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Abstract— We present a motion planning algorithm with
probabilistic guarantees for limbed robots with stochastic grip-
ping forces. Planners based on deterministic models with a
worst-case uncertainty can be conservative and inflexible to
consider the stochastic behavior of the contact, especially when
a gripper is installed. Our proposed planner enables the robot to
simultaneously plan its pose and contact force trajectories while
considering the risk associated with the gripping forces. Our
planner is formulated as a nonlinear programming problem
with chance constraints, which allows the robot to generate a
variety of motions based on different risk bounds. To model
the gripping forces as random variables, we employ Gaussian
Process regression. We validate our proposed motion planning
algorithm on an 11.5 kg six-limbed robot for two-wall climbing.
Our results show that our proposed planner generates various
trajectories (e.g., avoiding low friction terrain under the low
risk bound, choosing an unstable but faster gait under the
high risk bound) by changing the probability of risk based on
various specifications.

I. INTRODUCTION

Planning complex motions for limbed robots is chal-
lenging because planners need to design footsteps and a
body trajectories while considering the robot kinematics and
reaction forces. Motion planning for limbed robots has been
studied by a number of researchers. Sampling-based plan-
ning, such as the Probabilistic-Roadmap (PRM), samples the
environment and generates the motion while satisfying static
equilibrium and kinematics for a robot [1], [2]. Optimization-
based planning, such as Mixed-Integer Convex Programming
(MICP) and Nonlinear Programming (NLP), solves the so-
lution given constraints using optimization algorithms such
as gradient descent [3]-[9].

While many papers discuss motion planning for the robot,
few studies have investigated how planning is affected by
stochastic gripping forces. One of the open problems in
motion planning of a limbed robot equipped with grippers
is the stochastic nature of gripping [10], [11]. For example,
the gripping forces caused by spine grippers depend on the
stochastically distributed asperity strength (Fig. 2). Thus, risk
results from the randomness of the gripping force. By con-
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Fig. 1: A planned trajectory for wall climbing that considers risk
arising from slippery terrain. The black area shows a high friction
area, the green area shows a low friction area, and the red area
shows a zero friction area. Blue and red dots show the planned
foot positions, and the hexagons show the body of the robot.

sidering risk in a probabilistic manner, the planner can design
a variety of trajectories based on various specifications.

The stochastic planning problem can be categorized into
two approaches: robust approaches [5]-[7], [12] and risk-
bounded approaches [7], [8], [13]-[15]. In robust approaches,
the planners design trajectories that guarantee the feasi-
bility of the motion given the uncertainty bounds. A soft
constraints-based robust planning was investigated in [6],
where the planner allows the solution to be at the boundary
of stability. Tas showed the planner to remain collision-free
for the worst-case uncertainty for automated driving [12].

On the other hand, the risk-bounded approach designs
trajectories that guarantee the feasibility of the motion given
the probability density function (PDF): it prevents the prob-
ability of violating state constraints (violation probability)
from being higher than a pre-specified probability. Prete
formulated a chance-constrained optimization problem of a
bipedal robot by approximating a joint chance constraints
with linear inequality constraints [7]. Planning on slippery
terrain was in [8], where the planner utilizes the prediction
of the coefficient of friction to design the motion of the body
and footsteps, respectively. Our approach is similar to [8],
but we model the stochastic contact force of the robot and
formulate the planning algorithm considering the trajectory
of a body and footsteps simultaneously.

For tasks with a higher probability of failure (e.g., climb-
ing on slippery terrain) [15], the risk-bounded approach has
advantages over the robust approach. Because the robust
approach often uses a much less informative deterministic
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model, it is likely to generate conservative solutions with
the worst-case uncertainty bound. For demanding tasks, this
may be infeasible, with such a planner generating no possible
solution and failing to achieve specified goals. In contrast,
because the risk-bounded approach can be more aggressive,
the problem may be feasible, generating trajectories that
carry a probability of failure through risk-taking alongside
a non-zero chance of successfully achieving the goal. The
violation probability provides a tuning knob to define a
Pareto boundary on the risk between failure while finding
a trajectory vs. failure while executing a found trajectory.
This user-defined parameter can be task- and environment-
specific, in contrast to the rigidity of the robust approach.

In this paper, we address a motion planning algorithm
formulated as NLP for a limbed robot with stochastic grip-
ping forces. Our proposed planner solves for stable postures
and forces simultaneously with guaranteed bounded risk. In
addition, chance constraints are introduced into the planner
that restrict contact forces in a probabilistic manner. We
employ a Gaussian Process (GP), a non-parametric Bayesian
regression tool, to acquire the PDF of the gripping force.
Our proposed motion planning algorithm is validated on an
11.5 kg hexapod robot with spine grippers for multi-surface
climbing. While we focus on multi-surface robotic climbing
with spine grippers in this paper, our proposed planner can
be applied to other robots with any type of grippers for
performing any task (e.g., planning of walking, grasping) as
long as the robot has contact points with stochastic models.

The contributions of this paper are as follows:
1) We formulate risk-bounded NLP-based planning that

considers the stochasticity of gripping forces.
2) We employ the Gaussian Process to model gripping

forces as random variables.
3) We validate the algorithm in hardware experiments.

II. PROBLEM FORMULATION

This section describes the friction cone considering maxi-
mum gripping forces, model of a position-controlled limbed
robot with multi-contact surfaces, and the modeling process
of a gripping force through GP.

A. Friction Cone with Stochastic Gripping Forces

With grippers, the friction cone constraint can be relaxed
on the contact point. For our spine-based gripper, even under
a zero normal load, the spines insert into the microscopic
gaps on the surface (Fig. 2), generating a significant amount
of shear force (Fig. 6) [19]. For a magnet-based gripper,
the reaction forces includes the additional magnetic force
imposed by the gripper itself, offsetting the friction cone as
seen by the rest of the robot.

Thus, we modify the regular friction cone, adding in an
offset shear force when a normal force is zero to account
for the gripping force. As the normal force increases, the
maximal allowable shear force increase in the same way as
a regular frictional force, with a coefficient of friction λ that
is assumed to be a constant only depending on the property
of the contact surface. This contact model is illustrated in

Fig. 2: Deflection of a multi-limbed robot bracing between walls
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Fig. 3: Friction cone considering stochastic gripping forces

Fig. 3, where fr is the reaction force between the surface
and the gripper. fg,m is the maximum gripping force from
grippers under a zero normal force. Note that fg,m is
measured per gripper as a unit. In general, fg,m can have
both normal and shear components. However, for our spine
grippers, the normal component of fg,m is relatively small,
so we assume that the gripper generates only shear adhesion.
The gripper does not slip when fr is within this friction
cone, as indicated by the shaded region in Fig. 3. Since
the interaction between the micro-spines and the surface is
highly random, fg,m is naturally modeled as a Gaussian
random variable. However, the orientation of the spine and
the number of spines in contact with the surface also change
as the orientation of the gripper changes, which leads to a
shift of the mean and standard deviation of fg,m. We learn
this model from data by GP. With GP, our proposed planner
is able to deal with the stochastic nature of gripping taking
into account the gripper orientation.

B. Model of Reaction Force Using Limb Compliance

During multi-surface locomotion, the robot leverages the
compliance from its motors in order to squeeze itself between
multi-surfaces, as depicted in Fig. 2. One difficulty multi-
limbed robots have is that reaction forces are statically
indeterminate [16]. Consequently, reaction forces cannot be
determined by static equilibrium equations when the robot
supports its weight more than three contact points. Hence,
in order to calculate the reaction force under this condition,
the deformation of the robotic system should be considered.

From the standard elasticity theory, fr can be described
as the spring force using the Virtual Joint Method [17]:

fr = K (δwall − δCoM) (1)

K =
(
Jk−1J>

)−1
, k = diag(ki), i = 1, . . . ,H (2)

where K is the stiffness matrix for H degree-of-freedom
limb. k is a diagonal matrix that has ki diagonal elements,
and ki is the spring coefficients of the position-controlled
servos. J is a 3 × H Jacobian matrix. The deflection is
imposed by terrain where δwall is the displacement of the



terrain and δCoM is the body deflection, sag-down, due to
the compliance as shown in Fig. 2.

C. Model of Gripping Force Using Gaussian Process

The objective of using GP is to predict the maximum
gripping force fg,m in a probabilistic way.

There are many design decisions that go into the formula-
tion of the GP problem, including choice of kernel, distance
metric, and associated weighting between state variables
[18]. We can start with the simplest formulation with all
state variables equally weighted under the Euclidean distance
metric using the squared exponential kernel as a starting
point. In practice, this choice was observed to work well
enough to not necessitate further design. A more general
characterization of the effects of these hyperparameters can
be found in [18]. In this work, we assume that the maximum
gripping forces by spine grippers is a function of the gripper
orientation and the coefficient of friction [10], [11], [19],
[20]. This is because with a microscopic view, the spine-
asperity interaction is different depending on how a spine
is inclined with respect to the asperity as shown in Fig. 2.
GP can handle the effects of other unmodeled parameters by
treating them into uncertainty. Hence, the state s is a four-
dimensional vector with s = [α, β, γ, λ]> where α, β, γ are
the Euler angles along x, y, z axis defined in Fig. 4.

Here, we assume that the maximum shear force follows
Gaussian distribution. Given a data set S = {s1, · · · , sn}
with the measured shear forces yg,m = [yg,m1 , . . . , yg,mn ]

>,
the maximum shear force fg,m by a gripper can therefore
be modeled as:

fg,m(s) ∼ GP(µg,m(s),κg,m(s, s∗)) (3)

where, fg,m = [fg,m1 , . . . , fg,mn ]
>, n is the number of

samples from a GP. µg,m(s) = [µg,m1 (s), . . . , µg,mn (s)]
> is

the mean and [κg,m]i,j = κg,m (si, sj) is the covariance
matrix, where κg,m(·, ·) is a positive definite kernel. In this
work, we employ the squared exponential kernel as follows:

κg,m (si, sj) = σ2
f exp

(
−1

2

|si − sj |2

`2

)
(4)

where σ2
f represents the amplitude parameter and l defines

the smoothness of the function fg,m.
Here, let D = [s1, · · · , sn]> be the matrix of the inputs.

In order to predict the mean and variance matrix at D∗,
we obtain the predictive mean and variance of the maximum
shear force by assuming that it is jointly Gaussian as follows:

f̂
g,m

= E [fg,m (D∗)] = κ>∗
(
KD + σ2

nI
)−1

yg (5)

Σ̂
g,m

= V [fg,m (D∗)] = κ∗∗ − κ>∗
(
KD + σ2

nI
)−1

κ∗
(6)

where κ∗ = κg,m (D∗, D), KD = κg,m (D,D), κ∗∗ =
κg,m (D∗, D∗), and σ2

n is the variance of the Gaussian
observation noise with zero mean.

Our GP procedure can be generalizable to model other
gripping forces as long as the gripping force changes continu-
ously as the orientation of the gripper changes. For instance,
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Fig. 4: Mechanical design of the spine gripper
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Fig. 5: Experiment setup to evaluate maximum gripping forces on sandpaper

the GP approach can be used to model the gecko gripper
force [21] using the detachment angle as the state of the GP.

D. Spine Gripper for Wall Climbing

A three-finger spine-based gripper was designed (Fig. 4)
using spine cells based on [20]. Each finger consists of a
spine cell with 25 machine needles loaded with 5 mN/mm
springs, and a slider mechanism holds the cell with one
compliant plastic spring. The diameter of the needle at the
tip is 0.93 mm, and it is made of carbon steel. The gripper
center module includes one spine palm with the same spine
configurations as the cells. The attachment component is
fixed at the tip of the robot limb at 37◦ from the limb
axis to maximize the contact area. The finger, center, and
attachment members are assembled with a one-slider, two
linkage mechanism (Fig. 4). This linkage system is designed
to provide a passive micro grip as the center palm presses
up against a wall. The three fingers are located at 120◦ apart
from each other in z-axis and tilted about 15◦ from z-axis.

E. Data Collection

To collect a dataset, maximum gripping forces fg,m were
evaluated with a minimal normal force at varied orientations
as summarized in Table I. We collected 20 data sequences for
every orientation as a training dataset and 10 data sequences
as a testing dataset. The coefficient of friction between
spines and environments was measured by loading a constant
mass on the gripper. A small activation force is necessary
to compress spine springs and ensure that the spines are
touching the wall, but is assumed to be negligible. These
orientations were selected to cover possible gripper angles
during regular wall climbing. The gripper was fixed to a
linear slider at an orientation and pulled by a force gauge
on 36-grit and 80-grit sandpapers that are commonly used to
emulate rough surface with microscopic asperities [20], as
shown in Fig. 5. The GP hyperparameters were optimized
using the BFGS algorithm [22]. The obtained testing data
with the predicted PDF of the maximum gripping force and
the PDF of the training data is illustrated in Fig. 6. The
predicted maximum gripping force and the training data are
displayed as a mean ± with a 95 % confidence interval.



TABLE I: Varied orientations for collecting datasets of GP

Training α, β = −15◦, 0◦, 15◦, γ = 0◦, 30◦, 60◦, λ = 1.1, 2.3
Testing α = −15◦,−10◦, · · · , 15◦|{β = −15◦, γ = 30◦, λ = 2.3}

β = −15◦,−10◦, · · · , 15◦|{α = −15◦, γ = 30◦, λ = 2.3}
γ = 0◦, 15◦, 30◦, · · · , 60◦|{α = −15◦, β = −15◦, λ = 2.3}

λ = 1.1, 1.4, 1.82, 2.3|{α = 0◦, β = 0◦, γ = 0◦}

(a) β = −15◦, γ = 30◦, λ = 2.3 (b) α = −15◦, γ = 30◦, λ = 2.3

(c) α = −15◦, β = −15◦, λ = 2.3 (d) α = 0◦, β = 0◦, γ = 0

Fig. 6: The predicted maximum gripping force PDF from GP, the training
data PDF, and the testing dataset

Overall, we show that the GP prediction works well with
different states.

III. RISK-AWARE MOTION PLANNING

In this section, we present a complete risk-aware motion
planning algorithm formulated as (8a)-(8k). The objective of
our proposed planner is to find the optimal trajectory for
the Center of Mass (CoM) position, its orientation, the foot
position, and the reaction force for each foot in order to arrive
at the destination while satisfying constraints. Our proposed
planner enables the robot to find feasible trajectories that
consider risk from the grippers under various environments.

We define one round of movement made by a robot when
its body and all of its limbs have moved onto the next
footholds. Note that for each round, the planner investigates
several critical instants between two postures with pre-
defined gait as explained in detail in Section IV. At j-th
round, Γ is the decision variables that are given as:

Γ = {pi,j ,PCoM,j ,ΘCoM,j ,θi,j ,f
r
i,j , f̂

g,m

i,j , Σ̂
g,m

i,j } (7)

where pi,j is the foot i position, PCoM,j is the position
of the body, ΘCoM,j is the orientation of the body, θi,j
are the joint angles for the limb i, and fri,j is defined
in Section II-A. In this study, fg,mi,j is treated as a ran-
dom variable based on the model of GP, which follows
fg,mi,j ∼ N

(
f̂
g,m

i,j (si,j), Σ̂
g,m

i,j (si,j)
)

. Equation (8a) is the
cost function that depends on the robot’s state. Equation (8b),
(8c), and (8d) bound the range of travel between rounds.
Equation (8e) represents the forward kinematics constraints.
In (8f), it ensures that pi,j is within the feasible terrain where
the robot is able to put its limb. In this paper, we assume that
the robot generates a quasi-static motion. Hence, the planner

minimize
Γ

Ψtot (8a)

s.t., for each round j = 1, . . . , N

and for each limb i = 1, . . . , L

|∆PCoM| ≤ ∆PTh (linear stride) (8b)
|∆ΘCoM| ≤ ∆ΘTh (angular stride) (8c)
|∆pi| ≤ ∆pTh (foot stride) (8d)

pi,j ∈ R(PCoM,j ,ΘCoM,j ,θi,j) (kinematics) (8e)

pi,j ∈ T (contact region) (8f)
L∑
i=1

fri,j + F tot = 0 (force eqm) (8g)

L∑
i=1

(
pi,j × f

r
i,j

)
+M tot = 0 (moment eqm) (8h)

τ i,j = J (θi,j)
>
fri,j (joint torque) (8i)

‖τ i,j‖2 ≤ τTh (torque limit) (8j)

fri,j ∈ F
(
λi,j(pi,j),ni,j ,f

g,m
i,j

)
(friction cone) (8k)

has the static equilibrium constraints expressed by (8g) and
(8h), where F tot andM tot is the external force and moment,
respectively. In this work, only gravity is considered as the
external force. Equation (8i) and (8j) ensure that the motor
torque is lower than the maximum motor torque where J (θi)
is a Jacobian matrix. The reaction force fri is constrained
by (8k), which describes the friction cone constraints to
prevent the robot from slipping where λi,j(pi,j) denotes the
coefficient of friction at pi,j . Note that this constraints (8k)
is also stochastic constraints due to fri . Equation (8k) can be
converted into deterministic constraints, which is explained
in Section III-B.

Compared to sampling-based approaches such as RRT,
NLP is able to formulate relatively complicated constraints
such as friction cone constraints (8k), which are typically
difficult for the sampling-based approaches to handle in
terms of computation. In addition, MICP approaches such
as [3], [5], [9] can increase the computation speed by
decoupling the pose state from wrench states. However, they
potentially limit the robot’s mobility. The robot may not
choose the trajectory on the low friction terrain in case the
planner first solves the pose problem and then solves the
wrench problem later since the pose optimization problem
does not consider the wrench information. Although MICP
can plan the trajectories considering both wrench and pose
state simultaneously, it needs to sacrifice the accuracy by
assuming an envelope approximation on bilinear terms [3]
or allow relatively expensive computation as the number of
the integer variables increases, which is intractable for high
degree-of-freedom (DoF) robots (e.g., our robot has 24 DoF).
In contrast, NLP can simultaneously solve the trajectory
reasoning both the pose and the wrench with relatively less
computation [4].



A. Deterministic Constraints

Here, we explain two deterministic constraints (8e), (8f),
that are not explicitly shown in (8a)-(8k).

1) Kinematics: Forward kinematics (8e) is given as:

pi,j = R(ΘCoM,j)p
b
i,j + PCoM,j (9)

where R(ΘCoM) is the rotation matrix from the world frame
to the body frame, pbi is the foot position relative to the body
frame.

2) Feasible Contact Regions: We utilize NLP to formulate
the planning algorithm so that any nonlinear terrain (i.e., non-
flat terrain), such as tube and curve, can be directly described.

If a robot traverses on the flat terrain, the footstep regions
are convex polygons as follows:

Crpi,j ≤Dr (10)

B. Chance Constraints

Here, we show that the friction cone constraints in (8k)
can be expressed using chance constraints, which allow the
planner to convert the stochastic constraints into determinis-
tic constraints.

One key characteristic of robotic climbing is that climbing
is a highly risky operation: a robot can easily fall without
planning its motion correctly. Hence, it needs to restrict
reaction forces using the friction cone constraints given as:

n>i,jf
r
i,j ≥ 0 (11)∥∥fri,j − (n>i,jfri,j)n>i,j∥∥2
≤ λi

(
n>i,jf

r
i,j

)
+fg,mi,j (12)

To decrease the computation of solving for the NLP solver,
we simplify the (12) by linearizing them as follows:∣∣∣ζ>i,jfri,j∣∣∣ ≤ λi (n>i fri,j)+fg,mi,j (13)∣∣∣ξ>i,jfri,j∣∣∣ ≤ λi (n>i fri,j)+fg,mi,j (14)

where ζi,j , ξi,j are any tangential direction vectors on the
wall plane.

Regarding (8k) formulated as (11), (13), (14), we rearrange
the equations and the joint chance constraint is given by:

Pr

 ∧
j=1,...,N

∧
k=1,...,M

αk>i,j f
g,m
i,j ≤ β

k
i,j

 ≥ 1−∆ (15)

where αki,j are coefficient vectors, and βki,j are coefficient
scalars that consist of the convex polytopes defined in (11),
(13), (14). In (15), M denotes the number of constraints
defining the polytopes. ∆ is the user-defined violation prob-
ability, where the probability of violating constraints is under
the ∆. We can regard ∆ as relating to the likelihood that
gripper slip will be responsible for the failure of the robot.
For example, if ∆ is high, the planner can explore a larger
space because the feasible region expands in optimization.
As a result, the robot tends to plan a trajectory with a high
violation probability by assuming that the gripper generates
enough force. For a robotic climbing task, these chance
constraints enable the robot to perform challenging motions

that would be infeasible without considering the gripping
force. In contrast, if ∆ is small, the planner tends to generate
more conservative motions because the robot assumes that
the gripper does not output enough force to support the
weight of the robot.

Imposing (15) is computationally intractable. Thus, using
Boole’s inequality, Blackmore [13], showed that the feasible
solution to (15) is the feasible solution to the following
equations:

Pr
(
αk>i,j f

g,m
i,j ≤ β

k
i,j

)
≥ 1−∆j,k (16)

N∑
j=1

M∑
k=1

∆j,k ≤ ∆ (17)

for all j = 1, . . . , N, k = 1, . . . ,M . The violation
probability for each constraint per round ∆j,k is constrained
in (17), in order not to exceed the given ∆. Because non-
uniform risk allocation (17) is also computationally expen-
sive [14], we use the following relation:

∆j,k =
∆

NM
(18)

αk>i,j f
g,m
i,j is a multivariate Gaussian distribution such

that αk>i,j f
g,m
i,j ∼ N

(
αk>i,j f̂

g,m

i,j ,αi,j,k>Σ̂
g,m

i,j α
k
i,j

)
. Thus,

the stochastic constraints (16) can be then converted into
a deterministic constraint as given by:

Pr
(
αk>i,j f

g,m
i,j ≤ β

k
i,j

)
= Φ

 βki,j −αk>i,j f̂
g,m

i,j√
αk>i,j Σ̂

g,m

i,j α
k
i,j


≥ 1−∆j,k

(19)

where Φ is the cumulative distribution function of the
standard normal distribution. It can be transformed further
as follows:

αk>i,j f̂
g,m

i,j +
√
αk>i,j Σ̂

g,m

i,j α
k
i,jΦ

−1 (1−∆j,k) ≤ βki,j (20)

where Φ−1 is the inverse function of Φ.

C. Cost Function
The cost function consists of intermediate costs and a

terminal cost. In this work, the target mission is to arrive
at the destination. Thus, the terminal cost is the distance
from the position of the last pose to the destination.

ΨD = (qN − qD)
>

WD (qN − qd) (21)

where WD is the weighting matrix and qN =[
p1,N , . . . ,pL,N

]
while qd is the configuration at the des-

tination. The intermediate costs restrict a large amount of
shifting in terms of linear and rotational motion of a body
and the foot position as follows:

ΨBPos = ∆P>CoMWBPos∆PCoM

ΨFoot =

L∑
i=1

∆p>i WFoot∆pi

ΨBRot = ∆Θ>CoMWBRot∆ΘCoM

(22)

where WBPos, WFoot, and WBRot are the weighting matrix.



D. Two Step Optimization for a Position-Controlled Robot

Although our proposed motion planner works for any
limbed robot, there is a drawback for a position-controlled
robot when wall-climbing. For the position-controlled robot,
it is necessary to compute how much δwall is necessary to
generate the planned reaction forces. Therefore, the planner
needs to include additional constraints from (1), (2) to
realize the planned trajectory. However, we observed that
the nonlinear solver has a numerical issue with (2), so it
is intractable for the solver to solve our proposed NLP in
(8a)-(8k) with (1), (2). To avoid this problem, we decouple
the optimization problem into two-step problems shown in
(23a)-(23l) and (24a)-(24d):

minimize
Γ

ΨD +

N−1∑
j=1

(ΨBPos + ΨFoot + ΨBRot) (23a)

s.t.|PCoM,j+1 − PCoM,j | ≤ ∆PTh (23b)
|ΘCoM,j+1 −ΘCoM,j | ≤ ∆ΘTh (23c)

|pi,j+1 − pi,j | ≤ ∆pTh (23d)

pi,j = R(ΘCoM,j)p
b
i,j + PCoM,j (23e)

Crpi,j ≤Dr (23f)
L∑
i=1

fri,j + F tot = 0 (23g)

L∑
i=1

(
pi,j × f

r
i,j

)
+M tot = 0 (23h)

τ i,j = J (θi,j)
>
fri,j (23i)

‖τ i,j‖2 ≤ ∆τ (23j)

αk>i,j f̂
g,m

i,j +
√
αk>i,j Σ̂

g,m

i,j α
k
i,jΦ

−1 (1−∆j,k) ≤ βki,j (23k)

∆j,k =
∆

NM
(23l)

find δwall,i,j , δCoM,i,j (24a)
s.t. ‖δwall,i,j‖2 ≤ δTh,wall,i,j (24b)

fri,j = Ki (δwall,i,j − δCoM,i,j) (24c)

Ki,j =
(
J (θi,j) k

−1J (θi,j)
>
)−1

(24d)

the first planner is in charge of the pose and the reaction force
of the robot, and the second planner finds δwall,i,j , δCoM,i,j ,
which are the control inputs to a position-controlled robot.
In (24a)-(24d), the constraint (24b) ensures that δwall,i,j is
bounded under a certain threshold.

We argue that this decoupling is reasonable because the
first planner solves the "essential" problem (e.g., How much
reaction force is necessary? What is the footstep trajectory?)
to plan the force and pose trajectory. The second planner
only computes the control input to the motors, and it does
not have a significant effect on the entire motion planning.
As explained, if the robot is force controlled, the planner
does not need to consider (1), (2). As a result, the second
optimization is not necessary for a force-controlled robot,

TABLE II: NLP specifications for climbing on non-uniform walls

# of rounds N Variables Constraints Average T-solve (Ipopt)
1 1744 779 0.4 minutes
2 3937 1680 6 minutes
4 11761 4994 16 minutes
7 23479 9965 248 minutes

and the whole motion is planned only based on the first
optimization problem.

IV. RESULTS

In this section, we evaluate our proposed planner by testing
the robot’s performance in three different tasks: energy-
efficient climbing, climbing on non-uniform terrains, and
climbing with a tripod gait.

We utilize Ipopt solver [23] to solve the planning prob-
lem on an Intel Core i7-8750H machine. The derivative
of constraints are provided by CasAdi [24]. The optimizer
is initialized with the default configuration of the robot
(Fig. 1, bottom configuration), and the specifications of the
computation for Section IV-B is summarized in Table II.

We implement the results of our proposed planning algo-
rithm (i.e., the motion plan), on a six-limbed robot, each limb
of which has three DoF. Each joint uses pairs of Dynamixel
MX-106 motors, providing a maximum torque at 27 Nm.
The robot is equipped with a battery, computer, and IMU.
The robot runs a PID loop to regulate its body orientation.
No other sensor is used to control its linear position. The
robot weighs 11.5 kg. The width of the robot’s body is 442
mm while its height at its standing state is 180 mm. In each
experiment, the robot climbs between two walls at a distance
of 1200 mm, where the wall is covered with sandpapers of
different grit size to adjust the coefficient of friction. All
hardware demonstrations can be viewed in the accompanied
video1.

A. Energy Efficient Planning

The objective of this task is to assess the consumed energy
of climbing with two different violation probabilities. While
the robot can grip the wall with a low violation probability
(e.g., ∆ = 0.0005), there is a disadvantage of consuming
more energy. On the other hand, the robot may perform an
energy-efficient motion with a higher violation probability
(e.g., ∆ = 0.1). Here, we set N = 7, M = 6 to compute
∆j,k. To show the trade-off between the consumed energy
and the violation probability, we let the robot climb on the
walls with one leg gait where the robot first lifts its right front
limb, puts it on the next position, pushes its body up, lifts its
right middle limb, and so on. Within each round, the planner
investigates 12 critical instants for one leg gait: 6 instants
after the robot lifts one limb, and 6 instants after the robot
places the limb on the next position and pushes its body.
The planner solves the optimization problem for these 12
instants. We measure the current Ii,t and the voltage Vi,t of
each limb i online when the robot climbs on the wall covered
by the 36-grit sandpapers with one leg gait and estimated the

1Video of hardware experiments: https://youtu.be/ZDqvf1J4nS4



(a) Time history of the consumed power for right front limb

(b) Time history of the consumed power for right middle limb

Fig. 7: Time history of the consumed power under the different violation
probabilities. The shaded regions are when the robot lifts a specific limb and
puts it on the next position, and white regions are when the robot pushes
its body up. The figure shows that the consumed power of a particular limb
decreases when the limb is in the air, while it increases when the limb is
on the wall to generate the normal force on the wall.
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Fig. 8: Consumed energy with different ∆ during t = 0− 15 s

power per one limb at every sampling time t. The power Pi,t
is estimated as follows:

Pi,t = Vi,t × Ii,t (25)

We plot the consumed power for two consecutive limbs
from the hardware experiment in Fig. 7. Fig. 7 shows that
the consumed power of a limb decreases when the limb is in
the air while the other limbs increase the consumed power to
increase the reaction force. Furthermore, the robot consumes
more power with smaller ∆, which means that the robot
needs to push the wall to increase fr. In contrast, if ∆ = 0.1,
the solution requires less power, but has a larger probability
of slipping. In Fig. 8, the total consumed energy from these
limbs was calculated by integrating their power over time
spent climbing. In our robot, the robot could decrease the
energy by 46.5 % under ∆ = 0.1 compared with the energy
under ∆ = 0.0005.

B. Climbing on Non-uniform Walls

This scenario demonstrates that the robot designs different
trajectories under the different violation probability to climb
on walls with varying coefficients of friction. The planned
trajectories are shown in Fig. 9. In this example, the robot
climbs between two walls where the terrain shown in black
is covered by 36-grit sandpapers (λ = 2.3), the terrain shown
in green is covered by 80-grit sandpapers (λ = 1.1), and the
terrain shown in red is covered by the material with λ = 0
as shown in Fig. 9. The varying coefficients of friction are

Fig. 9: Side view of planned footsteps on non-uniform walls under: left
∆ = 0.1, right ∆ = 0.001. In the left panel, the robot puts its feet on low
and high friction terrain by taking a high risk bound. In the right panel, the
robot puts its feet only on high friction terrain.

������� ���	����

��

���� ���	�����

Δ � 0.001Δ � 0.1

���	��������	�����

Fig. 10: Snapshots of climbing experiments on non-uniform walls under the
different violation probabilities

modeled by a parabola function, which encourages the solver
to converge on a solution. In the left panel of Fig. 9, the
violation probability ∆ is 0.1 while in the right panel, the
violation probability ∆ is 0.001 for M = 6 and N = 7.

The left panel of Fig. 9 illustrates that the robot avoids the
red area (zero friction) and puts its foot mostly in the black
area (high friction), but sometimes also in the green area
(low friction) to minimize the trajectory length. In the right
panel of Fig. 9, the violation probability is decreased, and
the robot footsteps completely remain inside the high friction
area. As a result, our proposed NLP-based planner operates
the pose and forces together and makes a trade-off between
a shorter but more risky trajectory and a longer but safer
trajectory. This cannot be achieved if the planner decouples
the footstep and force planning, such as in [9]. Fig. 10 shows
the trajectory with higher risk bound ∆ = 0.1 and compares
the foot location at t = 146 with the foot location with
∆ = 0.001 in the hardware experiment. We notice that at t =
146 s, the foot touches the white area where the coefficient
of friction is 0, which never happened with ∆ = 0.001.
Since the robot only controls its body orientation based on
IMU feedback and does not control its linear position, the
implemented trajectory does not strictly follow the planned
one. We observe that lower risk bound is beneficial in this
situation to avoid failure since it compensates for the tracking
error by the imperfect controller.



Fig. 11: Climbing with tripod gait. Left: A planned trajectory of the tripod
gait under ∆ = 0.4. Red arrows indicate the reaction forces from the
walls. Right: A snapshot of climbing experiments with the tripod gait under
∆ = 0.4.

C. Climbing with Less Stable Gait: Tripod Gait

In this scenario, we demonstrate that the robot can conduct
a tripod gait, when it lifts three legs simultaneously, by set-
ting the violation probability much higher. Before installing
the gripper on the current six-limbed robot, it was almost
infeasible to climb on the walls with the tripod gait because
of the torque limits of the motors. With the grippers installed,
however, the robot has a greater chance to climb on the walls
with a tripod gait. If we set ∆ = 0, the problem is infeasible
since the constraints under the worst-case uncertainty are
conservative. This result would be equivalent to the results of
other robust algorithm such as [12], where the optimization-
based robust approach with the worst-case uncertainty is
proposed. However, by utilizing the chance constraints and
increasing the violation probability, the planner generates a
feasible solution. In our trial, we set the violation probability
∆ = 0.4 for M = 6 and N = 3, and allowed the robot to
climb on a wall covered by 36-grit sandpapers. The planner
investigates 4 critical instants: 2 instants after the robot lifts
three limbs, and 2 instants after the robot places them down
and pushes its body. The planned trajectory is illustrated in
the left panel of Fig. 11. As shown in the right under the
condition, the robot succeeded in climbing on the walls with
the tripod gait and its climbing velocity was 2.5 cm/s, which
is three times faster than the one leg gait.

V. CONCLUSION AND FUTURE WORKS
In this paper, we presented a motion planning algorithm

for limbed robots with stochastic gripping forces. Our pro-
posed planner exploits NLP to simultaneously plan a pose
and force with guaranteed bounded risk. Maximum gripping
forces are modeled as a Gaussian distribution by employing
the GP, which provides the planner with the mean and the
covariance information to formulate the chance constraints.
We showed that under our planning framework, the robot
demonstrates rich - sometimes drastically different - behav-
iors, including planning a risky but energy-efficient motion
versus a safe but exhausting motion, avoiding danger zones
like low friction environments, and choosing fast but less
stable motions (i.e., a tripod gait) based on the different
violation probabilities ∆ in hardware experiments.

The current limitation in this work is that the actual
probability of failure is not strictly equal to pre-defined ∆
because other sources of uncertainty exist, such as sensor
noises. In future work, we will extend our planner to take
into consideration these sources.
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