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Abstract— IMU-based human joint motion acquisition sys-
tem is attractive for real-time control and monitoring in the
emerging wearable technology due to its portability. However,
in practical applications, it heavily suffers from long-term drift,
magnetic interference and inconsistency of rotational reference
frames, which causes precision degradation. In this paper, a
novel on-line IMU-based human gait estimation framework was
proposed to obtain the joint rotational angles directly under
the kinematic constraints between multiple body segments,
whereas traditional methods need to estimate the orientation
of each individual segment. This framework consists of an on-
line algorithm to align IMU frames with human joints and
motion estimation algorithms for hip and knee without the aid
of magnetometer. Both a 2-DoF robot and human gait tests
were performed to validate the proposed method as compared
with the predictions from commercial IMUs, joint encoders
and an optical tracking system. The outcome demonstrated
its advantages of adaptive alignment, drift rejection and low
computational cost, which alleviates the practical barriers faced
by human motion data collection in the wearable devices.

Index Terms— Human and humanoid motion analysis and
synthesis, sensor fusion, adaptive alignment, drift rejection

I. INTRODUCTION

A. Human Motion Tracking Systems

Human motion tracking systems have been widely utilized
in medicine [1], biomechanics [2], humanoid robotics [3],
film-making and games. There are several motion track-
ing methods such as marker-based optical tracking, image-
based visual tracking [4], [5], exoskeleton-based mechanical
tracking, and IMU-based (Inertial Measurement Unit) inertial
tracking [6], [7]. The marker-based optical capture system
contains multiple high-quality cameras to record the spatial
positions of the markers attached at the human subject,
which is precise but complex, expensive and unportable. The
visual tracking method largely relies on image processing
techniques and the results are usually not accurate enough
[4], which can be improved with extra markers attached [5].
The mechanical tracking system uses a wearable exoskeleton
with multiple degrees of freedom to move with the human
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subject, but it is difficult to align the mechanical rotational
axis to the human joint, leading to measurement errors.

Among these tracking methods, IMU-based inertial track-
ing has attracted much attention due to its low cost and small
size [8]. A tracking system typically consists of multiple
IMUs to be attached at the body segments, which is easy to
operate and portable. Moreover, it can achieve high sampling
rate to be implemented for real-time control.

B. Orientation Estimation Algorithms of IMU

The orientation estimations from IMUs are usually not
accurate enough with the effects of measurement noises and
bias. The gyroscope obtains angular velocity of the module,
by integrating of which the orientation can be estimated. The
noises and bias, however, will introduce the integration drift.
Therefore, the data from accelerometer and magnetometer
providing the orientations relative to the gravitational and
geomagnetic field are added to calibrate it.

Many algorithms have been designed to fuse the gyroscope
data with the accelerometer and magnetometer data [8]. The
Kalman filter is the most popular method based on the prob-
abilistic models. Considering there exists a redundancy bias
in the gyroscope data that can be modeled as a random walk,
the indirect Kalman filter [9] or error-state Kalman filter [10]
were designed by taking the orientation deviation as state.
Besides, a gradient descent algorithm [11] was designed to
optimize the orientation from gyroscope data by minimizing
the estimation errors from accelerometer and magnetometer
measurements, which achieved similar performance as the
Kalman filter but with higher sampling rate.

C. Problems of IMU-based Tracking Systems

Although IMU-based tracking system has attracted inter-
ests, in practical applications, it suffers from limitations such
as long-term drift, magnetic interference and inconsistency.

In order to address long-term drift, generally, accelerom-
eter and magnetometer data are involved [6], [7], [12], [13].
However, magnetometer data are easy to be disturbed [14],
[15], resulting in tracking errors. Some commercial products
used threshold-based approaches to reject the disturbance,
which is effective only for sudden changes, hence limiting
their practical uses.

To avoid using magnetometer data to eliminate drifts, in
some researches, other sensors were involved to optimize the
results, such as the cameras [16], [17], laser sensor [18] and
UWB [19]. However, these methods have limited accuracy
and increased the complexity of the tracking systems.
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Moreover, the relative motion of the IMU attached at
human body segment is regarded as the motion of that
segment. In practice, the IMU coordinate frame is not aligned
to the human joint, resulting in large tracking error. One
popular solution is to calibrate the tracking system via
specific body postures before using, such as N-pose and T-
pose in Xsens MVN [6], [13] and upright posture [20], which
are complex to operate and affected by the human states.

Considering the specific applications in human motion
tracking, some researches tried to calibrate the tracking
system subject to kinematic constraints. By assuming that the
adjacent segments will rotate around fix joint axis or joint
center [21], constraints on the rational direction of angular
rate or/and acceleration of joint center are added to identify
the transformation between IMU frames and human body
frames, which has been implemented to track motions of
elbow [22] and knee [23], [24]. However, magnetometer data
are still involved in those researches, where magnetic dis-
turbance will affect the calibration and tracking results. For
acceleration constraints, the centripetal and coriolis acceler-
ations are either ignored or estimated by prior known sensor
positions [25], leading to estimation errors. Moreover, most
researches are designed to estimate the joint axis off-line,
after which motion tracking is conducted. Therefore, those
methods still need calibration operations before tracking.

In this paper, a novel orientation estimation method for
IMU-based tracking system is proposed to achieve easier
operation, better precision and robustness. Considering the
existing challenges of alignment calibration, drift and mag-
netic disturbance, following works have been performed.

1) An on-line self-calibration method was designed to
find the alignment quaternions of IMUs related to
the human segments. As a result, complex calibration
before utilization can be avoided.

2) An approach to obtain orientations without drift was
proposed using gyroscope and accelerometer data, by
which geomagnetic disturbances do not affect.

3) An estimation algorithm with state representations in
rotational angle was issued to obtain the human gait
directly, thus avoiding process errors from quaternion
normalization.

4) The estimation accuracy was investigated in compar-
ison with commercial IMUs, joint encoders and an
optical tracking system.

The proposed IMU-based tracking system is described
and modeled in Section II. The gait estimation method
and experiment results are detailed in Section III and IV,
respectively. Finally, a conclusion is drawn in Section V.

II. HUMAN GAIT TRACKING SYSTEM AND MODELING

A. System Descriptions

The IMU-based tracking system consists of four IMUs
attached at the thighs and calves, respectively, to obtain the
motion of hip and knee joints, shown as Fig. 1. In order to
discuss the quantities of human motion and sensor measure-
ments, the following coordinate frames are introduced.
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Fig. 1. An illustration of the coordinate frames in the IMU-based human
gait tracking system.

• The local navigation frame n is the local geographic
frame that is the east-north-up (ENU) frame.

• The motion reference frame r is attached at the human
body and defined by the anatomy. The x and y axes are
vertical to the transverse and sagittal plane, respectively,
while z is vertical to the frontal plane and always points
forward in the direction of walking.

• The hip reference frame r1 is attached at the hip joint
and moves with the thigh. At neutral body posture, this
frame is marked as r1(0) and similar to frame r. With
the hip rotating, it is transformed to r1(k) at time k.

• The knee reference frame r2 is attached at the knee
joint and moves with the calf. Similar to the frame r1,
it is marked as r2(0) at the neutral body posture and
transformed to r2(k) with the knee rotating.

• The body frame of the thigh b1 and The body frame of
the calf b2 are the coordinate frame of the IMU attached
at thigh and calf.

Taking the human motion defined in anthropometry and
anatomy into consideration, the basic assumptions about the
above frames are stated below.
• At the neutral body posture, the frames of r1(0) and

r2(0) coincide with the frame r.
• The human subject will walk with small turning speed,

then r is quasi-static and its motion can be ignored.
• The sagittal axes of hip and knee are always parallel to

each other, meaning that yr2(k) is parallel to yr1(k) and
knee joint only rotates around its sagittal axis yr2(k).

• Since there is no reference for the rotation about the
gravity axis, the hip joint is assumed to move with
only flexion-extension and adduction-abduction, and the
rotation about xr1(k) is ignored.

Therefore, the human gait can be defined based on the
above assumptions and coordinate frames. The motion of



knee θ2 is described by the rotational angle about yr2(k)
between the frames of r1(k) and r2(k). The flexion of hip
θ1 is the rotational angle along yr1(k) between the frames
of r and r1(k), while the adduction φ1 is the angle between
yr1(k) and transverse plane.

In the following sections, Rb
a ∈R3×3 and qb

a ∈R4 represent
the rotational matrix and quaternion of frame b relative to
frame a, while av ∈ R3 is the vector expressed in frame a.

B. System Modeling

In order to estimate the rotational angles of hip and
knee joints, we firstly delineate the transform relationships
between the coordinate frames in this tracking system. At
the initial neutral body posture, we have

qr1
r (0) = qr2

r (0) = qr2
r1
(0) = [1,0,0,0]T (1)

φ1(0) = θ1(0) = θ2(0) = 0 (2)

With the human subject walking, at time k, the gait motion
is described by the flexion θ1(k) and adduction φ1(k) of hip,
as well as the flexion θ2(k) of knee. The relations between
joint angles and rotational quaternions can be obtained by
the definition and assumptions from Section II. The operator
⊗ represents quaternion multiplication.

qr1
r (k) = q(y,θ1(k))⊗q(z,φ1(k)) (3)

qr2
r1
(k) = q(y,θ2(k)) (4)

q(z,φi) =

[
cos
(

φi

2

)
;cz sin

(
φi

2

)]
(5)

q(y,θi) =

[
cos
(

θi

2

)
;cy sin

(
θi

2

)]
(6)

where cy = [0,1,0]T , cz = [0,0,1]T , i = 1 or 2.
From the general orientation estimation algorithms for

IMU, the relation between angular velocity and rotational
quaternion is designed as the system dynamics for priori
estimation, after which the estimation is optimized by the
gravity measurement. Let r1wr1

r (k) and r2wr2
r (k) be the

angular velocities of frames r1(k) and r2(k) at time k, the
quaternion derivatives can be calculated by kinematics.

dqr1
r (k)
dt

=
1
2

[
0

r1wr1
r (k)

]
⊗qr1

r (k) (7)

dqr2
r1(k)
dt

=
1
2

[
0

r2wr2
r1(k)

]
⊗qr2

r1
(k) (8)

r2wr2
r1
(k) = r2wr2

r (k)−R
(
qr2

r1
(k)
) r1wr1

r (k) (9)

Let r1g(k) and r2 g(k) be the gravity vectors expressed in
the frames r1(k) and r2(k) at time k, they can be calculated
by rotational transformation with rg = [1,0,0]T , the gravity
vector expressed in the frame r.

r1g(k) = R(qr1
r (k)) rg (10)

r2g(k) = R
(
qr2

r1
(k)
)

R(qr1
r (k)) rg (11)

For each IMU in the system, the tri-axis gyroscope obtains
three dimensional angular rate bwb

n in body frame, where the
measurement yw is affected by gyroscope bias bw and noise
nw. The bias is modeled as random walk with derivative in

Gaussian distribution ḃw = nbw ∼ N(0,Σbw), while the gyro-
scope noise as Gaussian white noise nw ∼ N(0,Σw). The tri-
axis accelerometer measures the three dimensional external
force of the sensor. Ignoring the motion acceleration that is
small during human walking, the accelerometer measurement
ya contains the gravity g in body frame and Gaussian white
noise na ∼ N(0,Σa).

yw =bwb
n +bw +nw (12)

ya =−R(qb
n)

ng+na (13)

After the IMUs are attached, the body frames of them
are aligned to the joint reference frames by qr1

b1
and qr2

b2
,

which are unknown and need to be estimated. Let biŵbi
n (k)

and bi ĝ(k) be the estimations of angular rate and gravity for
bi. Due to the assumption that r is quasi-static, the angular
velocities of joint frames ri relative to r and gravity force
can be obtained as follows.

riŵri
r (k) =R

(
qri

bi

)
biŵbi

n (k) (14)

ri ĝ(k) =R
(

qr1
bi

)
bi ĝ(k) (15)

C. Problem Statements

In the real-time tracking system, the IMUs measurement
data of {yb1

w (k),yb2
w (k),yb1

g (k),yb2
g (k)} are acquired as the

estimations of {b1ŵb1
n (k),b2ŵb2

n (k),b1 ĝ(k),b2 ĝ(k)} referred
to (12) and (13). As there are biases and noises in the
measurements, we use the angular velocity and rotational
dynamics to estimate the quaternion firstly, and then improve
the estimation by minimizing the error in gravity measure-
ment. To avoid orientation drift without geomagnetic data,
the constraints for human motion are involved. Therefore,
Problem 1: Hip joint angle estimation

min
φ̂1(k),θ̂1(k),q̂

r1
b1

f1 = ||R(q̂r1
r (k)) rg−R

(
q̂r1

b1

)
yb1

g (k)||
2

2

subject to r1ŵr1
r (k) = R

(
q̂r1

b1

)
yb1

w (k)

dq̂r1
r (k)
dt

=
1
2

[
0

r1ŵr1
r (k)

]
⊗ q̂r1

r (k−1)

q̂r1
r (k) = q

(
y, θ̂1(k)

)
⊗q
(
z, φ̂1(k)

)
(16)

Problem 2: Knee joint angle estimation

min
θ̂2(k),q̂

r1
b1
,q̂r2

b2

f2 = ||R
(

q̂r2
r1
⊗ q̂r1

b1

)
yb1

g (k)−R
(

q̂r2
b2

)
yb2

g (k)||
2

2

subject to r2 ŵr2
r1
= R

(
q̂r2

b2

)
yb2

w (k)−R
(

q̂r2
r1
⊗ q̂r1

b1

)
yb1

w (k)

dq̂r2
r1(k)
dt

=
1
2

[
0

r2ŵr2
r1(k)

]
⊗ q̂r2

r1
(k−1)

q̂r2
r1
(k) = q

(
y, θ̂2(k)

)
(17)

In the above optimizations, the objective functions use the
acceleration measurements to correct the integral drifts from
gyroscope data, where the motion accelerations are typically
ignored as they are comparably small during human walking.
The first two constraints describe the angular rates and



quaternion dynamics, while the last one represents human
kinematic constraint from system assumptions.

However, it is extremely difficult to solve them, as all the
variables to be estimated are influenced by each other. The
alignment quaternions q̂r1

b1
and q̂r2

b2
are unknown and will

affect the calculation of r1ŵr1
r (k) and r2ŵr2

r1(k), while the
angular velocities will determine the rotational quaternions
and then the cost functions.

III. HUMAN GAIT ESTIMATION METHOD

A. Relaxation of the Human Gait Tracking Problem

The IMU-based tracking system with human kinematic
constraints is analyzed to introduce the two problems for
hip and knee joint angle estimation. In order to solve the
interdependence of alignment quaternions and joint rotational
angles, in this paper, the original problems are divided into
three subproblems, which are then optimized in each sample.
Problem 3: Equivalent subproblems to solve P1 and P2

1) The estimation of alignment quaternions q̂r1
b1

and q̂r2
b2

,
with the kinematic constraint that knee joint only
rotates around its sagittal axis.

2) The estimation of knee joint angle θ2(k), based on (17)
and the latest q̂r1

b1
and q̂r2

b2
.

3) The estimation of hip joint angles φ1(k) and θ1(k),
based on (16) and the latest q̂r1

b1
.

B. The Estimation of Alignment Quaternions

These two alignment rotational quaternions determine the
angular velocity estimations of the joints, which must satisfy
the human walking features. From the assumption that knee
joint only rotates around yr2(k), the constraint about r2ŵr2

r1(k)
is designed to optimize the q̂r1

b1
and q̂r2

b2
estimations.

cy× r2wr2
r1
(k) = 0 (18)

However, both q̂r1
b1

and q̂r2
b2

have three independent vari-
ables, equation (18) is not enough to solve them. One method
is to consider the velocity series for a long duration, which is
similar to the off-line calibration process in [21]. For on-line
alignment, other conditions are needed.

After the IMUs are worn by the subject, at the static neu-
tral body posture, the orientation of each IMU except heading
can be estimated by the measured gravity. That orientation
can be treated as part of the alignment transformation, as
the hip reference frame r1 and hip reference frame r2 are
defined to coincide with r at the initial posture. Then, the
q̂r1

b1
and q̂r2

b2
are divided into two parts. One is the rotational

quaternion q̂bi estimated at the beginning, while the other is
the heading angle ψ̂i optimized by knee motion constraint.

q̂ri
bi
= q(x, ψ̂i)⊗ q̂bi (19)

q̂bi = argmin ||q̂bi
rg−ybi

g (0)||22 (20)

Therefore, the estimation of q̂r1
b1

and q̂r2
b2

becomes the
problem to optimize ψ̂1 and ψ̂2.
Problem 3.1: Estimation of alignment quaternions

min
ψ̂1,ψ̂2

halign = ||cy× r2wr2
r1
(k)||22 (21)

Referred to r2wr2
r1(k) in (17) and q̂ri

bi
in (19).

halign = ||[cy×]R(q(x, ψ̂2))R(q̂b2)yb2
w (k)

− [cy×]R(q(x, ψ̂1))R(q̂b1)yb1
w (k)||22

= ||[ỹb2
w (k)×]v(ψ̂2)− [ỹb1

w (k)×]v(ψ̂1)||22

(22)

ỹbi
w (k) = R(q̂bi)ybi

w (k) (23)

v(ψ̂i) = [0,cos(ψ̂i),sin(ψ̂i)]
T (24)

Through gradient descent method,

∂halign

∂v(ψ̂i)
= 2vT (ψ̂i)[ỹbi

w (k)×]T [ỹbi
w (k)×]

−2vT (ψ̂ j)[ỹ
b j
w ×]T [ỹbi

w (k)×]
(25)

dv(ψ̂i)

d(ψ̂i)
= [0,−sin(ψ̂i),cos(ψ̂i)]

T (26)

ψ̂i(k) = ψ̂i(k−1)−αi
∂halign

∂v(ψ̂i)

dv(ψ̂i)

d(ψ̂i)
(27)

where j = 2 with i= 1, and j = 1 with i= 2, representing the
position of IMU to be aligned. αi is the parameter for the gra-
dient descent algorithm, which can be a constant or obtained
by line search. With large αi, the alignment quaternions will
converge quickly but may experience oscillations around the
optimal point, while small αi will result in slow convergence.
By adjusting αi, it generally takes one or two walking steps
to converge, before which inaccurate results will influence
the estimation of angular velocity. At these sampling periods,
the gravity vector should take more weights (that is high βi)
in the next joint angle estimation algorithms.

Algorithm 1 Estimation of q̂r1
b1

and q̂r2
b2

Input
Initial alignment quaternion: q̂b1 , q̂b2

Angular rates from IMUs: yb1
w (k),yb2

w (k)
Last estimations: ψ̂1(k−1), ψ̂2(k−1)
Output
Latest estimations: ψ̂1(k), ψ̂2(k)
Latest alignment quaternion: q̂r1

b1
(k), q̂r2

b2
(k)

Convergence flag: β f

1: Calculate ỹb1
w (k), ỹb2

w (k), v(ψ̂1), v(ψ̂2) by (23), (24)
2: Calculate ∂halign

∂v(ψ̂i)
and dv(ψ̂i)

d(ψ̂i)
by (22), (25), (26)

3: Then ψ̂i(k) = ψ̂i(k−1)−αi
∂halign
∂v(ψ̂i)

dv(ψ̂i)
d(ψ̂i)

4: q̂ri
bi
= q(x, ψ̂i(k))⊗ q̂bi

5: if |ψ̂i(k)− ψ̂i(k−1)| Converge then
6: β f = 1
7: end if

C. The Estimation of Knee Joint Angle

After alignment quaternions obtained, the knee motion can
then be estimated by solving the optimization problem of
(17) with the known q̂r1

b1
and q̂r2

b2
. Due to the kinematic

constraints, it is complex to solve the problem in quaternion,
which is transformed in terms of rotational angle θ̂2(k).



Problem 3.2: Estimation of knee joint angle

min
θ̂2(k)

f2 = ||R
(
y, θ̂2(k)

)
ŷr1

g (k)− ŷr2
g (k)||22

subject to r2ŵr2
r1
(k) = ŷr2

w (k)−R
(
q̂r2

r1

)
ŷr1

w (k)

dθ̂2(k)/dt = cT
y · r2ŵr2

r1
(k)

ŷri
g (k) = R

(
q̂ri

bi

)
ybi

g (k)

ŷri
w(k) = R

(
q̂ri

bi

)
ybi

w (k)

(28)

Adapted from [11], the data fusion algorithm is designed
by combining the estimated gradients from angular velocity
and gravity vector. From the objective function with gravity,

d f2

dθ̂2
=−2

(
ŷr2

g (k)
)T dR

(
y, θ̂2(k)

)
dθ̂2

ŷr1
g (k) (29)

dR
dθ̂2

=

 −sin(θ̂2) 0 −cos(θ̂2)
0 0 0

cos(θ̂2) 0 −sin(θ̂2)

 (30)

Then the rotational angle is obtained by complementary filter.

∆θ̂2(k) = cT
y · r2ŵr2

r1
(k)∆t−β2

d f2

dθ̂2
(31)

θ̂2(k) = θ̂2(k−1)+∆θ̂2(k) (32)

where β2 represents the estimation error magnitude of an-
gular rate from gyroscope related to accelerometer measure-
ment, which can be regulated to adjust the confidence of
angular velocity and gravity vector. Before the convergence
of alignment quaternions, the angular rate estimations are
not very accurate due to the incorrect alignment quaternions.
Therefore, a high β2 should be chosen with higher weight
on acceleration. Once the alignment quaternions converge, a
low β2 can be taken with more confidence on angular rate.

Algorithm 2 Estimation of θ̂2(k)
Input
Latest alignment quaternion: q̂r1

b1
(k), q̂r2

b2
(k)

Angular rates from IMUs: yb1
w (k),yb2

w (k)
Acceleration from IMUs: yb1

g (k),yb2
g (k)

Last estimations: θ̂2(k−1)
Alignment quaternion convergence flag: β f
Output
Knee joint angle: θ̂2(k)

1: Calculate ŷr1
w (k), ŷr2

w (k), ŷr1
g (k), ŷr2

g (k) and r2ŵr2
r1(k)

2: Calculate d f2
dθ̂2

by (29)
3: if β f == 1 Alignment quaternions converge then
4: β2 = β2(low)
5: else
6: β2 = β2(high)
7: end if
8: ∆θ̂2(k) = cT

y · r2ŵr2
r1(k)∆t−β2

d f2
dθ̂2

9: θ̂2(k) = θ̂2(k−1)+∆θ̂2(k)
10: q̂r2

r1(k) = q
(
y, θ̂2(k)

)

D. The Estimation of Hip Joint Angle

Similar to the estimation algorithm for knee joint, the
optimization problem for hip joint motion is transformed
with the states of φ̂1(k) and θ̂1(k), while the gradient of
cost function is computed in two degrees of freedom.
Problem 3.3: Estimation of hip joint angle

min
φ̂1(k),θ̂1(k)

f1 = ||R
(
y, θ̂1(k)

)
R
(
z, φ̂1(k)

) rg− ŷr1
g (k)||22

subject to r1ŵr1
r (k) = ŷr1

w (k) = R
(

q̂r1
b1

)
yb1

w (k)

dφ̂1(k)/dt = cT
z · r1 ŵr1

r (k)

dθ̂1(k)/dt = cT
y · r1 ŵr1

r (k)

ŷb1
g (k) = R

(
q̂r1

b1

)
yb1

g (k)
(33)

For the problem with two variables to be optimized, it is
solved as follows.

d f1

dφ̂1
=−2

(
ŷr1

g (k)
)T R

(
y, θ̂1(k)

) dR
(
z, φ̂1(k)

)
dφ̂1

rg (34)

d f1

dθ̂1
=−2

(
ŷr1

g (k)
)T dR

(
y, θ̂1(k)

)
dθ̂1

R
(
z, φ̂1(k)

) rg (35)

dR
dφ̂1

=

 −sin(φ̂1) cos(φ̂1) 0
−cos(φ̂1) −sin(φ̂1) 0

0 0 0

 (36)

dR
dθ̂1

=

 −sin(θ̂1) 0 −cos(θ̂1)
0 0 0

cos(θ̂1) 0 −sin(θ̂1)

 (37)

Algorithm 3 Estimation of φ̂1(k) and θ̂1(k)
Input
Latest alignment quaternion: q̂r1

b1
(k)

Angular rates from IMUs: yb1
w (k)

Acceleration from IMUs: yb1
g (k)

Last estimations: φ̂1(k−1), θ̂1(k−1)
Alignment quaternion convergence flag: β f
Output
hip joint angle: φ̂1(k), θ̂1(k)

1: Calculate ŷr1
w (k) and r1ŵr1

r (k)
2: Calculate d f1

dφ̂1
and d f1

dθ̂1
by (34), (35)

3: if β f == 1 Alignment quaternions converge then
4: β1 = β1(low)
5: else
6: β1 = β1(high)
7: end if
8: ∆φ̂1(k) = cT

z · r1ŵr1
r (k)∆t−β1

d f1
dφ̂1

∆θ̂1(k) = cT
y · r1ŵr1

r (k)∆t−β1
d f1
dθ̂1

9: φ̂1(k) = φ̂1(k−1)+∆φ̂1(k)
θ̂1(k) = θ̂1(k−1)+∆θ̂1(k)

10: q̂r1
r (k) = q

(
y, θ̂1(k)

)
⊗q
(
z, φ̂1(k)

)



IV. EXPERIMENT RESULTS

A. Implementation Details

An experimental version of the IMU-based tracking sys-
tem was designed, shown in Fig. 2. It contains a mainboard
with STM32F405 and two-channel CAN bus (one channel
for IMUs at the left leg and the another for the right leg), a
24V DC battery as power supply and 4 Mti-670 IMUs (Xsens
Technologies B.V., The Netherlands). The IMU raw data
were sampled at 100 Hz, while the three one-step gradient
descent estimation algorithms were run in sequence at each
sampling period to update the alignment quaternion and joint
angles. The computation time for each update was tested to
be about 1-2 ms.

24V DC Battery STM32F405 CAN1-Left

CAN2-Right

Left Thigh Left Calf

Right Thigh Right Calf

Fig. 2. The experimental hardware of IMU-based tracking system.

B. Comparison in 2-DoF Robot Measurement

In order to show the performance of the proposed algorith-
m, we installed two IMUs in a 2-DoF robot shown in Fig. 3.
The robot was controlled to move in a normal gait, with the
upper joint simulating a hip and the lower joint simulating
a knee. The actual joint rotational angles were measured by
two encoders in the robot. Meanwhile, the joint motion were
estimated by orientation outputs of IMUs and the proposed
algorithm in Section III. Two experiments were conducted
to verify the drift-free and self-aligned performance.

Apply 

external 

magnetic 

field

(a) Robot Test 1 (b) Robot Test 2

IMUsMarkers

(c) Human Track

Fig. 3. Experiment setup for comparison in 2-DoF robot and human.

1) Magnetic disturbance and drift rejection: Firstly, the
IMUs were installed in the front of robot links as shown in
Fig. 3(a). When the robot joints were rotating, an external
magnetic field was manually applied to the IMUs. The
measured and estimated angles for hip and knee joints, as
well as the errors compared to the encoder measurements,
are shown in the left figures of Fig. 6, 7 and 8.

It is obvious that the estimations from the proposed algo-
rithm can steadily track the actual values in both joints, while
the results from commercial IMUs with implement algorithm
drifted with magnetic disturbance. Moreover, the estimation

errors from the former were significantly smaller than those
from the later, helped by the alignment calibration. For the
method to estimate joint angles by orientations of links,
the IMU body frames were not aligned to the robot joints,
resulting in leak of rotational angles. However, the proposed
algorithm reduced the leak with adaptive alignment.

2) Adaptive alignment: To show the performance of adap-
tive alignment, the IMU attached at thigh was rotated around
the link with a specific angle shown in Fig. 3(b). The middle
figures of Fig. 6, 7 and 8 show the angles and estimation
errors. With more serious inconsistency between IMU body
and joint frames, larger leak of motion estimation by IMU
implementation algorithm was generated, but the results from
proposed algorithm were still unaffected.

In Fig. 4, the estimated alignment quaternions are shown to
be adjusted as the knee started to rotate, which were almost
optimized at the first walking step and converged at second
step. With alignment, the estimated joint angular rates were
identical to rotational axis, while the measured angular rates
were decomposed into three axes, as shown in Fig. 5.
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Fig. 4. Estimated alignment quaternions for hip and knee.
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Fig. 5. Estimated and measured angular velocity for hip.

C. Comparison in Human Tracking

The IMUs were attached at a human subject to measure
the joint angles, shown in Fig. 3(c), while an optical tracking
system - Cortex (Motion Analysis Corporation, USA) and
the biomechanics analysis tool - Visual 3D (C-Motion, Inc.,
USA) were used to obtain the reference gait. During the test,
the human subject was walking at a treadmill in 0.45m/s.

Shown in the right figures of Fig. 6, 7 and 8, it can be
found that the estimations of knee flexion were best matched,
while the hip angles produced larger estimation errors. A
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(b) Test 2 in Robot
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(c) Human Gait Tracking
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Fig. 6. Measured and estimated adduction angles for hip.
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(b) Test 2 in Robot
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(c) Human Gait Tracking

Estimated by Proposed Algorithm
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Fig. 7. Measured and estimated flexion angles for hip.
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(b) Test 2 in Robot
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(c) Human Gait Tracking
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Fig. 8. Measured and estimated flexion angles for knee.The upper row shows joint angles in degree, while the lower row presents the estimation errors.

possible cause is the different definition of rotational se-
quence for hip joint and initial neutral body posture during
calibration for optical tracking. In this test, the overall results
were worse than those in 2-DoF robot tests, with higher
fluctuation and errors. One explanation is that the joint angles

from optical capture were smoothed by the process software,
while the results from IMUs were not. Besides, there were
serious noises in the original angular rate data caused by
muscle movement and non-negligible disturbances to the
accelerations due to the ground impact during heel strike.



D. Estimation Errors
The Root-Mean-Square estimation errors for the proposed

algorithm and the commercial outputs are presented in Table
I, which takes the measurements from joint encoders and the
optical tracking system as reference. The results from Test
1 show that the proposed algorithm was able to obtain the
joint angles with only angular velocity and acceleration data
from IMUs, which was not affected by drift and magnetic
disturbance. The estimate errors in Test 2 for hip joint were
much smaller than those from commercial IMUs, which was
beneficial from the on-line alignment. Although the results
for human gait tracking were not as good as those in robot
tests, it is still obvious that the proposed algorithm can
estimate the human gait with acceptable accuracy.

TABLE I
ROOT-MEAN-SQUARE ERRORS OF ESTIMATION

Proposed Algorithm
Vs Encoder/Optic

Commercial IMU
Vs Encoder/Optic

Test 1 Test 2 Gait Test 1 Test 2 Gait
Hip Addu 0.508◦ 1.126◦ 2.948◦ 0.978◦ 13.062◦ 2.621◦
Hip Flex 0.142◦ 0.506◦ 2.341◦ 0.795◦ 6.934◦ 4.432◦
knee Flex 0.237◦ 0.500◦ 1.577◦ 1.534◦ 0.878◦ 3.802◦

V. CONCLUSION

In this paper, an IMU-based tracking system was designed
to capture human gait. Considering the existing problems,
a on-line joint angle estimation algorithm with adaptive
alignment and drift rejection was proposed using only the
angular rate and acceleration data. It was validated in com-
parison with commercial IMU outputs and measurements
from joint encoders and optical tracking system, showing that
the estimation accuracy is greatly improved and the method
is more robust to the magnetic disturbance and misalignment.

Currently, this algorithm does not consider the proba-
bilistic models of sensors, the performance of which much
depends on the parameters in gradient descent. The segment
of angular rates rather than the latest one sample could be
added to improve the alignment quaternions, while Kalman
filter could be designed for joint angle estimation consider-
ing probabilistic models. However, these will increase the
computational costs. Apart from the alignment and drift
problems that have been solved by this paper, there are other
challenges in the IMU-based tracking system such as the
effects of muscle movement and ground impact, resulting
in severe vibrations noises and IMU movements. Therefore,
better mount to attach IMUs should be designed and IMUs
with lower vibration sensitivity could be considered, while
filters need to be involved to process the raw measurements
or estimation fluctuations by detecting heel strike states.
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