
Fast Tennis Swing Motion by Ball Trajectory Prediction and Joint
Trajectory Modification in Standalone Humanoid Robot Real-time

System

Mirai Hattori1, Kunio Kojima1, Shintaro Noda1,
Fumihito Sugai1, Yohei Kakiuchi1, Kei Okada1 and Masayuki Inaba1

Abstract— In this work, we propose a system for humanoid
robot fast motions. When a humanoid robot performs a motion
such as a tennis forehand stroke motion, a whole-body fast
motion in reaction to visual information is required. There are
three problems to tackle. (1) Motion is desired to be quick. (2)
Real-time visual processing considering visual noises is needed.
(3) Real-time joint angle modification with balance keeping is
needed. To solve the problem (1), we used an offline optimization
system to enhance the motion speed. To solve the problem (2),
we implement a ball trajectory prediction algorithm using the
Extended Kalman Filter (EKF). To solve the trade-off between
(1) and (3), we propose an offline optimization condition with an
estimated balance margin. By using these methods, we achieved
a non-step tennis forehand stroke motion with a humanoid
robot by predicting a ball’s trajectory with stereo cameras on
the robot’s head.

I. INTRODUCTION

Humanoid robots are designed to work in human envi-
ronments. Therefore, it is desirable for humanoid robots to
perform tasks as fast as humans. In this research, we focus
on humanoid robot real-time motions. We humans perform
daily tasks using environment recognition and we modify
our motions in real time. Sports motions such as running
and jumping are good examples of real-time motions. It is
easy for humans to modify a motion in real time in reaction
to visual information, but it is difficult for humanoid robots
because it can easily fall down while modifying a motion. In
this study, we propose a standalone humanoid robot system
that uses head stereo camera image information while a robot
is performing a fast motion. By using the proposed system,
we achieved a tennis forehand swing stroke motion of a
humanoid robot by predicting a flying tennis ball’s trajectory
and by modifying a racket’s trajectory (Fig. 1).

A. Related Work

1) Robot Motion Generation reacted to environmental
information: Several works have tackled real-time robot
motion generation. A wired multi-link robot fast batting
motion was achieved[1]. The robot’s joint trajectory was
modified to hit the time-changing target position acquired
from visual information in real time. Stereo cameras were
used in the paper and the distance between those cameras
was 0.8[m]. The distance is too long for humanoid robot

1All the authors are with JSK Laboratory. The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. [m-hattori,
k-kojima, s-noda, sugai, kakiuchi, k-okada,
inaba]@jsk.imi.i.u-tokyo.ac.jp

Fig. 1. Humanoid robot JAXON while performing tennis forehand stroke
motion

head stereo cameras, hence the system is not fully applicable
to humanoid robots. A lightweight badminton robot was
designed to move its joints fast[2]. However, this approach
is difficult for regular motor-controlled humanoid robots.
Another approach for real-time robot motion generation
is continuous motion optimization using a locally reactive
controller[3]. The literature focuses on object manipulation
and obstacle avoidance using visual perception.

2) Humanoid Robot Real Time Motion Generation:
Humanoid robot researchers have been studying real time
motion generation considering balance stabilization[4], [5],
[6]. Life-sized humanoid robots are necessary to consider
balance keeping, which makes locomotion and manipulation
difficult. Real time foot trajectory regeneration of a humanoid
robot when the robot stumbles was demonstrated[7]. The
demonstration uses environmental information using force
sensors on the robot’s feet during balance keeping. By
limiting the discussion to humanoid robot sports motion,
a baseball batting motion[8] was achieved. In that study,
the motion was generated from human motion capture data.
Humanoid soccer robots have been developed over the past
few decades[9], but it is still difficult for humanoid robots to
perform soccer kick motions as fast as humans. Table tennis
hitting motions were performed[10], but its system was not
for a standalone humanoid robot system because external
cameras were used to predict table tennis ball trajectory.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 3612

balance

premargin

maximize
racket-speed

Swing
modification

Real-time joint angle modification

Hitting point
prediction
by EKF

Stereo images (100Hz)

joint
angle hitting

point
(100Hz)

Offline
motion
generation

(500Hz)
eye cameras

ball

Robot

Fig. 2. Whole-body fast motion planning and modification system based
on visual information

In our previous study, a humanoid robot’s whole body fast
sport motion with nonlinear optimization was achieved[11].
However on that study, no environmental information such
as visual information was used.

B. Contribution of This Study

The contributions of this study are as follows.
• Motion speed was optimized offline with an estimated

balance margin.
• Real-time flying object trajectory prediction by stereo

image processing was done using the Extended Kalman
Filter (EKF).

• Real-time joint trajectory modification reacted to visual
information in a standalone humanoid robot system was
achieved.

• By using the proposed system, a humanoid robot’s
tennis forehand stroke motion was performed without
falling down.

II. REAL-TIME TENNIS SWING MODIFICATION SYSTEM
BY REAL-TIME VISUAL FEEDBACK

In this research, we propose a standalone humanoid robot
system for performing fast motions in reaction to visual
information. In our proposed system, a tennis forehand swing
motion is generated through offline optimization and the
motion is modified through real-time optimization.

The whole system in this research is shown in Fig. 2.
The system consists of three subsystems: an offline racket

speed optimization system for planning an initial motion
(Sec. III), a real-time ball trajectory predicting system using
the EKF (Sec. IV) and a real-time joint angle modification
system by quadratic programming (Sec. V). In Sec. III,
an initial motion is generated offline by using a Sequen-
tial Quadratic Programming (SQP) solver. This subsystem
includes balancing conditions. The reference Zero Moment
Point (ZMP) trajectory is changed in reaction to the ball tra-
jectory prediction output, thus a balance margin is estimated
in this subsystem. In Sec. IV, a tennis ball’s trajectory is
predicted in real time using the images from stereo cameras
attached to the robot’s head. This process is executed in
100[Hz] frequency. In Sec. V, the joint trajectory is modified
in real time based on the predicted ball trajectory. This
process is executed in 500[Hz] frequency.

III. OFFLINE TENNIS FOREHAND SWING MOTION
PLANNING BY SWING SPEED OPTIMIZATION

A. Swing Speed Optimization System

In order to achieve tennis forehand stroke, an initial joint
trajectory is generated in this subsystem. The initial motion
generation system in this work is based on our previous
work[11]. The differences from our previous work in the
planning phase are as follows.

1) The desired hitting time is fixed.
2) The security margin for the balancing condition is

estimated.
3) The final pose of the motion is not included in the

equality conditions.
In this system, the joint trajectories are described as

B-Spline curves[12] and the racket speed to the normal
direction to the racket surface is optimized through nonlinear
optimization. Each planned joint trajectory is reserved as B-
Spline curve control points, which is the design variables
in the offline optimization problem. A B-Spline curve is
described as a recursion The trajectory of a certain joint j
is described using uniform n-order B-Spline curves and m
control points. Let pj,i(i = 0 · · ·m− 1) is a control point i
of a certain joint j and bi,n(t)(i = 0 · · ·m− 1) is the value
of the basis function of n-order B-Spline curve.

θj(t) =

m−1∑
i=0

pj,ibi,n(t) (1)

Each control point pj,i is the design variable of the optimiza-
tion problem.

The optimization problem can be solved with a SQP
solver[13]. We used CCSA (Conservative Convex Separable
Approximation) algorithm in the solver option[14].

The objective function is the linear combination of the
following values:

1) Racket speed to a pre-defined certain direction
(Negated because this is a minimization problem)

2) The sum of each integral of the jerk of the joints
Let w = 1 − 0.000005 is a weighting variable, n is a unit
normal vector to the racket surface, J(θh) is the jacobian
from the joint angles θh to the racket’s sweet spot, th is the
desired hitting time and tf is the time when the motion ends,
the objective function is formulated as follows:

min
pi,j

(−wnTJ(θh) ˙θ(th)) + (1− w)

∫ tf

0

||
...
θt||

2
dt (2)

The equality conditions are as follows:
1) Initial pose joint angles and their 1st/2nd order deriva-

tives
2) Hitting pose joint angles
3) 1st/2nd order derivatives of final pose joint angles
4) Foot position and attitude
Let θ(t) are the joint angles at the time t = t, θ0 are

the initial pose joint angles (t = 0), θh are the hitting pose
joint angles (t = th), rL/R(t) are the left/right foot position
and attitude at the time t = t and rL/R0 are the initial

3613

Fig. 3. The support polygon and the ZMP margin
The outer polygon is the support polygon, which is the convex hull of the
left and right foot vertices. The inner polygon is the support polygon with
an estimated margin ∆xzmp. Given the conditions that both the robot’s feet
does not rotate or step, the reference ZMP trajectory has to be fully inside
the support polygon.

left/right foot position and attitude, the equality conditions
are formulated as follows:

θ(0) = θ0, θ̇(0) = 0, θ̈(0) = 0 (3)
θ(th) = θh (4)

θ̇(tf) = 0, θ̈(tf) = 0 (5)
rL(t) = rL0 (6)
rR(t) = rR0 (7)

The inequality conditions are as follows:
1) Joint angle limitations and joint velocity limitations
2) Collision avoidance
3) Distance between target ZMP and the nearest support

polygon edge
The inequality conditions 1 and 2 are calculated under the
robot hardware constraints.

The support polygon in the last inequality condition 3 is
restricted with a margin ∆xzmp (See Fig. 3). The margin is
described as εb in [11], but for a better understanding of the
parameter, we call the value as ∆xzmp. The value ∆xzmp is
important because it is a trade-off parameter that controls the
volume of the feasible solution space and the safety margin
for balance keeping, thus the margin has to be estimated.
The estimation process is described in Sec. III-B. Each of
the conditions are discretized by a step time (0.05[s]).

The optimization time condition is set so that the motion
starts at t = 0.0[s], the desired hitting time is at t =
0.7[s] and the motion ends at t = 1.4[s]. After 2 hours
of the optimization process, we acquired optimized joint
trajectories. The acquired optimized swing motion is shown
in Fig. 4.

B. Decision of Balance Margin; ∆xzmp

To achieve tennis forehand stroke motion, the robot has to
predict a ball’s trajectory. It is desirable for a legged robot
not to slip or rotate while the robot is predicting a ball’s
trajectory. Hence, the balancing condition is set so that both
the robot feet do not rotate or slip while the robot is moving.

Fig. 4. Initial motion
The three poses are the initial pose (t = 0.0[s]), the hitting pose (t = 0.7[s])
and the final pose (t = 1.4[s]). Note that this motion only plays motion
acquired from the offline optimization. The motion does not include the
real-time optimization in our proposed system.

In this section, the decision process of the balance margin
∆xzmp is explained. The ZMP position on the ground at a
certain time xzmp(t) is calculated by inverse dynamics using
the planned joint angles and their derivatives. To evaluate the
dynamic balancing conditions, the shortest distance between
xzmp(t) and the edge set of the support polygon L is
defined as d(L,xzmp(t)). The function is positive when the
xzmp(t) is inside the support polygon, and it is negative
when the xzmp(t) is outside the support polygon. By using
this function, the balancing condition is described as Eq. 8.

d(L,xzmp(t)) ≥ ∆xzmp (8)

The ZMP trajectory is changed when the joint angles are
modified, so the ZMP margin of the support polygon ∆xzmp

has to be decided to prevent the robot from rotation and
slip. The ZMP margin ∆xzmp is decided by the following
process. The ZMP position xzmp(t) calculated by inverse
dynamics must be fully inside the support polygon. Given
that both the robot’s feet do not rotate or slip, as shown
in Fig. 3, the support polygon is shorter for the robot’s
front-back direction than its left-right direction. The robot
has a racket in its right hand and it modifies its right arm
joint trajectories in real time, thus the ZMP position changes
mainly to the robot’s front-back direction by the right arm
joint trajectory modification.

The robot’s ZMP is calculated as Eq. 9.

xzmp =

∑ni

i=1mi (xi(z̈ + g)− zẍi)−
∑ni

i=1 Iiω̇i∑ni

i=1mi(z̈ + g)
(9)

where i means the ith joint, mi is the ith link mass, xi is
the ith link position, Ii is the moment of inertia of the ith
link, ωi is the joint velocity of the ith link and z is the
center of gravity. The robot dynamics model includes the
racket model used in the experiment. The robot modifies its
right arm joint angles, hence the biggest contribution to the
robot’s front-back ZMP position change from the planned
motion is the right arm shoulder pitch joint torque difference
during modification. The maximum difference of the robot’s
shoulder-pitch torque from the planned torque is defined as
∆τ . Using this value, the ZMP change ∆xzmp is approxi-
mated by Eq. 10. Note that the acceleration differences of
the robot’s links from the original motion are approximated

3614

Fig. 5. The variables and their coordinates when estimating the pre-margin

Fig. 6. Stereo cameras attached to the robot’s head

as 0.

∆xzmp =
|∆τ |∑ni

i=1mig
(10)

The value ∆τ has to be calculated to estimate ∆xzmp.
This value can be estimated from the hitting point accelera-
tion. A hitting point is the intersection point of the predicted
trajectory and the pre-decided hitting plane at a certain time.
The hitting point acceleration is calculated as 2nd-order
numerical derivatives of time-changing hitting point position
in the world coordinates. The mean value of the predicted
hitting point trajectory z-directional accelerations r̈z is about
82.0[m/s2]. The torque needed to achieve this acceleration
can be calculated as follows:

∆τ = J
r̈z
r

(11)

where J = 1.69[kgm2] is the right arm moment of inertia
around the shoulder pitch joint axis, r = 1.34[m] is the
distance between the right arm joint axis and the racket sweet
spot. The robot’s total mass is 130[kg]. These variables are
illustrated in Fig. 5. Using Eq. 10 and Eq. 11, the value
∆xzmp is calculated as ∆xzmp = 0.08[m]

IV. REAL-TIME BALL TRAJECTORY PREDICTION USING
STEREO CAMERA IMAGES

In order to achieve a tennis forehand stroke motion, a ball
trajectory prediction system is included in the system. A lot
of ball trajectory prediction algorithms were proposed. In
[1], [15], [16], active stereo camera systems are used. In our
work, stereo cameras are attached to the robot’s head (See
Fig. 6). Although the cameras move in the world coordinates,
Thus the cameras are fixed with respect to the robot’s head
link. Our ball trajectory prediction algorithm is similar to
[17] and [18] except that the position and the attitude of the
camera base and their derivatives have to be considered.

(a) pixel (b) histogram

Fig. 7. Left camera pixel x values from ball segmentation and gaussian
function fit to pixel histogram
The pixels in the figure is from an experiment. In the experiment, we placed
a static ball on a desk and a robot looked at the ball from a fixed position.

left image

pixels

right image

Ball trajectory

 prediction
Ball segmentation

Fig. 8. Ball trajectory prediction overview
A computer inside the robot acquires the left and right camera images.
From each image, centroid pixels of the ball region are extracted. The EKF
computation node estimates the ball’s position and velocity from the left
and right pixels extracted.

The specification of the camera is shown in Table. I. To
modify the motion quickly, the trajectory prediction system
has to be real-time. In this paper, we consider the situation
where a ball flies for only around 1.0[s] toward a robot. The
distance between the two stereo cameras is about 0.23[m],
which is narrower than the 0.8[m] compared with the existing
literature[1]. Due to this restriction, the pixel noises from ball
segmentation are amplified in the triangulation process and
they transform into depth calculation noises. Thus a noise
filtering process is needed to hit a ball. The pixel noises
behaved nearly in gaussian manners (Fig. 7), thus gaussian-
based filtering algorithm can be used. There are various
prediction algorithms such as Particle Filter (PF) or Ensem-
ble Kalman Filter (EnKF), but the Extended Kalman Filter
(EKF) algorithm was chosen because it is a computationally
lightweight analytical algorithm. The images acquired from
the camera are processed in 100[Hz] in this work. The ball
trajectory prediction system overview is shown in Fig. 8.
First, regions of a ball on the stereo cameras are acquired by
primitive image processing. Then, the centroid pixels of the
regions are extracted. Finally, the location and the velocity
of a ball are estimated using the output pixels.

3615

TABLE I
BLACKFLY S (CAMERAS) AND LM5NC1L (LENSES) SPECS

Type Spec
Model number BFS -U3 -13Y3C
Max frame rate 170[frame/s]
Used frame rate 100[frame/s]

Shutter Mode Global Shutter
Resolution (height) 1024[pixel]
Resolution (width) 1280[pixel]

Type Spec
Model number LM5NC1L
Focal length 4.5[mm]

Shortest 0.2[m]photographing distance
Angle of view 79.0◦

A. Primitive Ball Segmentation from Stereo Images

In this subsystem, to increase the stereo image processing
calculation frequency, stereo matching algorithms are not
used because its computation costs are high. Instead, the
centroid pixels where the ball exists are extracted from each
of the images.

The segmentation process is as follows:
• Stereo images from the cameras are acquired
• The images are resized in the half size of the original

image
• Using thresholding operation based on HSV(Hue, Satu-

ration, Value) color space and the opening closing image
manipulation morphological operation, regions where
the ball shows are extracted

• Centroid pixels of the ball regions are acquired
Full size image processing takes more than 0.02[s], which
means the execution frequency is lower than 50[Hz]. Thus
the images are resized in the half size of the original image
in the software process to make the calculation time shorter.
Note that all the calculation sequences are processed in the
robot’s internal computer, and the segmentation process is
vulnerable to outliers. The center of the pixels in the left
and right images are used in Sec. IV-B.

B. Ball Trajectory Prediction Using Extended Kalman Fil-
tering

In this subsystem, the ball’s 3D positions and velocities
from the world origin are estimated by EKF. We assumed
that a ball behaves in a parabolic motion, thus the ball
trajectory is decided by the ball position and velocity.

The ball state xk in EKF is described as follows:

xk =
[
xk, yk, zk, ẋk, ẏk, żk

]T
(12)

where k is the sequential number for each time step.[
xk, yk, zk

]T
,
[
ẋk, ẏk, żk

]T
is the world position (in [m]

respectively) and velocity (in [m/s] respectively) of the ball.
The initial ball state x0 is acquired by the conventional

triangulation method. The initial ball position is acquired
by the triangulation method and the initial ball velocity is
calculated on the hypothesis that the ball reaches the pre-
decided hitting point at a 45 degree angle in a parabolic
manner. From our experience, the initial ball velocity do not

have to be accurate unless the velocity value is extremely
different from the ground truth. At first we calculated the
initial velocity from the first two acquired points, but the
calculated initial speed of a ball was sometimes extremely
fast because of measurement noises.

The state equation in EKF is described as follows:

xk =

[
I3 I3∆t
03 I3

]
xk−1 +

[
1
2g(∆t)

2

g∆t

]
+wk (13)

where g =
[
0, 0,−9.8

]T
[m/s2] is the acceleration of gravity,

∆t ∼ 0.01[s] is the interval between time step k − 1 and k,
and wk is the model noise.

The observation zk is defined as follows:

zk =
[
xl,k, yl,k, xr,k, yr,k

]T
(14)

where xl,k, yl,k is the pixels acquired from the left camera
segmentation output, xr,k, yr,k is the right output pixels.

The observation equation in EKF is described as follows:

zk = h(xk−1) + vk (15)

∼ ∂h

∂xk−1
xk−1 + vk (16)

where h is the nonlinear function that transforms the world
position and velocity of the ball xk−1 into pixels. vk is the
pixel noises of the segmentation process from each image.

The nonlinear function h is defined as follows: let Ro
cam,k

and pocam,k be the attitude and position of the camera
coordinate system from the world origin.

The ball position from the camera coordinate system[
Xk, Yk, Zk

]T
is calculated as follows.Xk

Yk
Zk

 = Ro
cam,k

T

xkyk
zk

− pocam,k

 (17)

Let Pl and Pr be the projection matrices of left and right
cameras.

Pl =

Pl00 0 Pl02 0
0 Pl11 Pl12 0
0 0 1 0

 (18)

Pr =

Pr00 0 Pr02 Pr03

0 Pr11 Pr12 0
0 0 1 0

 (19)

The pixels xl,k, yl,k, xr,k and yr,k are calculated using left
and right focal lengths fl and fr.xl,kflyl,kfl

fl

 = Pl


Xk

Yk
Zk

1

 ,
xr,kfryr,kfr

fr

 = Pr


Xk

Yk
Zk

1

 (20)

As a consequence, we get a transformation matrix.
xl
yl
xr
yr

 =


Pl00Z

−1
k Xk + Pl02

Pl11Z
−1
k Yk + Pl12

Pr00Z
−1
k Xk + Pr02 + Pr03Z

−1
k

Pr11Z
−1
k Yk + Pr12

 (21)

3616

Fig. 9. Predicted ball trajectory
The purple points are acquired by the raw triangulation approach and the
blue arrows are acquired by our EKF approach. The directions of blue
arrows are directions of a ball’s velocity. Our approach can estimate a ball’s
position and velocity, which means the ball’s trajectory can be predicted.
Note that our approach considers noises from the ball region segmentation.

Fig. 10. The time-changing hitting points and the hitting plane.
A hitting point is the intersection point of the predicted trajectory and the
pre-decided hitting plane at a certain time.

The function h(xk) is calculated using Eq. 17 and Eq. 21.
One of the extracted trajectory is shown in Fig. 9. Com-

pared with the raw triangulation method (the purple points),
the EKF approach in this work (the blue arrows) considers
the ball segmentation pixel noises. The raw triangulation
method is a method to estimate only the position of a ball, but
our approach estimates the velocity of a ball, which means
the trajectory of a ball can be predicted.

V. REAL-TIME JOINT ANGLE MODIFICATION

In order to hit a ball, every time a ball’s trajectory is
predicted and the reference joint angle trajectory of a robot
is calculated accordingly.

A. Decision of Hitting Point

We set the initial motion generation condition so that the
motion starts at t = 0.0[s], the desired hitting time is at
t = 0.7[s] and the motion ends at t = 1.4[s]. Thus the
desired hitting time t = 0.7[s] is predetermined regardless
of the ball trajectory. A robot has to decide the desired
hitting point in real time from the predicted ball trajectory.
The predicted hitting point is the intersection point of the
predicted trajectory and the pre-decided hitting plane. One of
the predicted trajectories is shown in Fig. 10. The estimated
position and velocity of a ball change with time while a ball

is flying. Using EKF algorithms, we obtain the covariance of
a ball’s state vector. The predicted hitting points are not used
for the first 0.2[s] as the prediction result did not converge
enough to hit a ball.

B. Real-time Joint Angle Modification

The system is based on our previous work[11]. This base
system is implemented in this work in the real-time pro-
gramming layer and the target hitting point is used to hit the
ball with the racket. The system includes a real-time balance
stabilization system based on the Linear Inverted Pendulum
model[4]. The sweet-spot of the racket must get through the
hitting point at the hitting time. The right arm end effector
position and attitude are easily calculated from the predicted
hitting point position and attitude by static transformation.
Every time the predicted hitting point changes, we solve
the inverse kinematics problem and the optimization problem
for the right arm joint trajectory modification. Note that this
system works when the hitting point is in the region where
the inverse kinematics calculation can be solved. The sum of
squares of the angular difference from the initial joint angles
is minimized using Quadratic Programming (QP).

The objective function is as follows:
• The sum of squares of the angular difference from the

current joint trajectory
The equality conditions are as follows:

• Current pose joint angles
• Hitting pose joint angles

The inequality conditions are as follows:
• Joint angle limitations
• Joint angular velocity limitations

These conditions are all linear conditions, thus using a QP
solver[19], this problem can be solved in real time in 100[Hz]
frequency.

The balancing conditions are considered in the offline
motion generation phase so that both the robot’s feet do not
rotate or slip while the robot is modifying its motion, hence it
isn’t necessary to calculate them in real time. The collision
conditions are considered in the offline motion generation
phase, but in the real time phase they are not included in the
conditions. For the safety, the robot’s motion will stop when
the robot’s internal controller detects self-collisions.

VI. EXPERIMENT AND RESULT

The proposed system was applied to the tennis swing
motion. The top-right number in Fig. 14 is the elapsed time
from when the swing motion started.

We carried out dynamics simulations using the robot’s
model[20]. The simulation includes simulation of a ball
movement (Fig. 11).

Fig. 12 shows the comparison of the planned ZMP trajec-
tory and the actual ZMP trajectory under ∆xzmp = 0.08[m].

We conducted an experiment with a real humanoid robot.
The horizontal component of the ball speed in the experiment
was about 5m/s. The racket maximum speed was about
4m/s (See Fig. 13). Fig. 14 shows a real humanoid robot

3617

Fig. 11. Dynamics simulation environment
The simulator handles the robot dynamics simulation and the camera images
simulation. As a ball is thrown from 4[m] from the robot, the robot performs
a motion using our proposed real-time system.

(a) Planned ZMP trajectory (b) Actual ZMP trajectory in simula-
tion

(c) Right foot force sensor value

Fig. 12. Comparison of planned and actual ZMP trajectories
This Figure shows the comparison of the planned ZMP trajectories and the
actual ZMP trajectories under ∆xzmp = 0.08[m] in dynamics simulations.
The blue polygons in Fig. (a) and Fig. (b) are the support polygons of
both the robot’s feet. The green polygons are restricted support polygons
with the margin ∆xzmp = 0.08[m]. The orange lines are the planned and
actual ZMP trajectories respectively. In Fig. (b), the actual ZMP trajectory
is outside of the polygon instantly. This is because the robot’s right foot
force sensor value was nearly zero (Fig. (c)) and the simulator could not
calculate the actual ZMP value properly.

forehand stroke motion without falling down using the ZMP
margin value ∆xzmp = 0.08[m].

The proposed system has computational latencies and
target joint angle following-up latencies. The computational
latencies consist of the following three latencies.

1) USB communication latency between the stereo cam-
eras and the computer for visual processing

2) Ball region segmentation and EKF calculation latency
3) Inverse kinematics and QP calculation latency

The cameras support USB3.0 standard. According to the
time stamp difference between the cameras and the com-
puter, the USB communication latency was less than 0.01[s].
The visual processing and the EKF calculation node was

Fig. 13. The racket velocity norm while swinging.
The racket velocity in the graph was acquired by forward kinematics
calculation using the experimenal logs. The robot’s base position and the
velocities of the joints were used in the calculation. Note that the racket
speed did not significantly change when hitting the ball (t = 0.8).

executed at 100[Hz], thus the latency was less than 0.01[s].
The Inverse kinematics calculation time was up to 0.003[s]
and QP calculation time was up to 0.002[s]. The target
joint angle following-up latencies are up to 0.008[s] The
sum of these latencies was up to 0.033[s]. The horizontal
component of the ball speed was about 5m/s, thus the real
ball horizontal position was 0.165[m] ahead of the predicted
ball horizontal position in the worst case. The tennis forehand
stroke experiment was successful in spite of this latencies
because the ball’s trajectory and the racket’s trajectory are
similar except for their direction.

The proposed system has hitting time prediction er-
rors, hitting point prediction errors and target joint angle
following-up errors. The system could predict the hitting
time in 0.2[s], and the hitting time prediction error was less
than 0.1[s]. It takes 0.7[s] to perform the swing motion,
thus the robot cannot hit a ball which flies less than 0.9[s]
theoretically.

The variance from EKF output in the predicted hitting
point was on the order of 0.01[m] around the hitting time, but
there were cases where the robot failed to hit the ball because
the ball is out of the region where the inverse kinematics
calculation fails. Also, the robot failed to hit the ball in cases
when the ball hit the ground and bounced because the ball
is expected to fly in a parablic manner.

VII. CONCLUSIONS AND FUTURE WORK

When a humanoid robot performs whole-body fast mo-
tions based on visual information, the robot motion is desired
to be quick and the robot has to modify its joint angles to
meet the condition of the visual information while keeping
its balance. Estimation of the ZMP trajectory change in the
offline planning prevents the robot from falling down in real
time and implementation of the real-time joint trajectory
modification leads to the achievement of the hitting motion
in 0.7[s]. Owing to the EKF prediction system considering
visual noises, a humanoid robot can modify the racket trajec-
tory to hit a ball in real time. The ball trajectory prediction
process and the joint trajectory modification process are
achieved in a standalone humanoid robot real-time system.
We confirmed that the real-time visual feedback considering
noises and the real-time joint trajectory modification can

3618

Fig. 14. Tennis forehand real-robot swing motion with modification.The top-right number is the elapsed time from when the swing motion started.

achieve whole-body motion reacting to the visual informa-
tion.

An important issue to resolve for future work is the
fast locomotion generation while a robot is performing fast
motions. A ball’s trajectory in the world coordinates could
be predicted in this paper since we set the conditions so
that both a robot’s feet do not rotate or slip, which means
both the positions of the robot’s feet are fixed to the world
coordinates.

REFERENCES

[1] T. Senoo, A. Namiki, and M. Ishikawa. High-speed batting using
a multi-jointed manipulator. In Proceedings of the 2004 IEEE
International Conference on Robotics and Automation, Vol. 2, pp.
1191–1196 Vol.2, 2004.

[2] S. Mori, K. Tanaka, S. Nishikawa, R. Niiyama, and Y. Kuniyoshi.
High-speed and lightweight humanoid robot arm for a skillful bad-
minton robot. IEEE Robotics and Automation Letters, Vol. 3, No. 3,
pp. 1727–1734, 2018.

[3] D. Kappler, F. Meier, J. Issac, J. Mainprice, C. G. Cifuentes,
M. Wuthrich, V. Berenz, S. Schaal, N. Ratliff, and J. Bohg. Real-
time perception meets reactive motion generation. IEEE Robotics and
Automation Letters, Vol. 3, No. 3, pp. 1864–1871, 2018.

[4] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa. The
3d linear inverted pendulum mode: a simple modeling for a biped
walking pattern generation. In Proceedings of the 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Vol. 1,
pp. 239–246 vol.1, 2001.

[5] T. Takenaka, T. Matsumoto, T. Yoshiike, and S. Shirokura. Real
time motion generation and control for biped robot-2(nd) report:
Running gait pattern generation. In Proceedings of the 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1092
– 1099, 2009.

[6] S. Hong, Y. Oh, D. Kim, and B. You. Real-time walking pattern
generation method for humanoid robots by combining feedback and
feedforward controller. Vol. 61, No. 1, pp. 355–364, 2014.

[7] T. Ishikawa, Y. Kojio, K. Kojima, S. Nozawa, Y. Kakiuchi, K. Okada,
and M. Inaba. Bipedal walking control against swing foot collision
using swing foot trajectory regeneration and impact mitigation. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pp. 4531–4537, 2017.

[8] S.-H. Hyon, J. Moren, and G. Cheng. Humanoid batting with bipedal
balancing. In Proceedings of the 2008 IEEE-RAS International
Conference on Humanoid Robots, pp. 493–499, 2008.

[9] R. Gerndt, D. Seifert, J. H. Baltes, S. Sadeghnejad, and S. Behnke.
Humanoid Robots in Soccer: Robots Versus Humans in RoboCup
2050. IEEE Robotics Automation Magazine, Vol. 22, No. 3, pp. 147–
154, 2015.

[10] R. Xiong, Y. Sun, Q. Zhu, J. Wu, and J. Chu. Impedance control and
its effects on a humanoid robot playing table tennis. International
Journal of Advanced Robotic Systems, Vol. 9, No. 5, p. 178, 2012.

[11] R. Terasawa, S. Noda, K. Kojima, R. Koyama, F. Sugai, S. Nozawa,
Y. Kakiuchi, K. Okada, and M. Inaba. Achievement of dynamic tennis
swing motion by offline motion planning and online trajectory modi-
fication based on optimization with a humanoid robot. In Proceedings
of the 2016 IEEE-RAS International Conference on Humanoid Robots,
pp. 1094–1100, 2016.

[12] C. d. Boor. On calculating with b-splines. Journal of Approximation
Theory, Vol. 6, pp. 50–62, 1972.

[13] The nlopt nonlinear-optimization package. https://github.
com/stevengj/nlopt. Accessed on 2020-02-14.

[14] K. Svanberg. A class of globally convergent optimization methods
based on conservative convex separable approximations. SIAM Journal
on Optimization, pp. 555–573.

[15] M. Shibata and T. Honma. 3d object tracking on active stereo vision
robot. In 7th International Workshop on Advanced Motion Control.
Proceedings (Cat. No.02TH8623), pp. 567–572, 2002.

[16] S. Kao, Y. Wang, and M. Ho. Ball catching with omni-directional
wheeled mobile robot and active stereo vision. In 2017 IEEE 26th
International Symposium on Industrial Electronics (ISIE), pp. 1073–
1080, 2017.

[17] U. Frese, B. Bauml, S. Haidacher, G. Schreiber, I. Schaefer,
M. Hahnle, and G. Hirzinger. Off-the-shelf vision for a robotic
ball catcher. In Proceedings of the 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Vol. 3, pp. 1623–1629
vol.3, 2001.

[18] O. Birbach and U. Frese. A Multiple Hypothesis Approach for a
Ball Tracking System. In M. Fritz, B. Schiele, and J. H. Piater,
editors, Computer Vision Systems, pp. 435–444, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[19] J. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl. qpOASES:
A parametric active-set algorithm for quadratic programming. Math-
ematical Programming Computation, Vol. 6, , 2014.

[20] S. Nakaoka. Choreonoid: Extensible virtual robot environment built
on an integrated GUI framework. In 2012 IEEE/SICE International
Symposium on System Integration (SII), pp. 79–85, 2012.

3619

