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Abstract— This paper presents a robot walking control
method, which we call “quasi-passive dynamic walking.” The
method is targeted at underactuated legged robots and applied
to obtain energy-efficient limit cycle gait on level ground.
To achieve efficient locomotion, as well as to overcome the
underactuation of the system, two key points are implemented
into this method to positively utilize the passive dynamics of
the system. The first one is to initialize the walker at the fixed
Poincaré section obtained from passive dynamic walking on
a gentle downhill. The second one is to indirectly excite the
hip angle by periodically oscillating a wobbling mass, which
is attached to the body frame. The walker is, therefore, able
to step forward on level ground without any torque actuation.
Moreover, the phase diagram of the generated gait is entrained
to limit cycle by the periodical oscillation of the wobbling mass.
Numerical simulations and theoretical analysis are conducted
to evaluate the efficiency as well as the local stability of the
gait. Our control method enables underactuated legged robots
to walk extremely efficiently on level ground with only one
actuator, which provides the easiness for implementation on
real machines.

I. INTRODUCTION

Legs enable humans and most of the mammals to flexibly
select the contacting points for locomotion, which provides
their capability of traveling to the furthest distance. The
methods for controlling gait of contemporary legged robots
are, therefore, designed to be extraordinarily versatile so
that they can not only traverse many different terrains, but
also perform a sequence of dynamic maneuvers that form a
gymnastic routine [1]–[4].

On the other hand, high energy efficiency of these loco-
motion robots is inevitable for applying them to real tasks
in human daily life. In contrast to the versatile control
paradigms which generate special tricks, another kind of
walking prototype that walks at a single cadence, namely
limit cycle walking [5], [6], is more practical in common
locomotion. This locomotion is inspired by passive dynamic
walking on the downhill [7]–[9], which walks without any
input and achieves a stable periodical gait through a dexterity
design of their configurations and the gravity only. Similar

This work was supported by the Japan Society for the Promotion of
Science under Grant-in-aid for Science Research (No. 17H06313, No.
20K11875). (Corresponding author: Isao Tokuda.)

1Longchuan Li is with the Research Organization of Science and Technol-
ogy, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577,
Japan (e-mail: lltt2144@fc.ritsumei.ac.jp).

2Isao Tokuda is with the Department of Mechanical Engineering, Rit-
sumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
(e-mail: isao@fc.ritsumei.ac.jp).

3Fumihiko Asano is with the School of Information Science, Japan Ad-
vanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa
923-1292, Japan (e-mail: fasano@jaist.ac.jp).

periodical gait can be generated on the level ground through
limit cycle walking with, however, low efficiency. Some stud-
ies improved the efficiency of limit cycle walking by tracking
the trajectories of mechanical energy restoration [10]–[12]
and achieved successful results. However, it is difficult to
implement their control methods in real conditions, due to
the requirement of full actuation.

In order to enable underactuated [13] legged robots to
walk efficiently and stably on level ground, this paper comes
up with a novel control method, which we call “quasi-
passive dynamic walking (QPDW)” by positively utilizing
the passive dynamics of the system. As illustrated in Fig.
1, the quadruped locomotion robot is composed of two
identical and symmetric compass-like biped walkers, which
are connected by a body frame. The hip joints are passive,
i.e., no actuator is applied. Alternatively, an active wobbling
mass, which can be controlled to oscillate in parallel with the
body frame, is attached to it. We define the direction of “X”
in Fig. 1 as the front. Angles of the right foreleg and the left
hind leg (in blue color) are synchronized with each other by
mechanical constraints and so is the other side (in red color).
Such a configuration reduces the rotation momentum during
the legs swing motion [14], as well as reduces the required
degrees of freedom to model the system.

To design a locomotion paradigm that positively utilizes
the passive dynamics of the system, the QPDW gait is
initialized at the fixed Poincaré section obtained from passive
dynamic walking on a gentle downhill (PDWGD), inspired
by the phenomenon observed from the ideal condition of
passive dynamic walking on the level ground (PDWLG). In
addition, the wobbling mass is forced to oscillate periodically
to indirectly excite the hip angle, as well as to entrain the
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Fig. 1. Mathematical model of quasi-passive dynamic walker
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Fig. 2. Machine design of quasi-passive dynamic walker

gait to limit cycle. Extremely energy-efficient gait can be
achieved by our control method, and its local stability is
proven via the return map.

II. PASSIVE DYNAMIC WALKING

This section introduces the passive dynamics of this
walker, as a prior knowledge for the following sections.

A. Equation of Motion

As illustrated in Fig. 1, the position of grounding point
on the hind side is (x,z) [m], the angular positions of the
support and swing legs to the vertical are θ1 [rad] and θ2
[rad], respectively. Besides, the displacement of the wobbling
mass with respect to the center is lc [m]. In addition, the
body frame is always in parallel with the ground, due to
the identicality, symmetry and synchrony between the fore
and hind legs. Fig. 2 shows the detailed mechanisms of the
legs synchronization realized by the connecting rods, and the
mass wobbling motion realized by mapping it to the rotation
of a DC motor via piston crank linkage. The generalized
coordinate of the system is: q=

[
x z θ1 θ2 lc

]T. The walker
is placed on a gentle slope with the angular position of φ

[rad], and its swing legs generate a pendulum-like motion
autonomously according to the following equation:

Mq̈+h= JTλ. (1)

Here, M is the inertia matrix, h is the combination of
centrifugal force, Coriolis force and gravity terms. The
details are shown as follows:

M =


mt 0 (lmt −2aml)C1 −2amlC2 mcCφ

mt −(lmt −2aml)S1 2amlS2 −mcSφ

2(l2 +b2)ml + l2ms −2almlC∆12 lmcC∆φ1

2a2ml 0
Sym. mc

 ,

h =


−θ̇1

2
(lmt −2aml)S1 +2aθ̇2

2mlS2

mtg− θ̇1
2
(lmt −2aml)C1 +2aθ̇2

2mlC2

−g(lmt −2aml)S1−2aθ̇2
2lmlS∆12

2aml(θ̇1
2lS∆12 +gS2)

−gmcSφ + θ̇1
2lmcS∆φ1

 ,

where

mt = mb +mc +2mh +4ml , ms = mb +mc +2mh,

l = a+b, S∠ = sin∠, C∠ = cos∠, ∠= θ1,θ2,φ

C∆12 = cos(θ1−θ2), S∆12 = sin(θ1−θ2),

C∆φ1 = cos(φ −θ1), S∆φ1 = sin(φ −θ1).

Besides, J is the Jacobian matrix for holonomic constraints
and λ is the constraint forces vector. The grounding point
is assumed to be fixed, i.e., ẋ = 0 and ż = 0. In addition,
the wobbling mass is mechanically locked at the center of
the body under the condition of passive dynamic walking,
which results in l̇c = 0. By summarizing these constraints,
the detailed constraint equation J is shown as follows:1 0 0 0 0

0 1 0 0 0
0 0 0 0 1

 q̇ = Jq̇ = 03×1. (2)

Thus, the dynamics of the legs swing motion can be derived
by solving Eq. (1) with the time derivative of Eq. (2) at the
same time.

B. Collision Equation

According to the symmetry of the legs configuration, the
zero-crossing of the following function:

f (θ1,θ2) := θ1 +θ2−2φ , (3)

from negative, which requires d
dt f (θ1,θ2) := θ̇1 + θ̇2 > 0, is

used for detecting the collision. Simultaneously, the support
and swing legs exchange according to inelastic collision
model:

Mq̇+ = Mq̇−+JT
I λI , (4)

where the superscripts + and − represent the instant imme-
diately after and before the collision, respectively, and JI
and λI represent the constraint matrix and constraint forces
vector at landing instant. Define the position of foot tip of
the hind swing leg as (x̄, z̄) [m] as shown in Fig. 1. Besides,
assume ˙̄x = 0, ˙̄z = 0 and l̇c = 0 at the collision instant. The
constraint equation at landing instant is therefore summarized
as: 1 0 l cosθ1 −l cosθ2 0

0 1 −l sinθ1 l sinθ2 0
0 0 0 0 1

 q̇+ = JI q̇
+ = 03×1. (5)

Note that the parameter c [m], which indicates half length of
the body frame as shown in Fig. 1, is neither involved in the
swing motion nor ground collision, since the fore and hind
legs are always assumed to be synchronized with each other.



C. Return Map

The existence of steady state phase in passive dynamic
walking has been already well investigated in the literature,
and its local stability, i.e., the existence of limit cycle, is
usually addressed by the following discrete return map (or
Poincaré map) [8]:

Qk+1 = P (Qk), (6)

whereQk is the state vector at the beginning of kth step, since
the Poincaré section of the return map for legged locomotion
is normally defined as the instant immediately after ground
collision. Besides, P is the return map of the state vector
Q from the current step k to the next step k + 1, and the
selection of the state vector will be discussed later.

In steady locomotion, the state maps to itself neglect the
step number:

Q∗ = P (Q∗). (7)

Once a slight disturbance is applied to the ith dimension of
steady state, the output of the return map becomes:

Q∗+δi
1 = P (Q∗+δi

0)≈ P (Q∗)+
∂P

∂Q

∣∣∣∣
Q∗
δi

0, (8)

where the perturbation on the ith dimension of steady state
is represented by vector δi

0, and its resultant deviation is
defined as δi

1. Therefore, the gradient matrix can be derived
by substituting Eq. (7) into Eq. (8) after applying perturbation
to each dimension respectively:

∂P

∂Q

∣∣∣∣
Q∗
≈
[
δ1

1 δ
2
1 · · · δn

1
][
δ1

0 δ
2
0 · · · δn

0
]−1

. (9)

Defining the ith eigenvalue of matrix ∂P
∂Q

∣∣∣∣
Q∗

as λi, the gait

is locally stable if max |λi|< 1.

III. PROBLEM DESCRIPTION

This section numerically compares two kinds of gait
patterns: steady state PDWGD and the ideal condition of
PDWLG.

The gait of PDWGD is initialized at a suitable state on
a gentle slope with the physical parameters listed in Tab. I.
The hip angle α = θ1−θ2 is plotted as the red curve in Fig.
3 (a), where the transient is removed, i.e., only steady state
of α is plotted. The ideal dynamics of PDWLG is initialized
at the fixed Poincaré section obtained from PDWGD, while
changing the slope angle φ to 0. The hip angle α of PDWLG
is plotted as the dashed green curve. The PDWGD gait shows
a periodical pattern, while the PDWLG gait decays gradually.
The mechanism behind the periodical locomotion associ-
ated with PDWGD is the restoration of mechanical energy.
Namely, the kinetic energy consumed by ground collision
is supplied by gravitational potential energy. Without such
an energy supply, PDWLG is unable to generate a similar
gait. On the other hand, one can observe that the walking
frequency fw of PDWLG increases gradually, as shown in
Fig. 3 (b). Note that, although it may look like converging
to the walking frequency of PDWGD, this does not indicate

TABLE I
PARAMETERS OF CONFIGURATION.

ml 1 kg
mh 5 kg
mc 1 kg
a 0.5 m
b 0.5 m
φ 0.01 rad
g 9.81 m/s2

a steady state behavior. The walking will eventually stop
if no external actuation is applied. Fig. 4 shows the phase-
plane portrait and the variation of the Poincaré section. The
two trajectories start from the same phase. The trajectory
of PDWGD generates a limit cycle, whose Poincaré section
returns to itself in steady state phase. The trajectory of
PDWLG, on the other hand, varies. These results together
indicate that under the condition of initializing the gait
of PDWLG at a suitable state, the kinetic energy could
raise the walker’s center of mass (CoM) until its potential
energy reaches the highest point in one walking cycle, so
that the walker can step forward by inversely transforming
potential energy into kinetic energy. This process is also
called overcoming the potential barrier [15]. The walker is,
however, unable to go far away, since its hip angle shows
damped oscillations. This simulation result is consistent with
[16].

IV. QUASI-PASSIVE DYNAMIC WALKING

Inspired by the phenomenon of “damped oscillation rather
than fall down” observed from PDWLG, this section intro-
duces a QPDW control method that indirectly excites the hip
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Fig. 3. Gait simulation of passive dynamic walking
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Fig. 4. Phase-plane portrait and Poincaré section (the instants that
immediately after feet landing) of passive dynamic walking.

angle efficiently by positively utilizing the passive dynamics.
Our previous works have already shown that the walking

frequency of the legged robots can be entrained to a peri-
odically moved wobbling mass [17], [18], and the rotation
amplitude of the sliding robots can be similarly controlled
by this mechanism [19] [20]. We, therefore, introduce a
wobbling mass to the walker to excite the amplitude of hip
angle, as well as to entrain the walking frequency of the gait.

To enable the wobbling motion, the last rows of J and
JI in Eqs. (2) and (5) should be removed. Consequently, the
equation of motion can be obtained by revising Eq. (1) to:

Mq̈+h= JTλ+Su, (10)

where u is the control input and S =
[

0 0 0 0 1
]T is the

driving vector that specifies the actuation on the wobbling
mass. Note that the actuation of the wobbling mass is
model-free under the condition of applying the method on
a real machine [17], since it is independent of the state
and the parameters of the walker. However, for conducting
the numerical simulation, it is better to use a model-based
method that accurately tracks the trajectory of the wobbling
mass.

The displacement of the wobbling mass lc can be ex-
pressed as: lc =STq, and its 2nd order derivative with respect
to time becomes:

l̈c = STq̈. (11)

In addition, q̈ can be derived from the equation of motion

TABLE II
PARAMETERS OF CONTROLLER.

Am 0.05 m
fc 1.26 Hz

KD 40 s−2

KP 400 s−1
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Fig. 5. Gait simulation of quasi-passive dynamic walking

and constraints:

q̈ =M−1Y (Su−h), (12)

where Y := I5−JTX−1JM−1, X := JM−1JT, and I5
is an identity matrix of order 5. By substituting Eq. (12) into
Eq. (11), the relationship between input and output becomes:

l̈c = STM−1Y (Su−h) = Au−B, (13)

where A :=STM−1Y S and B :=STM−1Y h. The input u
that enables the wobbling mass to track a desired waveform
ld(t) can be obtained by a PD controller:

u = A−1(v+B), (14)
v = l̈d(t)+KD(l̇d(t)− l̇c)+KP(ld(t)− lc),
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Fig. 6. Phase-plane portrait and Poincaré section (the instants that
immediately after feet landing) of quasi-passive dynamic walking.

where KD [s−1] and KP [s−2] are the PD control gains.
To smoothly affect the dynamics of the walker, the desired
periodical trajectory for the wobbling mass is set to a sine
waveform:

ld(t) = Amsin(2π fct), (15)

where Am [m], fc [Hz] are the desired amplitude and fre-
quency for the wobbling motion, respectively.

To easily entrain the gait, the frequency of wobbling
motion should be close to the natural frequency of the
walking, which can be estimated from Fig. 3 (b). Parameters
in Tab. I and II are used for the simulation of QPDW,
except φ = 0. The results are shown in Fig. 5. The trajectory
of the wobbling mass accurately follows the desired sine
waveform via the tracking control method, as shown in
Fig. 5 (a). Moreover, Fig. 5 (b) shows that the periodical
oscillation of the wobbling mass excites the amplitude of the
hip angle effectively. The damped oscillation of the hip angle
is avoided after a short transient. The blue circles indicate
the instants immediately after the feet landing, which leads
to the consumption of kinetic energy, as shown in Fig. 5
(c). Despite the energy loss, kinetic energy of the walker
can be supplied by the wobbling motion in the condition
of QPDW. In addition, Fig. 5 (d) shows that the walking
frequency converges gradually to the wobbling frequency,
indicating the occurrence of the entrainment. Benefited from
this phenomenon, the dynamics converges to a limit cycle.
Moreover, variation of the Poincaré section and the steady
state phase-plane portrait are shown in Fig. 6, where the
transient is removed for a clear demonstration of the limit
cycle.

V. MOTION ANALYSIS

This section systematically conducts theoretical motion
analysis on speed, efficiency and local stability of the QPDW.

A. Speed and Efficiency

Four gait descriptors are used to evaluate the walking
performance: walking frequency fw, hip angle at impact
instant αI , walking speed Vx and specific resistance SR. The
walking speed is the product of walking frequency and stride,
which is determined by the leg length l and the impact hip
angle αI :

Vx := fw×2l sin
αI

2
. (16)

The specific resistance (also called cost of transport) is given
by the ratio between the input energy and the mechanical
work the walker did:

SR :=
p

mtg|Vx|
, (17)

p := fw

∫ 200+ 1
fw

200
|l̇cu|dt.

The first 200 [s] of the locomotion, which is considered as
the transient, is eliminated.

The gait descriptors are calculated using the parameter
values listed in Tab. I and II, except that φ = 0 and the
wobbling frequency fc is varied from 1.2 [Hz] to 1.31
[Hz]. The wobbling frequency is set close to natural walking
frequency of the PDWGD, which is estimated to be around
1.31 [Hz] from Fig. 3 (b). The increment is set to 0.002
[Hz], where 20 steps of gait descriptors are calculated for
each wobbling frequency. The walking frequency is shown
in Fig. 7. The gait is entrained to the wobbling motion
until fc = 1.296 [Hz], and after that they are desynchronized
with each other. Note that the plotted intervals are unequal,
meaning that no value are calculated at some points. This
is because the basin of attraction of the limit cycle is so
small that suitable initial conditions are difficult to be found.
Besides, Fig. 8 shows the impact hip angle αI , where one
can observe a jump at fc = 1.26 [Hz], after which the hip
angle is effectively excited. In addition, Fig. 9 indicates that
the walking speed is mainly affected by αI , rather than fw.
Moreover, the QPDW gait is extremely efficient, as shown
in Fig. 10.

B. Phase Difference

Since the generated gaits demonstrate significantly differ-
ent performances on the speed before and after fc = 1.26
[Hz], here we analyze the nonlinear dynamics via the phase
difference between the walker and the wobbling mass to
explain this phenomenon. The phase difference ψ is defined
as follows:

ψ :=
2π(tl− tp)

Tw
, (18)

where Tw represents the duration of walking in one cycle as
shown in Fig. 11. tl denotes the instant when the wobbling
motion reaches half cycle, i.e., the middle of sine waveform.
In addition, tp denotes the instant when the support legs are
perpendicular to the ground, which is further approximated
as the timing of overcoming the potential barrier, since θ1
and θ2 cross 0 almost simultaneously.



Note that tp corresponds to the phase, at which the walker
has the lowest kinetic energy, and tl corresponds to the phase
of the wobbling mass at the equilibrium point. One can
expect that the phase difference ψ corresponds to the kinetic
energy Kcw injected into the walker by the wobbling motion
via the following relationship:

Kcw ∝ |sinψ|, (19)

since the wobbling trajectory forms a sine waveform.
In a similar manner as the last subsection, we calculate the

phase difference ψ with respect to the wobbling frequency.
The results are plotted in Fig. 12. By comparing the results
with Fig. 8 and 9, one can observe that small values of αI and
low speed walking correspond to in-phase synchronization
between the walker and the wobbling mass, i.e., ψ ≈ 0.
Noteworthy are large values of αI and high speed walking
that appear around ψ = −π/2. These results are consistent
with Eq. 19.
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C. Local stability

Although we mentioned in V-A that the basin of attraction
of some gaits are so small that finding them is not always so
easy, the local stability of successful gaits can be evaluated
by the return map as introduced in II-C.

The discrete state at the Poincaré section that is used
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for the return map is normally defined as the collection
of the periodical points in the generalized coordinate and
their time derivatives. Consequently, the state is defined as

Q=
[

θ
+
1 θ

+
2 l+c θ̇1

+
θ̇2

+ l̇c
+
]T

. However, the existence of
time t in the controller u makes the system non-autonomous
[22]. To simply convert the QPDW model to an autonomous
system, we can augment the state vector with an extra
element β = 2πt

Tw
[16], [23]. Therefore, the state becomes:

Q=
[

θ
+
1 θ

+
2 l+c θ̇1

+
θ̇2

+ l̇c
+

β

]T
. (20)

The maximum absolute eigenvalues are calculated using
Eqs. (9) and (20). The results are plotted in Fig. 13. Here,
only steady state gaits are utilized, since the evaluation of
local stability of disordered gaits is meaningless. It is shown
that all the steady state gaits (synchronized) in Fig. (7)
are locally stable in the sense that the maximum absolute
eigenvalues are less than 1 for all cases. This indicates that
the steady state QPDW gait is capable of returning to itself
after being slightly disturbed.

D. Effect of Forcing Amplitude

The simulation results in V-A show that the amplitude
of hip angle can be efficiently excited by the periodical
wobbling motion. It is therefore necessary to observe the
effect of the forcing amplitude Am.

The forcing amplitude is varied under two conditions: 1)
Am = 0.2 [m], and 2) Am = 0.02 [m]. As shown in Fig. 14 (a),
the entrained ranges are different for these two conditions.
Fig. 14 (b) shows that there is also a jump in the impact hip
angle under the condition of Am = 0.02 [m] and so does the
speed in Fig. 14 (c). On the other hand, no such jump occurs
under the condition of Am = 0.2 [m]. This phenomenon
can be explained by the phase difference in Fig. 14 (d).
According to Eqs. 18 and 19, anti-phase relationship implies
efficient energy injection to the walker. In contrast to the
speed, the efficiency of Am = 0.02 [m] is much better than the
condition of Am = 0.2 [m] as shown in Fig. 14 (e). Moreover,
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local stabilities of the steady state gaits are guaranteed for
both conditions as shown in Fig. 14 (f).

VI. CONCLUSION AND FUTURE WORK
Although the walker presented in this paper has only one

actuator, it is capable of walking extremely efficiently on
the level ground via our QPDW control method. The passive
dynamics is positively utilized by initializing the gait from
the fixed Poincaré section of PDWGD and exciting the hip
angle indirectly and smoothly. The reason for inducing low
speed walking is theoretically analyzed from the coupled
oscillator and potential barrier point of view. Consequently,
low speed walking can be avoided successfully.

Regarding the efficiency, walking gait with no energy cost
using spring mechanism [24] has been already generated.
Inspired by their work, one of the authors also have in-
vestigated non-powered gait with double-limb support phase
[25] to provide further possibilities. Unlike these works,
which do not require external actuation by appropriately
avoiding ground collisions, our QPDW gait proposed in this
paper injects kinetic energy into the walker. The periodical
excitation of the wobbling motion, which injects kinetic
energy, plays a similar role as the gravity induces passive
dynamic walking. Compared to the non-powered gait, our
QPDW gait is of course less efficient. It is however more
robust when a slight perturbation, which is inevitable in
the real-world, is added to the system. Moreover, we are
taking step motion, that is, stance-leg exchange into account.
Our future work will consider enlargement of the basin of
attraction of the limit cycle to further enhance the stability
[26]. Kinetic energy consumed by the ground collisions will
be minimized according to the spring mechanism mentioned
above. Moreover, experimental studies of a real machine
according to Fig. 2 shall be also conducted and reported
soon.
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