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Abstract— Fiber optic shape sensing is gaining popularity
within areas such as medical catheterization where catheters
and guidewires are used to navigate through tortuous vascular
paths. Shape sensing can aid medical interventionalists by
reducing damaging radiation and providing a more detailed
real-time understanding of the 3-dimensional shape of the
catheter/guidewire. However, despite the technology existing for
several years, there is still room for improvement and steps to
follow to reach the accuracy and robustness needed for these
safety-critical applications. This paper discusses and provides
methods for fiber integration within catheters to improve shape
estimation accuracy and repeatability. A two-step calibration
process is introduced for intrinsic twist compensation, which
results in significant improvements in estimation accuracy.
Additionally, a practical method for fiber parameter iden-
tification is introduced. The importance of estimating these
parameters was found to be paramount for reaching adequate
shape estimation. Further improvements to the reconstruction
algorithm are proposed. Experimental validations with ground
truth shapes are performed to assess the overall accuracy for
static and dynamic configurations. For complex geometrical
shapes and a fiber length of 170 mm, experiments show a
mean spatial error of 0.70 mm (0.41%), a maximum of 2.52
mm (1.48%), and repeatability of ± 0.82 mm.

I. INTRODUCTION
Recent technological advancements in fiber optic sensing

allowed its use in various fields such as aerospace [1], [2] and
medical treatment [3]–[5]. Fiber optic shape sensing (FOSS)
made its first appearance in the mid 1980’s where it was
used to measure simple bends and curvatures [6], [7]. Since
then, a large amount of work was done to improve sensor
characteristics and performance. It was not until recent years
that FOSS became very popular for various 2D and 3D shape
sensing applications. Reasons for the increased interest in
FOSS are mainly due to its advantages as a shape sensor,
which include: 1) electromagnetic immunity, 2) miniature
size, 3) high interrogation speed, 4) multiple sensing points,
or multiplexing, 5) simple integration within systems, and 6)
high mechanical strength [8], [9].

Several techniques exist with regards to fiber strain sens-
ing. The two most common rely on Fiber Bragg Gratings
(FBGs) and Rayleigh scattering. FBG-based strain sensing
relies on reflected wavelengths from an emitted light spec-
trum. The reflected light depends on the grating periodicity

1Omar Al-Ahmad, Mouloud Ourak and Emmanuel Vander Poorten are
with the Department of Mechanical Engineering, KU Leuven University,
Leuven, Belgium. (e-mail: firstname.lastname@kuleuven.be).

2Omar Al-Ahmad, Jan Van Roosbroeck and Johan Vlekken are with
FBGS International NV, Geel, Belgium. (e-mail: oalahmad@fbgs.com,
jvanroosbroeck@fbgs.com; jvlekken@fbgs.com).

which on its turn is function of the internal strain. The
technology normally offers a discrete distribution of FBGs
which result in strain measurements at a large number of
discrete locations. Rayleigh scattering based techniques have
near-continuous spatial strain sensing resolution. This is
because scattering occurs throughout the fiber length. Op-
tical Frequency Domain Reflectometry (OFDR) is the main
interrogation technology used in conjunction with Rayleigh
scattering based techniques. While OFDR provides for high
spatial resolution and does not require FBG inscription,
FBG-Based interrogation techniques such as Wavelength Di-
vision Multiplexing (WDM), which are spectrometry based
technologies, are comparatively cheaper alternatives, typi-
cally have higher signal to noise (SNR) ratios [10], and
higher measurement speeds.

Previous work has employed both FBG and Rayleigh
scattering shape sensing techniques for various applications
such as needle insertion and tracking [11]–[13], tracking
of continuum manipulators [14]–[16], or generic tracking
and localization applications [17]–[19]. Most previous ap-
proaches adopt a strategy where three outer single core fibers
are used for shape reconstruction. This usually requires fur-
ther calibration steps making it harder to reach the same level
of precision as with a single multi-core fiber (MCF). The
most commonly used reconstruction methods used in these
works are based on Frenet-Serret frames, parallel transport or
Bishop frames, constant curvature segmentation, and helical
geometry. While most of these works show adequate shape
accuracy for their given application, there is yet a large
opportunity for improvement. This is especially the case for
longer length fibers and environments with high curvature
and torsion. In cardiovascular medical applications, the re-
quired accuracy that clinicians indicate as being acceptable
is typically in the order of 1-3 mm [20]–[22], but may be
lower for intricate interventions. Table I summarizes prior
works on this subject and the corresponding reported errors.

The reconstruction accuracy of shape sensing schemes
generally depends on factors such as:
• interrogation method: important factors include spatial

resolution, repeatability, linearity, and sensitivity.
• fiber integration: crucial to ensure shape repeatability,

avoid backscattering of light, avoid play due to extra
spacing, and prevent twist.

• calibration and parameter identification: an important
step that must be performed precisely to measure initial
twist, and identify model parameters.
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TABLE I
SHAPE SENSING EXAMPLES FROM PREVIOUS LITERATURE (ALL DIMENSIONS ARE IN MILLIMETRE)

Authors Interrogation Fibers & Cores Conf. Model Length #Grts Spacing Validation Error Rmin

Abayazid et al. [11] FBG / WDM 3 outer / no central Straight Constant curvature 90 4 30 2D / 3D 2.10 ± 1.10 (mean) 375
Henken et al. [12] FBG / WDM 3 outer / no central Straight Frenet-Serret 70 2 70 2D 1.32 ± 0.48 (mean) NA
Yi et al. [23] FBG / WDM 4 outer / no central Straight Frenet-Serret 400 5 100 2D / 3D 4.10 (mean) NA
Elayaperumal et al. [24] FBG / WDM 3 outer / no central Straight Other 85 2 85 2D 4.20 (rms) NA
Gander et al. [25] FBG / WDM 4 (MCF) / no central Straight Other NA NA NA 2D 2.00 (max) 20
Van de Berg et al. [13] FBG / WDM 3 outer / no central Straight Frenet-Serret 120 4 40 3D 2.60 ± 1.10 (mean) 71.4
Parent et al. [26] OFDR 3 outer / no central Straight Other NA NA NA 2D ≈1.00 (rms) 17.5
Sefati et al. [14] FBG / WDM 3 outer / no central Straight Constant curvature NA NA NA 3D 0.62 (max) 101.6
Ryu et al. [17] FBG / WDM 3 outer / no central Straight Other NA NA NA 2D 0.84 ± 0.62 (mean) NA
Leyendecker et al. [27] FBG / WDM 3 (MCF) / central Straight Constant curvature 250 6 50 2D / 3D 15.40 (max) NA
Lally et al. [28] OFDR 3 (MCF) / central Helical Other 30000 NA NA 3D 210 (max) NA
Klute et al. [1] OFDR 3 outer / no central Straight Constant curvature 2000 NA NA 3D 42.9 (max) 14
Duncan et al. [10] OFDR 3 (MCF) / no central Straight NA 1100 110 10 2D 22.50 ±0.5 (max) 667
Khan et al. [29] FBG / WDM 4 (MCF) / no central Straight Frenet-Serret 108 6 18 2D / 3D 1.05 (max) NA
Roesthuis et al. [18] FBG / WDM 3 outer / no central Straight Frenet-Serret 90 4 3 2D 1.14 (mean) 30
Kim et al. [15] FBG / WDM 3 outer / no central Straight Constant curvature 150 NA NA 3D 0.53 (max) NA
Wang et al. [30] FBG / WDM 4 outer / no central Straight Frenet-Serret 200 5 50 3D 15.00 (mean) NA
Moore et al. [2] FBG / OFDR 3 (MCF) / no central Straight Frenet-Serret 1100 111 10 3D 31.06 (max) 14.3
Roesthuis et al. [4] FBG / WDM 3 outer / no central Straight Constant curvature 90 4 30 2D / 3D 1.66 (max) 15

• twist compensation: initially constrained to remain con-
stant, and then compensated (in general, shape sensors
cannot measure twist independently).

• reconstruction algorithm: optimization of the recon-
struction algorithm to take additional effects into ac-
count (e.g. reconstruction method, interpolation, etc.).

All of the previously outlined factors are discussed in
this paper. Different ways to estimate and compensate for
their effects are proposed and validated. This paper provides
the following contributions: 1) an approach for fiber inte-
gration into a catheter that assures improved performance
and robustness, 2) a two-step calibration method to mea-
sure intrinsic twist and compensate for it, 3) the use of
a new approach for spatial curve reconstruction based on
the Helical Extension Method (HEM) [31], 4) a method for
parameter identification based on trust-region optimization,
and 5) validations on diverse 2D and 3D shapes for static and
dynamic configurations with ground truth data. The work in
this paper focuses mainly on multi-core fibers. However, it
can be readily extended to a plurality of single core fibers
having similar geometrical configurations.

This paper is structured as follows: Section II covers the
basic principles of FBG strain sensing and the algorithm
used for shape reconstruction. Section III discusses the
main factors that contribute to shape accuracy, and proposes
mitigating solutions. The experimental setup and methods
are elaborated in Section IV, while Section V discusses
the experimental results. Finally Section VI gives some
concluding remarks and possibilities for future work.

II. BASIC PRINCIPLES AND RECONSTRUCTION
ALGORITHM

The main principle behind shape reconstruction with FBGs
is strain sensing. This is because the strain ε can be used to
find the curvature κ based on the well-known relation:

ε = −κy, (1)

where y is the distance from the neutral bending plane. This
is of course assuming symmetry about the bending plane, no
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Fig. 1. a) cross-sectional view of a 4 core MCF where λi represents the
wavelength in the ith core, θi is the angle between the x-axis and the ith
core measured counter-clockwise, r is the distance between the center of
the ith core and the fiber’s central axis, and θb is the angle of the bending
plane with respect to the x-axis, b) isometric view of a short segment with
four cores and two FBG sets separated by a grating center-to-center distance
of lz , c) reconstruction algorithm flowchart.

twisting (warping) and no buckling. FBGs detect variation of
strain based on the change of periodicity and refractive index
of the grating. The Bragg wavelength λB is the wavelength of
the light that is reflected back from the grating. The change in
strain can be a mechanical strain ε, or thermal expansion due
to a temperature change ∆T . Considering small temperature
shifts, the change in Bragg wavelength can be expressed as:

λB − λB0

λB0

=
∆λB
λB0

= Sε∆ε+ ST∆T , (2)

where λB0 is the grating’s unstrained Bragg wavelength, ∆ε
is the change in strain with respect to the unstrained state,
and Sε and ST are the strain and temperature sensitivity
coefficients, respectively. Multi-core fibers (MCFs) normally
contain a central core that coincides with the fiber’s neutral
axis, in addition to a number of symmetrically positioned
outer cores (see Fig. 1). Gratings located within the central
core are only sensitive to strain due to axial loading and



temperature fluctuations; they are not sensitive to bending as
the neutral axis will not be affected by it. If axial strain is
negligible, then the change in wavelength due to temperature
change can be simply known by measuring the wavelength
shift in the central core (∆λB,1). For the outer cores, the
temperature contribution ST∆T is thus known from the
central core, and (2) can be rewritten as:

∆εi =
∆λB,i
SελB0,i

− ∆λB,1
SελB0,1

. (3)

A. Strain, Curvature and Bend Angle

If twist and axial strain are assumed to be negligible, at
least two unique strain measurements at different locations
along the fiber’s cross-section are required to determine the
curvature and its direction (direction of the bending plane
θb). The relationship between the the strain in each core εi
and the corresponding curvature κ can be obtained from the
geometry as depicted in Fig. 1:

εi = −κr sin(θb − 3π/2− θi), (4)

where r is the distance of the outer cores to the central
core assuming a symmetrical configuration (i.e. r is equal
for all outer cores), and θi is the angle of the ith core with
respect to the x-axis as shown in Fig. 1. As can be seen from
(4), the two unknowns are curvature κ and bend angle θb.
Hence only two outer core strain measurements are needed
to solve for them. However, additional cores can be used to
improve the result and reduce errors. A closed-form solution
can be obtained for the curvature κ and the bend angle θb
by defining an apparent curvature vector κapp [32]:

κapp = −
N∑
i=1

εi
r

cos θiî−
N∑
i=1

εi
r

sin θiĵ, (5)

κ =
2|κapp|
N

, (6)

θb = 6 κapp, (7)

where î and ĵ are the unit vectors along the x- and y-axes
respectively, N is the number of outer cores, and 6 represents
the vector angle. The bend angle θb in (7) is obtained using
the atan2 function. This is used to limit the angle to the
bounded interval [−π π]. If a MCF contains n FBGs located
at discrete intervals along its axis, (6) and (7) have to be
computed n times. This results in a set of curvatures κ[n]
and a set of bend angles θb[n] along the fiber’s length.

B. Shape Reconstruction

Shape reconstruction begins from a set of measurements
of the discrete FBG wavelengths λ[n]. A vector of reference
wavelengths λ0[n] must be obtained a priori (for all sen-
sor sets), and represents the unstrained Bragg wavelengths,
i.e. λ0[n] = λB0

[n]. The common mode is obtained by
reading the wavelength of the central core λc[n], which is
consequently subtracted from λ[n] and λ0[n]. Hence, the
compensated wavelengths are λcomp[n] = λ[n]− λc[n], and

λcomp,0[n] = λ0[n]− λ0,c[n]. The strains in the outer cores
εi[n] are obtained by replacing λcomp[n] and λcomp,0[n]
into (3). The apparent curvature vector κapp[n] can then be
obtained by substituting εi[n] into (5). Finally, the curvatures
κ[n] and bend angles θb[n] are computed through (6) and (7),
respectively.

A continuous and differentiable space curve can be defined
by its curvature κ(s) and torsion τ(s) profiles, where s is
the arc length variable. The torsion τ(s) is defined as the
rate of change of the bend angle θb with respect to the arc
length, i.e. τ(s) = dθb

ds . The curvature and torsion profiles
define how the curve’s tangent T , normal N , and binormal
B unit vectors evolve along its length. This is mathematically
defined using the differential Frenet-Serret formulae [33].
The differences in bend angles θb[n] are computed to obtain
∆θb[n − 1], which is wrapped in the bound [−π π] to give
a sense of rotation. To find the nth bend angle difference,
∆θb[n−1] is extrapolated to obtain ∆θb[n], which is finally
divided by lz to obtain τ [n]; where lz is the distance between
consecutive FBGs. The discrete curvatures and torsions are
then interpolated in order to improve shape estimation and
obtain a quasi-continuous distribution along the fiber’s arc
length s, κ[n] → κ(s) and τ [n] → τ(s). The continuity
of the interpolation is only guaranteed by the method used.
Finally, the differential Frenet-Serret formulae are solved
to obtain the evolution of the TNB frame. The Cartesian
position Cs(s) can be obtained by integrating:

Cs(s) = Cs,0 +

∫ l

0

T (s)ds, (8)

where Cs,0 is the Cartesian coordinate of the curve’s base
and l is the interrogated length. A variety of methods can be
used to solve (8). This will be further discussed in Section III
where HEM is introduced. Figure 1(c) illustrates a summary
flowchart of the reconstruction algorithm.

III. CONTRIBUTORS TO SHAPE ACCURACY

A plurality of factors, discussed next, affect the recon-
structed shape accuracy.

A. Interrogation Method

WDM and OFDR are the most popular interrogation
methods used nowadays. OFDR can be used for regular
Telecom or FBG inscribed fibers, while WDM is restricted
to the latter. When speaking of spatial resolution, OFDR
can provide extremely high spatial resolutions, as high as
10 microns [34], [35]. The downside is that it becomes
hard to reach fast refresh rates. WDM can interrogate FBGs
that typically have a minimum spacing of 10 mm. The
spatial resolution is thus worse, but the aquisition speed
is much higher (≈ 1 kHz), which is suitable for real-
time applications. While OFDR is the preferred technique
to achieve high spatial resolution, its higher commercial
cost [36], typically low SNR [10] and lower wavelength
measurement accuracy are disadvantages in comparison to
WDM-based interrogators.
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Fig. 2. Schematic illustrating the proposed method to integrate a fiber
within a flexible structure, such as a catheter.

B. Fiber Integration

Figures 2, 3(a) and 3(b) show the proposed integration
method of an MCF into a conventional catheter. For steerable
catheters, normally one or more tendons are used to control
the amount of bending of the catheter’s tip. An inner working
channel may or may not exist, depending on the catheter’s
desired function. The fiber’s centerline is ideally coaxial with
the catheter’s centerline, but can be placed at an offset if the
offset is known and constant throughout the length of the
fiber. The offset can be accounted for in the reconstruction
algorithm. The following design guidelines are proposed:

a) the spacing between the MCF and the inner lumen of
the catheter must be reduced to a minimum. This can be
done by incorporating a tube to fill in the extra space within
the lumen. It is preferable to have the tube internally coated
with a low-friction material to reduce traction as such may
induce transverse stresses on the MCF.

b) a strong fixation, or preferably two, are made at the
MCF’s base. These can be made using adhesives such as
epoxy, fiber ferrules, or other non-destructive methods. The
most distal fixation from the base is used to hold the MCF in
position, while the proximal fixation is used to prevent exter-
nal forces from affecting the base grating. The base grating
must be completely decoupled from external disturbances to
maintain directionality and is therefore placed at a distance
∆xprox from the most distal fixation point. ∆xprox depends
on the catheter/MCF configuration. In practice, a value ≥ 15
mm was found to work well.

c) the MCF’s base must be rigidly attached at a location
where its tip is at an amount ∆xdist from the edge. This
extra space at the tip helps to prevent it from ever having
contact. MCF tip contact has proven to significantly alter
back reflections and disrupt wavelength measurements. Ide-
ally ∆xdist must be always > 0 mm. A value larger than
1-2 mm was found to work well in practice.

C. Twist Compensation

Fiber twist, i.e. rotation of the fiber’s material frame
about the longitudinal axis, has always been a considerable
issue in fiber-based shape sensing; regardless of the fiber
configuration or interrogation method. The reason for this is
the much lower sensitivity in sensing strain due to twist εt,
also known as torsional strain, even for considerable twist
angles. Therefore, in the vast majority of implementations,
the fiber is integrated in such a way as to prevent twist.
Standard catheter bodies exhibit a high torsional to bending
stiffness ratio, which means that they can easily bend, but
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Fig. 3. a) catheter tip with MCF and FBGs inside, b) catheter handle with
MCF inserted into the irrigation channel, c) step one of the calibration, d)
step two of the calibration

not twist. This, to a certain degree, solves the issue of twist
during operation. In addition, a few recent developments
have been proposed to measure twist, e.g. using twisted or
helically wrapped fibers [37], [38]. These techniques offer
promising solutions, but are still in their infancy and require
further work in terms of characterization and optimization to
be used in a practical setting.

Another crucial aspect is the MCF’s internal twist; an
important observation that was made during this work is that
MCF fibers exhibit such intrinsic twist. Even if the fiber is in
an externally unloaded state, or is placed on a plane, a non-
negligible amount of twist will cause - if not compensated
for - the fiber to appear out-of-plane. In this situation, bend
angles θb[n] are not constant, as would normally be expected.
The way to compensate for this twist is discussed in the next
section.

D. Calibration for twist compensation

A simple two-step process is proposed for calibration.
Note that this method also holds for configurations with N
single core fibers, but will require further calibration steps to
account for extra offsets and misalignments [11], [39]. The
calibration process must be performed after the MCF has
been integrated into the catheter. The two steps are illustrated
in Fig. 3(c) and (d), and described in the following: 1) the
interrogated length of the catheter, i.e. the part of the catheter
between the location of the first FBG and the last FBG, is
positioned in a straight line and with no externally induced
forces. It is preferable to perform this step on a horizontal
flat table top. FBG wavelengths are recorded, which will
serve as the reference for the wavelengths λ0[n]; 2) the
interrogated length of the catheter is placed on a flat surface.
The catheter is bent such that the entire interrogated length
is in-plane and under curvature, e.g. κ = 0.16 cm−1. The
exact amount of bending/curvature is not relevant, and does
not have to be constant. In an ideal case, there should be no
twist (i.e. θb[n] = cte.). However, as previously explained,
θb[n] is not constant in reality. The bending angles due to
intrinsic twist θb,t[n] are therefore computed using (7) as
outlined in Section II. Their value is constant and does not
change during operation. The shape reconstruction algorithm
is then modified to compensate for the contribution of the



twist (θb,t[n]) onto the bend angle θb[n] as:

θb,comp[n] = θb[n]− θb,t[n], (9)

where the compensated bending angles θb,comp[n] are then
used to compute the torsion τ [n], instead of θb[n]. Note
that θb,t[n] is stored and used throughout the lifespan of the
catheter.

E. Parameter Identification

The shape reconstruction model relies on a variety of input
parameters. An accurate identification of these parameters is
necessary to obtain accurate shape estimation. It has been
observed that slight deviations in the values of some of these
parameters have conspicuous effects on the final estimation
accuracy. The model’s prominent input parameters are:

1) distance between consecutive FBGs, lz (m)
2) angular offset between consecutive cores, ∆θ (rad)
3) distance between an outer core and central core, r (m)
4) strain sensitivity coefficient, Sε

Most MCF manufacturers report values for these parameters.
However, these are typically averaged values and can differ
from one MCF to another. Henken et al. have presented an
elaborated paper regarding error analysis based on model
input parameters of FBGs [40]. Furthermore, as an example,
it has been observed that a two percent error in Sε can have
significant impact on the final shape accuracy.

The following procedure to have a good estimation of
model parameters is proposed:
1) the catheter, with the embedded MCF, is positioned in
a variety of 2D and 3D shapes with known ground truth.
Ground truth can be obtained through various ways such
as bi-plane imaging, electromagnetic (EM) tracking, 3D
printed moulds with known shapes, etc. Hence, for each
configuration, there will be a ground truth curve Cs,gr(s).
2) an optimization problem is defined that minimizes the
objective cost function C(Θ):

C(Θ) =

k∑
i=1

max(d(Cs,gr(s, k)− Cs,rc(s, k,Θ))), (10)

for Θ subject to
Θ = [∆θ, r, Sε],

∆θmin ≤ ∆θ ≤ ∆θmax,

rmin ≤ r ≤ rmax,
Sε,min ≤ Sε ≤ Sε,max,

where k is the index of the kth configuration, Θ is the vector
of the model input parameters to be optimized, Cs,rc(s, k,Θ)
is the reconstructed curve based on the optimization parame-
ters Θ, and d(Cs,gr(s, k)−Cs,rc(s, k,Θ)) is the Euclidean
distances vector between every point on Cs,gr(s, k) to the
closest point on Cs,rc(s, k,Θ). Note that the base frames
of the ground truth curve Cs,gr(s, k) and the reconstructed
curve Cs,rc(s, k,Θ) are normally non-coincident. Hence, a
rigid transformation using the Iterative Closest Point (ICP)

algorithm followed by a brute-force translational perturbation
are performed to align both curves [41].

The distance between consecutive FBGs lz was not con-
sidered in the optimization problem. The reason for this
is because lz can be more easily controlled during fiber
manufacturing, and its value is normally given precisely.
While there exist many optimization algorithms, the trust-
region reflective optimization algorithm [42] was employed
for this problem.

F. Reconstruction Algorithm

Three modifications to the introduced reconstruction algo-
rithm are proposed to improve shape accuracy. These are:
1) addition of twist compensation, 2) solving the differential
Frenet-Serret equations and reconstructing the spatial curve
(8) using the Helical Extension Method (HEM) [31], and 3)
analysing different interpolation techniques and employing
the one with the best performance. The first modification
has already been elaborated previously.

Lim et al. [31] have proposed HEM as an alternative
method to determine a three-dimensional space curve given
its curvature and torsion profiles. While the conventional
approach to solve the differential Frenet-Serret equations
utilizes methods such as the crude Euler method and the 4th

order Runge-Kutta, HEM constructs a helical arc segment
between consecutive points. The helix parameters such as
radius and height are obtained from the curvature and torsion
at that point. Lim et al. claim that their method has proven its
enhanced performance and computational ease with respect
to other conventional methods, e.g. Euler and Runge-kutta.
Finally, four different interpolation techniques: cubic spline,
piecewise cubic hermite interpolating polynomial (PCHIP),
k-nearest neighbour, and linear were analysed for the in-
terpolation of the discrete curvature κ[n] and torsion τ [n]
profiles.

IV. EXPERIMENTAL SETUP

A seven-core MCF with an outer diameter of 200 microns
from FBGS International (Geel, Belgium) was embedded
into the irrigation channel of an 8 Fr ablation catheter
from BiosenseWebster (Irvine, CA, USA), and fixed into the
channel using epoxy (see Fig. 3). Three adjacent outer cores
with a core separation angle ∆θ = π/3 were used. Note that
expressions (4) and (5) are still valid for this configuration
as they apply for general cases. The MCF contained 18
FBGs with distance lz = 10 mm, and was interrogated using
the WDM-based FBG-Scan 804D interrogator from FBGS
International (Geel, Belgium). The measurement rate was set
at 100 Hz. The fiber parameters reported by the manufacturer
were Θorg = [1.047, 3.75e-5, 0.777].

A. Static tests

A total of six 2D and six 3D shapes were prepared to
obtain ground truth curves Cs,gr(s, k) (see Fig. 4). Three
shapes were used for parameter optimization and three for
validation. The 2D shapes were obtained by creating grooves



a)

b) d)

c)

Fig. 4. a) plate with groves for 2D validation, 3D printed tubes for 3D
validation, and a rigid 3D printed sheath, b) catheter inserted into a 3D
printed tube and submerged into a hot water bath, c) catheter with EM sensor
at the tip inserted into a pre-bent 8 Fr sheath from BioSense Webster, d)
catheter with EM sensor at the tip inserted into the rigid 3D printed sheath

as mathematical functions within a plate. For 3D shapes, cus-
tom 3D printed tubes with predefined mathematical functions
were manufactured. The inner diameter of these tubes was
3 mm. The arc lengths of the 2D and 3D shapes were all
170 mm long, which coincides with the interrogated length
of the catheter. The mathematical curves used were chosen
to exhibit diverse curvature and torsion profiles. Practically,
the maximum curvature κ and torsion τ values obtained were
0.675 cm−1 and 1.500 rad·cm −1, respectively. Theoretically,
the maximum curvature can be calculated using (3) and (4)
and taking ∆λB as the maximum permissible wavelength
shift.

The fiber was integrated into the catheter and calibrated
using the methods proposed in Section III. For 2D tests,
the interrogated length of the catheter was placed into the
grooves of the plate. For 3D shapes, the catheter was inserted
over the same length into the 3D printed tubes. For each con-
figuration, the MCF wavelengths were recorded and used in
the optimization, and max(d(Cs,gr(s, k)−Cs,rc(s, k,Θ)))
was computed. Experiments for 2D and 3D shapes were
repeated five times per configuration, which yielded a total
of 30 trials for optimization, and 30 trials for validation.

The effect of temperature variation was also investigated.
This was done by submerging the catheter - which was
embedded within a 3D printed shape - into a hot water bath
after which it was left to cool down to room temperature
(see Fig. 4(b)). The catheter tip position and temperature
were monitored throughout the experiment.

B. Dynamic tests

Four tests were carried out to characterize the dynamic
behaviour; namely, the effect of: 1) longitudinal catheter
rotation, 2) repeatability, 3) tendon actuation, and 4) dynamic
catheter movement were investigated. Catheter rotation was
investigated by inserting the catheter into an 8 Fr pre-bent
BioSense Webster sheath, as shown in Fig. 4(c). An EM
sensor was fixed to the catheter’s tip. The catheter was then
rotated and tip positions were measured for different rotation
angles. Similarly, repeatability was investigated by inserting
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Fig. 5. Maximum distance errors between ground truth and reconstructed
curves using original and optimized model parameters.

the catheter into and out of the same sheath. The catheter
was always brought back to the same reference point, and
variations in tip position were computed. The effect of tendon
actuation was investigated by again inserting the catheter
into the sheath. The flexible actuated part of the catheter
was left protruding out of the sheath. An EM sensor was
attached at the tip. The catheter tip was actuated back and
forth several times using the steering knobs. The tip position
computed from the shape reconstruction was compared to
the tip position returned by the EM sensor data.

A 510 mm long PLA rigid tube with an inner diameter
of 3 mm was 3D printed to resemble a sheath with known
ground truth shape. The sheath was not internally lubricated,
i.e. the inner surface was left rough. The effect of dynamic
catheter movement was investigated by manually moving
the catheter through the sheath. The reconstructed shape at
given temporal intervals was compared with the shape of
the sheath. Maximum distance errors were then computed.
Data was gathered every 0.025s, but was down-sampled to
0.5s intervals for post-processing. The catheter had an EM
sensor attached to the tip to compute the speed of the tip.

V. RESULTS

A. Static tests and algorithmic results

1) Optimization, twist compensation and temperature:
The optimized parameters were found to be Θopt =
[1.039, 3.80e-5, 0.737]. Results show a distinguishable
variation in model parameters, especially for the strain sen-
sitivity coefficient Sε where the change was around 5.2%.
Figure 5 shows the comparative result for shape accuracy
using original parameters versus optimized parameters, with
and without twist compensation. First, it can be seen that
twist compensation greatly improves accuracy, reducing the
maximum error from 10.43 mm to 4.37 mm with mean errors
of 2.33 mm and 0.85 mm, respectively. Second, parameter
optimization further improves the accuracy which yields a
maximum error of 2.52 mm with a mean error of 0.70 mm.
Third, as can be seen in Fig. 5, it is clear that the optimized
parameters also perform well for shapes excluded from the
optimization (dataset 2). The clear improvement in accuracy
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signifies that proper calibration and twist compensation can
indeed greatly improve shape accuracy.

Figure 6(a) shows the variation in catheter tip position
magnitude versus temperature. The water bath temperature
decreased from around 60◦C, which is higher than the
average human body temperature, to 30◦C. Throughout this
temperature decrease, the maximum position variation was
0.29 mm. This indicates that external temperature effects
are uniform throughout the fiber cores, and that it plays a
negligible role in the final shape reconstruction.

2) HEM, interpolation and computational time: A com-
parison of the reconstructed curve has also been made using
HEM and the conventional 4th order Runge-Kutta method.
The maximum distance error between the two methods was
comparable. However, the RMS of maximum distance errors
dropped from 1.53 mm for Runge-Kutta to 1.40 mm for
HEM (≈ 8.5% drop). Using HEM for reconstruction, four
different interpolation techniques were applied and com-
pared: cubic spline, PCHIP, k-nearest neighbour, and linear.
The maximum distance errors, in mm, for these interpolation
techniques were: 2.52, 2.57, 2.71, and 2.82, respectively.
While the differences are not large, it was found that cu-
bic spline interpolation yields the best performance. The
computational time for all interpolation methods averaged
around 0.0143s (maximum peaks were around 0.018s). There
was no notable difference in computational time between the
different interpolation methods. c++ code was used to run
the reconstruction algorithm on a 64-bit operating system
with 32 GB of RAM and a 2.60 GHz processor.

B. Dynamic tests results

1) Rotation and twist: Catheter rotation was investigated
to observe the effect on shape accuracy and whether rotation
induces further twist within the fiber. Figure 6(b, i) illustrates
that the orientation of the shape reconstruction changes with
angular rotation, which is a logical result. The TNB frame
of the spatial curve is fixed while the bend on the catheter
changes; hence the direction of the reconstructed curve
should change. Figure 6(b, ii) shows the different curves
from different angular rotations. After registration, all the
curves coincide and show a maximum tip deviation of 0.36

mm. This is an important result as it indicates that external
twist is negligible due to: a) the catheter’s high torsional
stiffness; even without lubrication which is normally present
due to the patient’s blood, and b) the freedom of the fiber
within the catheter, such that twist of the catheter does not
necessarily result in fiber twist.

2) Repeatability: As can be seen from Fig. 6(c), the
catheter shape demonstrates excellent repeatability ±0.82
mm (standard deviation) and a maximum variation of 2.84
mm was found. Since the experiment was carried out in a
real medical sheath with a pre-bend, and without internal
lubrication, the results are highly likely to be reproducible
in real-life interventions.

3) Tendon actuation: Standard ablation catheters have
separate channels for tendon actuation. Due to the isolation
between the MCF and the tendons, it is expected that the
catheter shape reconstruction caused by tendon deformation
would be similar to the one from external deformation. This
behaviour is confirmed in Fig. 6(d). The tip trajectory based
on MCF shape reconstruction matches the one from the EM
sensor with a maximum deviation of 2.1 mm, which is lower
than some of the highly curved static shape deformations.
This indicates adequate shape reconstruction during tendon
actuation, and that the tendons exert negligible pressure and
strain on the fiber.

4) Catheter in sheath motion: Figure 6(e) depicts max-
imum distance errors between the dynamic catheter shape
and the sheath. On average, the maximum distance error
is ≈ 2.5 mm, which is similar to the static case. In cases
where there are sharp bends and highly compressive forces,
the distance errors can go as high as 21.2 mm. These errors
however, could be mitigated by applying lubrication within
the sheath, and using an MCF with larger FBG wavelength
spacing to allow for large curvatures and avoid wavelength
peak overlap in the reflected spectrum.

VI. CONCLUSIONS

In this paper, different factors that affect shape reconstruc-
tion were elaborated. It was shown that proper integration
of the MCF within the catheter can significantly increase



the estimation accuracy. Furthermore, compensation of in-
trinsic fiber twist has shown to significantly improve shape
accuracy. Aspects such as proper calibration, parameter iden-
tification, and algorithm optimization have been discussed,
and mitigating solutions provided. A characterization of the
MCF-embedded catheter in diverse quasi-realistic static and
dynamic configurations was provided. The performance in
all these situation was validated. For static shapes, mean and
maximum spatial errors were 0.70 mm (0.41%) and 2.52 mm
(1.48%) respectively, and similar for dynamic cases. Future
work will focus on in-vivo testing.
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