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Abstract— Recently, it has been shown that light-weight,
passive, ankle exoskeletons with spring-based energy store-
and-release mechanisms can reduce the muscular effort of
human walking. The stiffness of the spring in such a device
must be properly tuned in order to minimize the muscular
effort. However, this muscular effort changes for different
locomotion conditions (e.g., walking speed), causing the optimal
spring stiffness to vary as well. Existing passive exoskeletons
have a fixed stiffness during operation, preventing it from
responding to changes in walking conditions. Thus, there is
a need of a device and auto-tuning algorithm that minimizes
the muscular effort across different walking conditions, while
preserving the advantages of passive exoskeletons. In this paper,
we developed a quasi-passive ankle exoskeleton with a variable
stiffness mechanism capable of self-tuning. As the relationship
between the muscular effort and the optimal spring stiffness
across different walking speeds is not known a priori, a model-
free, discrete-time extremum seeking control (ESC) algorithm
was implemented for real-time optimization of spring stiffness.
Experiments with an able-bodied subject demonstrate that as
the walking speed of the user changes, ESC automatically tunes
the torsional stiffness about the ankle joint. The average RMS
EMG readings of tibialis anterior and soleus muscles at slow
walking speed decreased by 26.48% and 7.42%, respectively.

I. INTRODUCTION
Recently, it has been shown that passive, light-weight

ankle exoskeletons with a spring attached in parallel to the
calf muscles can reduce the muscular effort of humans during
walking [1]–[4]. However, the design of the components in
such devices are optimized offline so as to produce the max-
imum reduction in muscular effort for a particular walking
condition. As the walking conditions change (e.g., walking
speed), the lower-limb muscular effort also changes [5]. Due
to the use of passive components in these exoskeletons,
assistive properties are fixed, and real-time adaptation to
changing walking conditions is not possible. Thus, there is
a need for a similar device that minimizes the muscular
effort across different walking conditions, while preserving
the advantages of passive exoskeletons.

Several passive ankle exoskeletons have been built in an
attempt to reduce the muscular effort of human walking,
such as [1]–[4]. In [1], [2], an elastic ankle exoskeleton
with a spring connected in parallel to the calf muscle was
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Fig. 1: (a) Experimental setup of a healthy subject wearing the
quasi-passive ankle exoskeleton. The controllers and the batteries
are mounted on the belt tied to the waist. (b) Actual manufactured
version of ankle exoskeleton.

shown to reduce the solueus muscle activity during hopping.
Also, it was conjectured in [2] that the exoskeleton’s spring
stiffness needs to be tuned to achieve greater reductions in the
muscular effort. This was confirmed in [3], [4] using a similar
elastic ankle exoskeleton with a clutch mechanism, where
experimental results demonstrated that for each walking
speed there exists an optimal spring stiffness that produced
the highest reduction in the muscular effort. However, these
passive devices lack the ability to adapt in real-time to
different walking conditions. In particular, the selection of
an optimal spring in [3], [4] was found heuristically by
manually testing various stiffness values in order to achieve
the highest reduction in the muscular effort. Besides this
procedure being time-consuming, it was also limited to a
single walking speed. However, the muscular effort changes
with walking speed, which would cause the optimal spring
stiffness (torque assistance pattern) to vary as well [6].

Apart from offline optimization of muscular effort with
passive devices, efforts have been made in the field of active
ankle exoskeletons to tune the joint parameters in real-time
in order to improve the metabolic cost of the subject [6]–[8].
However, using the metabolic cost as an objective function
leads to very slow adaptation that typically requires an hour
to find a local optimum [9]. This slow process might not be
applicable for adapting to real-time changes in behavior or
environment. In addition, the measurement of the metabolic
cost requires off-board sensors, e.g., face masks, which might
be obtrusive to the user. Also, most of the active exoskeletons
are restricted to the lab settings either due to the use of a
heavy off-board motor [6], [10] or tethered air supply for
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pneumatically actuated exoskeletons [8], [11]–[13].
Quasi-passive exoskeletons combine the adaptability of ac-

tive exoskeletons with the autonomy of passive exoskeletons.
In particular, these devices have passive components like
springs [1], [2], dampers [14], [15] and also contains sensors,
batteries and other electronics, but motors do not provide
power directly to the human joint [16]. A quasi-passive leg
exoskeleton consisting of variable-damping mechanism at the
knee joint was presented in [14], [15]. In this paper, we
developed a quasi-passive ankle exoskeleton that is able to
adjust automatically through a range of torsional stiffness
about the ankle joint via an adjustable lever-arm. Using
this device, we conducted walking experiments at different
walking speeds with the biological feedback provided by
the electromyography (EMG) sensors (see Fig. 1a). Due to
the unknown underlying dynamics and noisy EMG mea-
surements, we used a model-free extremum seeking control
(ESC) to perform real-time tuning of torsional stiffness of
the exoskeleton in order to reduce the muscular effort of
walking. The ESC uses a low-frequency perturbation signal
to estimate the gradient of the cost function, making it more
robust to noisy measurements [17]. Our experiments demon-
strated that ESC was able to automatically tune the torsional
stiffness of the ankle exoskeleton across different walking
speeds. In particular, there are two important contributions
of this paper.
Contributions of this paper

i) We built an unilateral quasi-passive ankle exoskeleton
with a variable stiffness mechanism. To the best of
our knowledge, this is the first quasi-passive device
capable of real-time adaptation of stiffness in response
to muscular activity at varying walking conditions.

ii) In order to perform real-time optimization of the
muscular effort, we implemented a model-free control
algorithm, ESC, to automatically tune the stiffness
of the system across different walking speeds. The
advantage of using an ESC is that it does not need
the knowledge of the underlying dynamics. Walking
experiments demonstrate a noticeable reduction in the
muscular effort using our ESC algorithm. In addition,
ESC adapts the stiffness of the system within 10
seconds as the walking speeds change.

The paper is organized as follows. In Section II, we
describe the mechatronic design of the quasi-passive ankle
exoskeleton and the discrete-time ESC algorithm for real-
time stiffness tuning of the exoskeleton. In Section III, we
describe the experimental setup and protocol followed for
walking experiments. Next, we present the baseline and ESC
experimental results in Section IV. We discuss these results
and the limitations of this study in Section V. Finally, Section
VI concludes the paper.

II. DESIGN AND IMPLEMENTATION

The quasi-passive ankle exoskeleton consists of a spring
that stores energy during the early and mid-stance phase of
walking and then releases it during push-off. The energy re-
leased by the spring during push-off provides assistive force
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Fig. 2: Schematic of a quasi-passive ankle exoskeleton. The linear
actuator comprising of the stepper motor and the slider mechanism
is used to vary the torsional stiffness about the ankle joint. The
shaded red and green areas show the approximate locations of the
soleus and tibialis anterior muscles, respectively. The red and green
dots indicate the approximate EMG placement locations.

to the plantar flexor muscles. In this section, we describe
the design of our quasi-passive ankle exoskeleton and the
variable stiffness lever, its embedded sensing capabilities,
and the discrete-time perturbation-based ESC algorithm used
to modify the torsional stiffness of the device.

A. Exoskeleton Design

We built a unilateral ankle exoskeleton with a variable
stiffness mechanism, as shown in Fig. 1b. The exoskeleton
has a carbon-fiber frame and a lever-arm assembly consisting
of a slider and a stepper motor. The frame was made up of a
vertical shank support and a footbed connected to the ankle
joint. A free motion Tamarack Flexure JointTM was used at
the ankle joint to reduce the weight of the device. This joint
style was chosen to allow for minor inversion and eversion
motion at the ankle joint to minimize the impact on the user’s
natural gait. Attached to the footbed section of the device is
a lever-arm assembly with a variable attachment point for
the spring. This point was connected by a cable to a coil
spring anchored at the top of the frame near the calf muscle,
as shown in Fig. 2. The position of the variable attachment
point controls the system’s torsional stiffness about the ankle
joint (see Section II-B). The top of the vertical shank support
is secured just below the user’s knee with a padded Velcro
strap, and the footbed was placed in an athletic shoe allowing
it to be secured to the user’s foot. A pair of force sensitive
resistors (FSR) were placed on the foot sole for gait cycle
detection, as shown in Fig. 2.

B. Variable Stiffness Lever Design

In order to vary the torsional stiffness about the ankle joint
in our exoskeleton, we built a lever-arm to have a variable-
effective length, as shown in Fig. 3. The lever-arm design
consists of a MiSUMiTM ball screw assembly mounted in
a rigid frame. A slider attached to the ball nut includes an
attachment point for the spring and bilateral wings to transfer
force generated by the spring to the frame, preventing radial
loading of the ball screw. The ball screw has a lead of 2
mm and is powered by a QMot QSH2818 Trinamic Motion



Stepper Motor Sliding mount Ball screw

Bearings Slider track

Fig. 3: Bottom view of the variable stiffness lever-arm.

ControlTM stepper motor with 200 steps/rev. The linear
actuator comprising the ball screw and the stepper motor has
a travel of 0.085 m, allowing the lever-arm to vary from 0.17
m to 0.25 m, with 8500 discrete positions. Assuming small
angle variation between the spring and the slider track across
all slider positions, the torsional stiffness about the ankle
joint is the product of the spring force F and the effective
lever-arm length at any given slider position L. The spring
force F is given by

F = ksx (1)

where x is the displacement of the spring’s length, which
scales with the effective length of the lever-arm L, and ks is
the stiffness constant of the spring in N/m. The calculation
for the system’s torsional stiffness simplifies to [18]

kexo = ksL
2, (2)

where kexo is the torsional stiffness of the exoskeleton about
the ankle joint in Nm/rad. Thus, changing the lever-arm
length from 0.17-0.25 m modifies the stiffness from 1-2.25
times the minimum torsional stiffness. For instance, we used
a spring of 5.8 kN/m to implement a torsional stiffness range
of 169-362 Nm/rad. This spring stiffness was chosen such
that the optimum torsional stiffness as found in [3] lies in
the above range. The total mass of the exoskeleton frame
including the variable stiffness lever was 1323 g.
Remark 1: The stepper motor in our variable stiffness mech-
anism varies only the torsional joint stiffness and does not
provide power to the joint, which allows us to select a small
low-power motor. For designs that power the ankle joint
directly, we recommend the reader to review the state-of-
art variable stiffness actuators such as the MACCEPA [19],
[20]. Note that powering the ankle joint directly requires
heavier actuators than our proposed mechanism.

C. Embedded Systems and Sensing

All sensing, data recording, ESC implementation (detailed
in Section II-D) and motor controls were performed on-
board using an Arduino Mega 2560 microcontroller. The
muscular effort of the soleus and tibialis anterior muscles
were measured by two MyowareTM EMG sensors (AT-04-
001). The Myoware sensor provided on-board amplification,

rectification, and integration, which was utilized to reduce
processing demand on the system’s controller. To protect
the raw EMG signal from interference, all wires carrying
unamplified EMG signals were double shielded. The stepper
motors were powered by two 2300 mAh 12V nickel metal
hydride batteries connected in series to provide 24 V with
a total battery capacity of 55.2 W-h. All the components
above were secured to a padded belt, which was worn at the
user’s waist, as shown in Fig. 1a. The total weight of the belt
containing all of the components and the batteries was 1750
g. Data and power cables were run laterally down the user’s
leg, connecting the controller to the sensors and motors.

D. Discrete ESC for Stepper Motors

ESC is a model-free adaptive control method that finds
an optimum set-point in order to minimize/maximize an
objective function, whose analytical expression might be
unknown [9], [21]–[23]. Fig. 4 shows a block diagram of a
discrete-time ESC with a human-in-the-loop. We modified
the structure of conventional discrete-time ESC [24] by
observing that the stepper motor dynamics already have an
integrator [25]. In particular, we moved the ESC integrator in
the conventional ESC structure ahead of the summer block.
In this modified structure, the ESC integration is performed
by the motor dynamics itself.

In order to understand the benefit of this ESC structure
for implementation with a stepper motor, we first briefly
explain the stepper motor operation. A stepper motor runs on
a pulsed current, where each pulse turns the motor a fraction
of the full rotation. It does not have any closed-loop encoder
feedback for position control. Instead it accepts a change
in the motor location as an input command instead of the
final motor location. The purpose of modifying the structure
of conventional discrete-time ESC in [24] was specifically
done to satisfy this requirement of stepper motors.
Remark 2: The modified structure of ESC algorithm is a
discretized version of ESC presented in [26]–[28] and is
more suitable for implementation with stepper motor than the
conventional ESC structure for the reasons stated above. The
conventional ESC structure would have commanded the final
motor location, whereas our modified structure commands a
change in the motor location.

The working of the discrete-time ESC can be explained
as follows. The ESC algorithm adds a small periodic pertur-
bation signal d1(k) = −aω sin(ωk), known as the dither
signal, to the commanded change in the motor location
∆θ(k). Assume that the stepper motor dynamics is mod-
eled as a cascade connection of a zero-order hold and a
continuous-time integrator. The zero-order hold circuit holds
the sample ∆θ(k)+d1(k) constant for one sampling interval
∆T . Denoting tk as the sampling time, the expression for
θ̇(tk) can be written as θ̇(tk) ≈ ∆θ(k)/∆T − aω sin(ωtk).
The integrator dynamics of the stepper motor then outputs
θ(tk)+a cos(ωtk), where θ(tk) is the position of the stepper
motor at time tk. The objective function J(·) (e.g., muscular
effort) measured at this motor position is sampled to give
J(θ(k) + a cos(ωk)). The Taylor series approximation of
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Fig. 4: Block diagram of a perturbation-based discrete ESC with
a human-in-the-loop. The ESC commands a change in the stepper
motor location ∆θ(k), which moves the spring set-point in the
lever-arm. With the new effective lever-arm length, the user walks
and the EMG readings are measured to quantify the objective
function J(·).

J(θ(k)+a cos(ωk)) can be written as

J(·)≈J(θ(k))+J ′(θ(k))a cos(ωk)+
J ′′(θ(k))

2
a2 cos2(ωk)

=J(θ(k))+J ′(θ(k))a cos(ωk)+
a2J ′′(θ(k))

4
(1+ cos 2(ωk)),

(3)

where J ′, J ′′ are the first and the second derivatives of J(·)
with respect to θ. The objective function measurements in (3)
are passed through a high-pass filter (HPF), which removes
the DC components J(θ(k)) and a2J ′′(θ(k))/4 to give

ξ(k) = J ′(θ(k))a cos(ωk) +
a2J ′′(θ(k))

4
cos(2ωk). (4)

The output of the HPF ξ(k) is then multiplied by another
dither signal a cos(ωk) and scaled by a gain −γ to generate

∆θ(k)=-γ
[
J ′(·)a cos(ωk)+

a2J ′′(·)
4

cos(2ωk)
]
a cos(ωk)

=-γ
[a2J ′(·)

2
[1+ cos(2ωk)]+

a3J ′′(·)
4

cos(2ωk) cos(ωk)
]
, (5)

which indicates the amount that the motor should move in
order to minimize the cost function. From (5), it can be
seen that ∆θ(k) consists of a DC component, which is
proportional to J ′(·), and contains other higher frequency
terms. Following standard manipulations (see [24]), the up-
date equations of discrete-time ESC can be written as

ξ(k) = −hξ(k − 1) + J(θ(k))− J(θ(k − 1)) (6)
∆θ(k) = −γ[ξ(k)a cos(ωk)] (7)

where γ is the adaptation gain and h ∈ (0, 1) is the HPF
cut-off frequency. The stability of the algorithm can be
proved based on two-time scale averaging theory (see [24]
for further details).

E. ESC Code Implementation

The code for the ESC controlled system runs in 3 nested
loops: the ESC loop, the aggregation loop, and the gait

detection loop. The gait detection loop is the innermost loop,
whose primary function is to read all sensors and record
data as well as detect each gait cycle using the 2 FSRs. In
each iteration of this loop, the rectified EMG readings from
both the tibialis anterior and soleus muscles were summed
and then integrated over a gait cycle using a rectangular
integration method with a step size of 0.033 seconds. Once
a gait cycle is detected, the aggregation loop adds the area
for the step that was just detected to an aggregated area
value. This process continues until 3 gait cycles are detected.
The aggregated area value, containing the total integrated
EMG area for the previous 3 gait cycles, is then used as an
objective function input to the ESC algorithm. We chose 3
gait cycles for computing the objective function to achieve a
balance between the robustness and the convergence rate of
ESC adaptation. A pseudo code for the ESC operational loop
is available for download in the supplementary materials.
Remark 3: The integration that occurs in the gait detection
loop converts the instantaneous EMG signals into a mean-
ingful value that quantifies the total muscular effort of each
step. The aggregation loop acts as a filter on the inherent
noise of the biological signal by combining multiple steps.

III. EXPERIMENTAL SETUP AND PROTOCOL

A. Experimental Setup

The experiment protocol was approved by the Institutional
Review Board (IRB) at the University of Texas at Dallas.
Experiments were conducted with a healthy subject wearing
the ankle exoskeleton while walking on a treadmill. Two
EMG sensors were placed on the soleus and the tibialis an-
terior muscles after skin preparation to measure the muscular
effort at 30 Hz. In order to normalize the EMG readings, a
maximum voluntary contraction (MVC) experiment was first
conducted, in which the user was instructed to flex each
muscle as hard as possible. The skin preparation, sensor
placement, and the MVC experimental procedures followed
the guidelines suggested in [29]. This MVC experiment was
conducted just once prior to the start of sweep and ESC
experiments (see Section IV-A, IV-B).

Prior to testing, the subject was fitted with an ankle
exoskeleton and given a chance to acclimate to it, while
the electrical control was disabled. During the acclimation
period, the torsional stiffness of the exoskeleton was fixed
at a median value of 194 Nm/rad. After acclimation, the
subject was instructed to walk on the treadmill at 1.0 m/s
and 1.5 m/s for up to 5 minutes for baseline walking
experiments (see Section IV-A) and up to 15 minutes for ESC
walking experiments (see Section IV-B), whose protocols are
discussed next. All experiments were done on level ground
on the same day, and the user was given sufficient rest in
between the experiments to avoid fatigue.

B. Experiment Protocol for Baseline Walking Experiments

Following acclimation, the user was asked to walk on
a treadmill at 1 m/s until 30 gait cycles of data had been
collected. At that point the slider would advance to the next
equally spaced slider position and another 30 gait cycles of
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(a) Baseline walking experiment result at slow walking speed (1
m/s), indicating the minimum median muscle effort at lever-arm
length L=25 cm.
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(b) Baseline walking experiment result at fast walking speed (1.5
m/s), indicating the minimum median muscle effort at lever-arm
length L=17 cm.

Fig. 5: Box plot of baseline and no spring (NS) tests at different
walking speeds. The x-axis indicates the lever-arm length L, with
L=17 cm and L=25 cm being closest and farthest from the ankle
joint, respectively. It can be seen that the EMG readings are higher
at fast walking speed as compared to slow walking speed. It can also
be seen that each walking speed has a different optimum lever-arm
length that minimizes the median muscular effort, thus necessitating
the need for real-time adaptation with changes in walking speed.

data were recorded. This process continued until 5 equally
spaced positions had been tested from one end of the lever-
arm to the other end. In this manner, the user’s muscular
effort response to the full range of torsional stiffness was
tested. This process lasted for approximately 5 minutes, with
a total of 150 gait cycles being recorded. Steps taken during
slider adjustment were removed from the data set and were
not included in the above mentioned step count. Due to
the variation in the gait patterns, the muscular effort during
each step was different. Therefore, we conducted 6 baseline
walking trials, giving 180 steps of data for each slider
location. Following this, the same protocol was repeated for
fast walking speed (1.5 m/s).

C. Experiment Protocol for ESC Walking Experiments

After baseline testing, the user walked on a treadmill for
15 minutes per experiment. Two versions of this experiment

were performed —slow-fast-slow (SFS) and fast-slow-fast
(FSF). For SFS testing, the user was instructed to walk at
1 m/s for 5 minutes. At the 5 minute point, the treadmill
speed was increased to 1.5 m/s, which was maintained for
another 5 minutes. At the 10 minute point, the treadmill
speed was reduced back to 1 m/s and held for another 5
minutes. Similarly, the FSF case started and ended at 1.5 m/s,
with the same time intervals for the three speed conditions.

IV. EXPERIMENTAL TESTING RESULTS

A. Baseline Walking Experiments

There were two main goals for performing baseline walk-
ing trials. First, we wanted to demonstrate that a change in
the slider location affects the muscular effort during walking.
Second, as the optimum slider location for different walking
speeds was not known a priori, we wanted to experimentally
determine the optimum slider location for this subject at
different walking speeds. This information helps us validate
the real-time ESC adaptation results across different walking
speeds in Section IV-B.

In order to show the effect of slider location on the
muscular effort, we grouped the EMG readings from all
experiments by slider locations. This resulted in 180 sample
data points per slider location (i.e., 30 samples/test × 6 tests).
A control test was also performed with no spring (NS). Figs.
5a, 5b show box plots obtained from 6 baseline and NS tests
for slow and fast walking speeds, respectively. Two important
observations can be made from this result: (i) By comparing
Figs. 5a, 5b it can be noted that the optimum slider location
for slow walking speed (L=25 cm at 1 m/s) is higher than
that for fast walking speed (L=17 cm at 1.5 m/s); and (ii)
Due to the variations in the gait pattern, there are multiple
local optimums. Note that due to the complex landscape of
the objective function, our ESC algorithm would only be able
to tune the system to a local minimum.

Next, we ran Lilliefors test for normality and found that
the EMG data at each slider location was not normally
distributed. In such a case, a non-parametric test, such
as Friedman, Kolmogorov–Smirnov, Wilcoxon signed-rank,
should be performed [30]. We first conducted a Friedman’s
test to check the validity of the null hypothesis that all sam-
ples taken at different slider locations come from the same
distribution. The Friedman’s test, performed in MATLAB,
returned a p−value of 7.4×10−9 for slow and 2.6×10−14 for
fast walking speeds, which is much less than the significant
threshold of 0.05. This implies that we can reject the null
hypothesis and conclude that a change in slider location
makes a difference in the muscular effort for this subject.
Next, we conducted Wilcoxon signed-rank statistical tests
for EMG data collected at each pair of slider locations. We
chose Wilcoxon signed-rank over other non-parametric tests
because it performs paired hypothesis testing and assumes
dependent data samples. In our case, a paired hypothesis
testing is suitable because the same muscle readings are
recorded multiple times at different slider locations. Also,
since the EMG readings for this subject come from the
same muscles, the EMG data at different slider locations are



TABLE I: Pairwise Wilcoxon signed-rank test results between
different slider locations L at slow and fast speed.

(a) p-values from Wilcoxon signed-rank test at slow speed.

L (cm)
Lever-arm length L (cm)

17 19 21 23 25

17 1.0000 0.6011 0.3118 0.0028∗ 0.0001∗
19 0.6011 1.0000 0.7135 0.0021∗ 0.0000∗
21 0.3118 0.7135 1.0000 0.0000∗ 0.0000∗
23 0.0028∗ 0.0021∗ 0.0000∗ 1.0000 0.2131
25 0.0001∗ 0.0000∗ 0.0000∗ 0.2131 1.0000

(b) p-values from Wilcoxon signed-rank test at fast speed.

L (cm)
Lever-arm length L (cm)

17 19 21 23 25

17 1.0000 0.0000∗ 0.0000∗ 0.0000∗ 0.0002∗
19 0.0000∗ 1.0000 0.0001∗ 0.0258 0.0000∗
21 0.0000∗ 0.0001∗ 1.0000 0.3870 0.0008∗
23 0.0000∗ 0.0258 0.3870 1.0000 0.0000∗
25 0.0002∗ 0.0000∗ 0.0008∗ 0.0000∗ 1.0000

dependent. We formulated a null hypothesis that the median
difference between the EMG data at different slider locations
(excluding NS) is zero. The p values for all combinations of
slider locations at different walking speeds are tabulated in
Table I. An asterisk at the end of p-value indicates statistical
significance between the pair of slider locations. Tables Ia
and Ib show that the effect of the slider location on the
muscular effort varies across walking speed.

To avoid false reporting of significant differences in mul-
tiple pairwise comparisons, we use the Bonferroni-corrected
threshold value of 0.005. For slow walking speed, it can be
seen from Table Ia that there are 2 groups of slider locations
that result in statistically different EMG data for this subject,
based on a threshold of p = 0.005. One group comprises
slider locations L=17, 19 and, 21 cm, and the other group
comprises slider locations L=23 and 25 cm. Similarly, for
fast walking speed, we see from Table Ib that the EMG data
at all slider locations (except between L=19 and 23 cm and
L=21 and 23 cm) are statistically different for this subject.
Remark 4: Figs. 5a, 5b show that the EMG readings are
higher for no spring as compared to with spring for both slow
and fast walking speeds, thus clearly indicating the benefit
of using the spring in the device.

B. ESC Walking Experiments

Fig. 6 shows the ESC adaptation results for the two
different experimental scenarios discussed in Section III.
The ESC parameters selected were a = 2, γ = −10, ω =
0.55Hz, h = 0.5Hz, according to the guidelines mentioned in
[9]. Because the walking speed was changed based on time
(after every 5 minutes), the fast walking regime has more
ESC iterations as compared to the slow walking. In the slow
regimes (first and third regime of Fig. 6a and second regime
of Fig. 6b), we see that the lever-arm length increases and
eventually approaches a steady-state, which in turn reduces
the muscle effort. This is exactly in accordance with the
baseline walking experimental results in Section IV-A. Next,
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(a) Slow-Fast-Slow ESC experiment
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(b) Fast-Slow-Fast ESC experiment

Fig. 6: Real-time ESC adaptation of lever-arm length (torsional
stiffness) across different walking speeds. The blue dots are the
accumulated EMG area for 3 gait cycles (one ESC iteration), and
the red dots are the lever-arm lengths at a particular ESC iteration.
The solid blue and red lines are fitted by smoothing the data using
locally weighted linear regression. The vertical black dashed lines
indicate the ESC iteration at which the walking speed was changed.
It can be seen that ESC quickly adapts the lever-arm position in
response to change in muscular effort at walking speed transitions.

at the speed transitions, we see a sudden change in the muscle
effort followed by a rapid ESC adaptation of the lever-arm
length in the direction we expect. At fast speed regimes
(second regime of Fig. 6a and first and third regime of Fig.
6b), we see the lever-arm length decreasing as we expect.
However, we do not see a dramatic reduction in the muscle
effort, which we explore more in Section V.

Fig. 7 shows the average EMG readings for tibialis anterior
and soleus muscles at slow walking speed. The blue and
red lines represent the average of EMG readings across gait
cycles during the first and the last minute of slow speed
walking, respectively. It can be noted that the average EMG
readings for both of the tibialis anterior and soleus muscles
decreased significantly after ESC adaptation. In particular,
the average RMS EMG readings of tibialis anterior and
soleus muscles decreased by 26.48% and 7.42%, respec-
tively. From (2), we see that changing the lever-arm length
from L=23 cm to L=22 cm decreases the torsional stiffness
kexo by 9.3%. A supplemental video of the experiment is
available for download.

V. DISCUSSION

A. Walking Experiment Results

Two important observations can be made from the ESC
adaptation results in Fig. 6. First, ESC rapidly changes the
effective lever-arm length in response to changes in the
muscular effort across walking speeds. Second, the tuned
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Fig. 7: Average EMG readings for tibialis anterior and soleus
muscles before and after ESC adaptation at slow walking speed. The
average RMS value of tibialis anterior and soleus muscle activity
decreased by 26.48% and 7.42%, respectively.

lever-arm position decreases the steady-state muscular effort
in the slow walking speed regimes.

However, in the fast speed regimes, we do not see a net
reduction in the steady-state muscular effort in response to
the change in the slider location. To explain this observation,
we computed pairwise correlation coefficients between EMG
readings at successive slider locations. Fig. 8 shows a scatter
plot of EMG area at different slider locations for slow and
fast walking speeds and pairwise correlation coefficients
ρ between successive lever-arm positions. It can be noted
from Fig. 8a that in slow speed, ρ < 0 for all lever-arm
positions between 19-25 cm. This indicates that the lever-arm
length and the EMG area are uniformly negatively correlated.
However, from Fig. 8b, it can be seen that at fast speed,
the sign of the correlation coefficient ρ keeps alternating,
i.e., between slider location 17-19 cm, ρ > 0, and between
19-21 cm, ρ < 0, and so on. This implies that for certain
slider locations, the EMG area and the lever-arm length
are positively correlated while at other locations, they are
negatively correlated. Also, it can be observed from Fig. 8
that the variance of EMG readings is much higher for fast
speed as compared to the slow speed walking. Table II shows
the variance in the EMG readings at different slider locations
for slow and fast walking speeds. The alternating signs of
the correlation coefficient between two successive lever-arm
lengths at fast walking speeds indicates the presence of
multiple optimums in the objective function. Due to high
variance in the EMG data at fast speeds, we might have to
run the walking experiments for a longer duration to see the
expected decrease in the muscular effort.

(a) Scatter plot of EMG area at slow walking speed
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(b) Scatter plot of EMG area at fast walking speed

Fig. 8: Scatter plot of EMG area at different slider locations for
different walking speeds and pairwise correlation coefficients ρ. The
red line (with slope=ρ) represents a least square line fit to the EMG
data between two consecutive lever-arm lengths.

TABLE II: Variance in EMG readings at different slider locations
in slow and fast walking baseline experiments.

Walking Speed
Lever-arm length (cm)

17 19 21 23 25

Slow (1 m/s) 0.3402 0.4207 0.3323 0.4230 0.5574
Fast (1.5 m/s) 1.1436 5.9647 1.3239 4.6035 0.8425

Although we do not see a net reduction in the steady-state
muscular effort in the fast speed regimes, we can observe
from Figs. 6a and 6b that the ESC tunes the stiffness of the
device at fast walking speeds. Notice that the red graph in
the slow walking regime (see Fig. 6a) converges to L = 23
cm and in the fast walking regime (see Fig. 6b) to L =
22 cm. This implies that the local optima for slow and fast
walking speeds are L = 23 cm and L = 22 cm, respectively.
Furthermore, from Fig. 6a, it can be seen that as the walking
speed changes from slow to fast, ESC gradually tunes the
lever-arm length in the appropriate direction (towards L = 22
cm, i.e., optimum for fast walking) in the fast speed regime.
Now, if the user would have walked with the lever-arm length
fixed to L = 23 cm at fast walking speed, it would have led
to an increase in the muscular effort. This can be observed
from Fig. 8b, where the correlation coefficient is positive
between slider locations 21 and 23 cm.

B. Limitations

Our experimental results were based on data collected
from a single able-bodied subject. Our study to this point
is based on six baseline walking experiments to understand



the effect of walking speed on the optimum slider location.
We did not investigate the impact of our exoskeleton on
the normative kinematics of the able-bodied subject. Further
study should test more subjects with motion capture to
analyze biomechanical implications such as the effect on gait
kinematics and kinetics.

Our research goal is to establish the efficacy of real-time
optimization on quasi-passive exoskeletons. Therefore, our
preliminary design, which has a long lever-arm that protudes
from the back of the shank, might not be optimal for real-
world use. Further development of the system by redesigning
the variable stiffness adjustment system could make the
device lighter and more compact, while maintaining the
range of adjustment. A reduction in the lever-arm would also
allow a smaller but stiffer spring to be used to further reduce
weight, allowing for even greater improvements to walking
efficiency. A novel under-shoe clutching design presented in
[4] could be implemented to reduce muscle activation further
by engaging the variable stiffness mechanism at specific
times within the gait cycle, as shown in [3].

VI. CONCLUSIONS

We developed a quasi-passive exoskeleton that combines
the adaptability of active exoskeletons with the light-weight
and autonomy of passive exoskeletons. The ESC we de-
veloped alongside this exoskeleton is capable of continuous
adaptation and autonomous operation. By combining highly
efficient stiffness adjustment and a computationally inexpen-
sive controller, our walking experiments demonstrated that
ESC was able to automatically tune the torsional stiffness of
the ankle exoskeleton based on bio-feedback received from
the EMG sensor across different walking speeds. In future,
a time-invariant framework of ESC [31] could be used to
improve the performance of the algorithm. To facilitate a
comprehensive study, future work should include indirect
calorimetry to quantify reduction of metabolic cost.
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[28] H.-B. Dürr, M. S. Stanković, C. Ebenbauer, and K. H. Johansson, “Lie
bracket approximation of extremum seeking systems,” Automatica,
vol. 49, no. 6, pp. 1538–1552, 2013.

[29] H. J. Hermens et al., “European recommendations for surface elec-
tromyography,” Roessingh research and development, vol. 8, no. 2,
pp. 13–54, 1999.

[30] B. Rosner, Fundamentals of Biostatistics. Cengage Learning, 2015.
[31] S. Kumar, A. Mohammadi, R. D. Gregg, and N. Gans, “Limit

cycle minimization by time-invariant extremum seeking control,” in
American Control Conference, 2019, pp. 2359–2365.


