height and the width of the frames, and C is the
number of semantic categories. A soft-max on O generates
the predicted probability distribution tensor P 2 RH⇥W⇥C :

P (h,w, c) =
exp(O(h,w, c))

PC
i=1 exp(O(h,w, i))

, (1)

where h, w are the coordinates of a pixel, and c is the
index of each semantic class. For each pixel x = (h,w) 2
{H⇥W} and each semantic class c, we define the predicted
probability function pc(x) = P (h,w, c), where x = (h,w)
represents the index of a pixel in the frame. To generate
the final forecasting output, we choose the class with the
highest probability as our prediction for that pixel. Hence,
the predicted category for pixel x = (h,w) at future time
t+ d0 is defined as: ˆSt+d0

(x) = argmaxc pc(x).
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Fig. 2. Architecture overview: our student network contains encoder, forecasting module, and decoder to forecast future semantic segmentation. During
training, a fixed pre-trained teacher network takes the future RGB frame as input and predicts the future segmentation. The training loss is the weighted
sum of the cross-entropy forecasting loss and the mean-squared error distillation loss. During inference, the teacher network is not used and the student
network alone performs the forecasting task.

B. Training Loss and Teacher Network
During the training, our loss L is defined as the combi-

nation of the forecasting loss Lf and the distillation loss
Ld using weighted sum L = Lf + �Ld, where � is
a hyperparameter. The forecasting loss Lf measures the
difference between the predicted output of the model ˆSt+d0

and the ground-truth semantic segmentation St+d0 . We use
the cross-entropy function to define this classification loss:

Lf = � 1

HW

X

x2{H⇥W}

log

�
pg(x)(x)

�
, (2)

where g(x) 2 {1, . . . , C} defines the ground-truth label for
pixel x. The second loss term Ld is used to measure the
difference between the outputs from the student network
and the teacher network. The teacher network (lower half
of Fig. 2) is a fixed pre-trained single frame segmentation
model. The teacher network has the same encoder and
decoder architecture as the student network, but without
sharing the trainable parameters. The teacher network takes
the future RGB frame Xt+d0 as input and generates its own
predicted future semantic segmentation ˆSte

t+d0 . Instead of
directly comparing the predicted semantic segmentation, we
define the distillation loss Ld using the mean squared error
between the pre-softmax output tensors from the student
network and the teacher network:

Ld =

1

HWC

HX

h=1

WX

w=1

CX

c=1

(O(h,w, c)�Ote(h,w, c))2, (3)

where O is the pre-softmax output tensor from the student
network, and Ote is the one from the teacher network. With
this distillation loss Ld, the single frame semantic segmenta-
tion teacher network provides additional regression guidance
for the student network. During training, we minimize the
overall loss L. During inference, the predicted output of the
student network ˆSt+d0 is the final output of our model.

IV. EXPERIMENTAL RESULTS

Datasets: We first evaluate our method on the Cityscapes
[10] dataset. In the training, validation, and testing sets, the
dataset provides 2975, 500, and 1525 annotated frames with
19 semantic classes. In each of the video clips of length
30 (frames are indexed 0 to 29), the dataset provides fine
annotations for the 19

th frame. In total there are 180,000
frames of resolution of 1024 ⇥ 2048 pixels. Following the
same setting of [7], [4], we only use the finely annotated

frames and downsample the frames to resolution of 256 ⇥
512. We train our model using the Adam optimizer with
initial learning rate of 0.001, batch size 8, and � = 100

(the two loss terms will have similar numerical scale in
the beginning of training). We initialize the encoder of the
student network with ImageNet [35] pre-trained weights.

Apolloscape dataset [11] is also used as an additional
experiment, which has 140,000 frames with pixel-level an-
notations of 22 semantic classes. We extracted 1950 training
and 380 validation sequences and down-sampled each frame
to resolution of 320⇥ 384.
Settings: Following the forecasting settings in the related
previous works [4], [7], we design three experimental settings
on different time-ranges: short-term, mid-term, and long-
term. For all settings, we always define the 19

th frame in
the Cityscapes sequences, denoted by S19, as the forecasting
target frame, since the ground-truth semantic labels for this
frame are available. The input RGB frames are selected from
different timesteps in the past, denoted by Xi, depending on
the forecasting time-range setting For short-term forecasting,
the input RGB frames are X15, X16, X17, X18; for mid-term
forecasting X7, X10, X13, X16; and for long-term forecasting
they are X1, X4, X7, X10, while the output for all is ˆS19.
The Cityscapes sequences were recorded at a frame-rate of
17Hz, so our three time-range settings aim to predict 0.06,
0.18, and 0.53 seconds into the future respectively.
Evaluation Metrics: Following previous work, we use the
mean Intersection Over Union (mIOU) as the performance
metric for segmentation evaluation. We also report pixel-
level accuracy (pAcc) and mean per-class accuracy (mAcc).
Specifically, mIoU is the pixel IOU averaged across all
classes; pAcc defines the percentage of correctly classified
pixels; and mAcc is the average class accuracies.
Baseline Methods: We use the ConvLSTM [7] model as the
main comparison baseline, which outperforms the previous
state-of-the-art S2S [4]. This model achieves the state-of-
the-art performance on a slightly different segmentation
forecasting task, i.e., , the inputs are the past segmentation
sequences. The architecture of ConvLSTM is based on the
bidirectional ConvLSTM temporal module and uses the
asymmetric Resnet101-FCN encoder-decoder backbone.

Additionally, [4] has an X2X architecture, which is also



TABLE II
EVALUATION OF OUR METHOD IN TERMS OF MIOU, PIXEL-LEVEL ACCURACY (PACC), AND MEAN CATEGORY ACCURACY (MACC) IN COMPARISON

WITH BASELINE AND RELEVANT METHODS ON FORECASTING FUTURE SEMANTIC SEGMENTATION USING PAST RGB SEQUENCES AS THE INPUTS. IN

EACH COLUMN, THE BEST OBTAINED RESULTS ARE TYPESET IN BOLDFACE AND THE SECOND BEST ARE UNDERLINED.

Model Short-term Mid-term Long-term
mIOU pAcc mAcc mIOU pAcc mAcc mIOU pAcc mAcc

Zero-motion 58.91 91.96 69.68 48.15 87.89 59.67 36.21 81.77 47.07
Optical-flow 60.87 93.33 70.51 49.99 89.50 62.03 36.22 82.57 47.56
Two-stage 49.17 90.22 61.68 26.53 74.60 36.19 9.64 44.86 14.49
X2X* [4] - - - 23.00 - - - - -
ConvLSTM** [7] 45.08 89.28 54.15 36.81 85.79 45.57 27.36 80.44 24.63
Ours 65.08 93.83 74.36 56.98 91.38 67.67 40.81 86.03 50.13
*X2X is not the main focus of [4], and only the mid-term mIOU result is reported in this setting.
**Our implementation of [7], using past RGB sequences as the inputs.
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Fig. 3. Per-class IOU for all 19 classes with respect to short, mid, and long-
term forecasting. The forecasting performance varies a lot across different
classes, implying that some classes are more difficult to correctly classify.

used as our baseline. It primarily focused on the same
problem setting as the one of ConvLSTM [7]. But, they also
presented an X2X [4] architecture that uses the past RGB
sequences to forecast the future RGB frame and then gener-
ate the future segmentation. We argue that it is not necessary
to generate the future RGB frame as an intermediate step.
Since [4] only presents the result in the mid-term time-range
setting, we implement a two-stage model based on the same
idea. Another baseline is denoted by ‘zero-motion.’ This is
the case that no motion is anticipated in the video and the
future frame semantic segmentation is identical to that of the
last observed frame. Although this is a very naı̈ve baseline,
it poses as a very challenging one [36], [3], especially for
short-term forecasting. To calculate this metric, we first train
a single frame semantic segmentation model. Then, we apply
it to the last input frame and use the segmentation map as
the predicted result. We also include another baseline by
warping the last input frame using the optical flow, followed
by applying a single frame segmentation model.

A. Quantitative Results

Table II shows the results of our method on the Cityscapes
[10] dataset, compared with the previous state-of-the-art.
Note that ConvLSTM [7] focused on predicting future seg-
mentation directly from past semantic segmentation as the in-
puts. Therefore, we re-implemented their model, but training
and testing using past RGB sequences as the inputs. As can
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Fig. 4. Confusion matrix of the mid-term semantic segmentation fore-
casting for all 19 classes in the Cityscapes dataset. The x-axis refers to
the predicted class labels and the y-axis represents the ground-truth class
labels. For instance, the confusion matrix shows that for some cases, the
label ‘motorcycle’ is misclassified as ‘bicycle’, ‘rider’, and ‘car’.

be seen in Table II, our model outperforms ConvLSTM [7]
by a large margin in all the three time-ranges. That supports
our design choice of using the symmetric encoder-decoder
backbone and the Conv3D temporal module. We can also see
the significant performance difference between the two-stage
models, including X2X [4], and our proposed single-stage
model. The performance difference supports our argument
that forecasting future RGB frame is not necessary for fore-
casting future semantic segmentation. Besides, our method
outperforms the zero-motion and optical-flow methods for all
three time-ranges. Interestingly, those two simple baselines
still outperform than X2X [4] and ConvLSTM [7].

In addition to quantitative comparisons with previous
works, we analyze our forecasting results for each of the 19
classes of objects. Fig. 3 shows the IOU comparison for all
classes over three different forecasting time-ranges, sorted
in descending orders. One can notice that the prediction
accuracy varies a lot across different classes. To better
understand the reasons why certain classes have lower IOUs,
we calculate the confusion matrix, as shown in Fig. 4. The x-
axis in this figure refers to the predicted class labels and the



TABLE III
ABLATION RESULTS: EVALUATION OF OUR METHOD IN TERMS OF MIOU, PIXEL-LEVEL ACCURACY (PACC), AND MEAN CATEGORY ACCURACY

(MACC) IN COMPARISON WITH VARIATIONS OF OUR METHOD ON FORECASTING FUTURE SEMANTIC SEGMENTATION USING PAST RGB SEQUENCES

AS THE INPUTS. IN EACH COLUMN, THE BEST OBTAINED RESULTS ARE TYPESET IN BOLDFACE AND THE SECOND BEST ARE UNDERLINED.

Model Short-term Mid-term Long-term
mIOU pAcc mAcc mIOU pAcc mAcc mIOU pAcc mAcc

Ours w/o symmetric backbone 47.80 89.65 57.31 39.37 87.03 47.72 28.22 81.51 35.95
Ours w/ LSTM 48.22 90.26 58.39 39.57 86.93 49.18 26.61 81.46 33.19
Ours w/ ConvLSTM 58.62 92.92 68.85 47.96 89.29 58.24 34.44 84.21 43.09
Ours w/ Multi-Res Conv3D 59.24 93.24 69.44 49.33 90.38 59.39 36.96 85.42 45.98
Ours w/o distillation loss 63.60 93.76 73.01 55.97 91.17 66.59 40.32 85.84 49.69
Ours w/ 2 input frames 63.85 93.67 73.30 55.67 91.15 66.58 40.37 85.75 50.02
Ours w/ 3 input frames 64.10 93.72 74.18 56.52 91.27 67.26 40.77 85.91 50.11
Ours 65.08 93.83 74.36 56.98 91.38 67.67 40.81 86.03 50.13

TABLE IV
COMPARISON OF MIOU WITH S2S [4] AND CONVLSTM [7] ON

FORECASTING SEGMENTATION USING PAST SEGMENTATION AS INPUT.

Model Short-term Mid-term Long-term
S2S 62.60 59.40 47.80
ConvLSTM 71.37 60.06 -
Ours 72.43 65.53 50.52

y-axis represents the ground-truth class labels. For instance,
the ‘motorcycle’ class, which had the lowest IOU in Fig. 3 is
mainly confused with the ‘bicycle’, ‘rider’, and ‘car’ classes.
Additionally, we can see two light gray vertical lines for the
‘building’ and ‘vegetation’ predicted classes. This shows that
other classes are often mistaken with these two classes.
Ablation: Table III shows the ablation analysis results to
examine where the performance improvements derive from.
The main differences between our model and previous work
are the symmetric encoder-decoder backbone, the Conv3D
temporal forecasting module, and the distillation training.

First, to evaluate the symmetric encoder-decoder backbone
design, we create another model by replacing our backbone
architecture with the asymmetric one as in ConvLSTM [7],
which simply uses the decoder of FCN (first row of table III).
All the evaluation metrics are significantly worse than our
proposed model. Our proposed symmetric backbone decoder
is designed with more computational capacity compared
to FCN decoder. In our problem setting, the inputs and
outputs represent two different types of information (image
and segmentation). They are potentially far away from each
other in the latent representation space. Therefore, more
computation capacity is required, compared with previous
works [4], [7] whose inputs and outputs are all segmentation.

Next we analyze the impact of the temporal structures.
We implement three other models by replacing our Conv3D
temporal module with LSTM [33], ConvLSTM [34] and
the multi-resolution Conv3D. The results are reported in
the second, third, and the fourth rows of Table III. The
LSTM module has significantly negative impact. ConvLSTM
performs much better than LSTM, but still worse than our
proposed Conv3D temporal module. The multi-resolution
Conv3D module contains total five Conv3D layers, each of
which takes the past feature maps from different resolution
and generates the dynamic information for the decoder.
Empirically, we observe worse performance. One possible
reason is that the larger number of trainable parameters
makes the model prone to over-fitting. Furthermore, it re-

TABLE V
MIOU RESULTS ON APOLLOSCAPE DATASET.

Model Short-term Mid-term Long-term
Zero-motion 29.87 25.44 19.56
ConvLSTM** 28.27 23.29 17.30
Ours w/o distillation loss 32.26 25.72 20.26
Ours 32.58 26.09 20.47
**Our implementation of ConvLSTM with RGB inputs.

quires more memory, which forces the model to operate on
a smaller batch size. Therefore, the regularization effect of
batch normalization becomes less effective.

Finally, we analyze the impact of the student-teacher
architecture and the distillation training loss. Without the
teacher network and the distillation training loss, results
of our student-only model are shown in the fifth row of
Table III. Our student-only model already outperforms other
previous works shown in Table II. Using the distillation loss
of Eq. (3), the mIOU scores further improve by 0.5% to 1.5%
mIOU scores for all the three time-range settings

Furthermore, we also experiment on using fewer numbers
of input frames, and the results are shown in the sixth and
seventh rows in Table III. Using fewer numbers of input
frames decreases the mIOU scores by 0.04% to 1.31%. Note
that we are unable to experiment on using more than four
input frames due to the limitation of Cityscapes [10] dataset.
Forecasting Segmentation from Past Segmentation: We
also experiment on a simpler task that forecasts future
segmentation from past segmentation. This task is the exact
problem setting that ConvLSTM [7] achieves the state-
of-the-art. Our model still outperforms ConvLSTM[7] and
another strong baseline, S2S[4], as in Table IV.
Quantitative Results on Apolloscape Dataset: The pre-
vious works [4], [7] only experimented on Cityscapes[10].
Additionally, we further experiment on Apolloscape[11]. As
shown in Table V, our proposed model still outperforms
ConvLSTM [7]. Notice that Apolloscape is more challenging
than Cityscapes , therefore we see smaller performance gains.

B. Qualitative Results

Mid-term Forecasting: We start this section with the mid-
term forecasting results, as this is the most widely used set-
ting in the previous works. Fig. 5(b) shows the qualitative re-
sults, which uses the past RGB sequence X7, X10, X13, X16

to forecast the future semantic segmentation at time-step
19, denoted as S19. In this figure, each row is a separate
sample sequence, and the left most column is the past RGB



Xt�3, Xt�2, Xt�1, Xt St+1 Ground-truth Ours ConvLSTM* Two-stage

(a) Short-term forecasting results
Xt�9, Xt�6, Xt�3, Xt St+3 Ground-truth Ours ConvLSTM* Two-stage

(b) Mid-term forecasting results
Xt�9, Xt�6, Xt�3, Xt St+9 Ground-truth Ours ConvLSTM* Two-stage

(c) Long-term forecasting results

Fig. 5. Qualitative results. X denotes the input RGB frames and S the ground-truth segmentation. See the appendix for more results. (*Our implementation
of [7], using past RGB sequences as the inputs.)

X ˆSt+1
ˆSt+3

ˆSt+9

Fig. 6. Forecasting results of three different time-range settings for the same sample. X is the last RGB frame; Ŝt+1, Ŝt+3, and Ŝt+9 denote the
predicted segmentation of short-, mid-, and long-term settings, corresponding to the same X .

input sequence, followed by the ground-truth future semantic
segmentation, our prediction result and two baselines.

The first row shows examples where the camera is moving
forward. Our model accurately captures the relative motion
dynamic between the camera and all the objects in the scene.
Our prediction results show that the right-side street-parking
car segmentation moves toward right further, similar to the
ground-truth. The second example shows that our model can
capture and predict the future based on different motion
patterns. Specifically, a biker and a car are moving toward
each other. Our model can predict these two segments will
intersect in the future frame, but was unable to figure out
which one should be in the foreground due to the lack of
depth information. This problem can be potentially solvable
by including additional depth information if provided. See
the appendix for more qualitative results.

Short-term Forecasting: In the short-term setting, we use

the past RGB sequence X15, X16, X17, X18 to forecast the
future semantic segmentation S19. Our model precisely pre-
dicts both the directions and the magnitude of the movements
for the cars, as shown in Fig. 5(a). In the first row, the car
is moving toward right, and the predicted car position in
the future frame is the same as that in the ground-truth.
In the second example, the left parked car is moving out
of the frame due to the camera motion. Again, our model
captures the exact relative motion dynamic information and
precisely forecasts the same shape, size, and location of the
same parked car in the future frame. One interesting finding
is that the ground-truth annotation actually misses the circle
direction sign (yellow color in the segmentation map) while
our model is capable to detect that direction sign segment
and place it in the right position in the future frame.

Long-term Forecasting: Fig. 5(c) shows the long-term
forecasting results. Our model uses the past RGB sequence



X1, X4, X7, X10 to generate the future semantic segmenta-
tion S19. Such setting is more challenging but our model
can still accurately predict the moving directions of the
parked cars and pedestrians in the first and second examples
respectively. However, the magnitude of the movements seem
to be smaller than the ground-truth. This may be due to
changes in the speeds of the objects in the frames that are
not observed by our model.
Time-horizon Comparison: Fig. 6 shows the forecasting
results for our three time horizons. For all these settings, we
use the same frame, namely X16, as the last input frame. We
forecast the future segmentation at three different time hori-
zon, namely ˆS17, ˆS19, and ˆS25. The short-term forecasting
result provides the best visual quality. From the mid-term
result, the segmentation boundary of the pedestrians are still
reasonable. But for the long-term result, their shapes start to
deform away from regular pedestrian appearance. However,
we can still see that different groups of the pedestrians are
moving toward their destination in the correct directions,
e.g., the left most pedestrian is moving toward left, and the
right most one is moving toward right.

V. CONCLUSION

We proposed a single-stage end-to-end trainable model for
the challenging problem of predicting future frame semantic
segmentation having only observed the preceding frames
RGB data. This is a practical setting for autonomous systems
to directly reason about the near future based on current
video data without the need to acquire any other forms of
meta-data. Our proposed model for solving this task included
several encoding pathways to encode the past, a temporal
3D convolution structure for capturing the scene dynamics
and predictive feature learning, and finally a decoder to
reconstruct the future semantic segmentation. We further
proposed a teacher network coupled with a distillation loss
for training the network to improve the overall forecasting
performance. The results on the popular Cityscapes and
Apolloscape datasets indicate that our method can predict
future segmentation and outperform several baseline and
state-of-the-art methods.
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