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Abstract— The estimation and management of motor temper-
ature are important for the continuous movements of robots.
In this study, we propose an online learning method of thermal
model parameters of motors for an accurate estimation of motor
core temperature. Also, we propose a management method of
motor core temperature using the updated model and anomaly
detection method of motors. Finally, we apply this method to
the muscles of the musculoskeletal humanoid and verify the
ability of continuous movements.

I. INTRODUCTION

Managing motor temperature is important for the con-
tinuous movements of robots. Especially, the equipment
of motors with sufficient specifications is difficult for the
life-sized humanoid robot in order to keep its human-like
proportion and weight. Thus, joint torque must be limited to
keep the motor temperature within the rated value.

Several management methods of motor temperature have
been developed from a variety of perspectives so far. As a
method to manage motor temperature by hardware, a water
cooling method of motors has been proposed [1] and the de-
veloped robot can jump high with a momentary large current.
Also, motor cooling methods using a heat sink, the air, and
phase change materials have been proposed [2]. However,
these additional hardware is limited for the humanoid robots
in order to keep their human-like specifications.

Common methods to constrain joint torque are minimiz-
ing joint torque by optimization [3] and using inequality
constraints to set the maximum value of joint torque when
optimizing [4]. However, because these methods do not
directly handle motor temperature, they cannot guarantee that
motor temperature is lower than the rated value. Although
there is a method estimating motor housing temperature and
moving the center of gravity for thermal relaxation [5] as
an example to directly consider the motor temperature in the
cost function at optimization, the cost function also cannot
guarantee the rated value.

Compared with these methods, Urata, et al. have estimated
motor core temperature from motor housing temperature and
electric current, and developed a method to calculate the
maximum current that can flow during an extremely short
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Fig. 1: System overview.

amount of time, and constrain a current by the maximum
value [6]. Also, Kumagai, et al. have proposed a method
to estimate motor housing temperature and constrain joint
torque by the maximum value which can be applied for 120
seconds [7].

However, there are several problems in the proposed
software methods to control the motor temperature. First, al-
though there are some parameters for the thermal estimation
of motors, among these parameters, the assumption that the
ambient temperature is constant is often wrong. Regarding
motors in the body parts that accumulate heat easily, the
ambient temperature changes dynamically. Also, thermal and
terminal resistances of motors gradually change due to the
poor use of the robot or deterioration over time. Although
identification of thermal model parameters is conducted in
[7], the identification is conducted offline and only motor
housing temperature is considered by simplifying the thermal
model. Second, there is a problem in the control of motor
temperature. The proposed methods so far have restricted
motor output by the maximum current or joint torque that
guarantees the rated value when applying the constant current
or joint torque during a certain period. Because [6] considers
an extremely short amount of time, although it can be applied
to instantaneous motions like a jump, it is not suitable for
ordinary motions. Because [7] does not change the maximum
output dynamically, a value lower than the actual possible
value is used as the maximum value.

Therefore, we propose an online learning method of ther-
mal model parameters for the estimation of accurate motor
core temperature, and the accurate control of the temperature
using the updated model and dynamic optimization. Also,
we conduct anomaly detection of motors using the change
in thermal model parameters. In this study, we verify the
effectiveness by applying this method to the musculoskeletal
humanoid. Because the musculoskeletal humanoid [8], [9]
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TABLE I: Notations in this paper

Notation Definition
c1 motor core temperature [◦C]

cmax
1 maximum motor core temperature to be limited [◦C]
c2 motor housing temperature [◦C]
ca ambient temperature [◦C]
f muscle tension [N]

f limit maximum muscle tension to be limited [N]
lre f target muscle length [mm]
∆l muscle elongation value [mm]
•k the value at the time step k

•[k f rom,kto] the value sequence at the time steps from k f rom to kto

P{1,2,3,4,5} thermal parameters to be updated
P{1,2,3,4,5},sim thermal parameters of simulated muscle actuator

𝑅1 𝑅2Q
𝑐1 𝑐2

𝐶1 𝐶2 𝑐𝑎

core housing outside

Fig. 2: Overview of a basic two-resistor thermal model.

mimics the human body in detail and has many muscles, the
restrictions of weight and proportion are strict, and air or
water cooling of motors is difficult to apply (on the other
hand, there is a study on sweating robots [10]). Since the
improvement of hardware is difficult, thermal restriction by
software is suitable. The actuator of the musculoskeletal
humanoid used in this study is not a pneumatic actuator but
a motor which winds a muscle wire by a pulley. When ap-
plying this study to ordinary axis-driven humanoids, muscle
tension should be converted to joint torque.

The contributions of this study are shown below.
• Online learning of thermal model parameters for an

accurate estimation of motor core temperature
• Dynamic calculation of maximum output of motors

using the updated thermal model and optimization
• Anomaly detection of motors using the change in ther-

mal model parameters
• Verification of continuous motions of the musculoskele-

tal humanoid by applying this method to a muscle
length-based control

II. PROPOSED METHOD

First, we will explain a basic two-resistor thermal model
to estimate motor core temperature. After that, we will
construct a model with thermal parameters as variables, and
explain thermal estimation of motors, online learning of the
thermal parameters, anomaly detection of motors, calculation
of maximum output, and control method to restrict muscle
tension. The entire system and corresponding sections are
shown in Fig. 1, and notations are shown in Table. I.

A. Basic Thermal Model

In this study, we use a two-resistor thermal model as
shown in Fig. 2, which is the same model as stated in [6].
This model is applicable to various classical motors such as
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Fig. 3: Difference of transition of c2 when applying f = 200
[N] between new and old motors

brushless and brushed DC motors. We assume heat capacity
C1,C2 for motor core and housing, thermal resistance R1
between motor core and housing, and thermal resistance R2
between motor housing and ambient temperature. There is a
relationship among c1, c2, and ca, as shown below,

C1
dc1

dt
= Q− c1− c2

R1
(1)

C2
dc2

dt
=

c1− c2

R1
− c2− ca

R2
(2)

Q = Rei2 (3)

where Re is a wire-wound resistance and i is an electric
current that flows through the motor core. Also, in order
to apply this model to the musculoskeletal humanoid, we
convert i to f by the equation below,

Dpulley f = EgearDgearEmotorKt i (4)

where Kt is a torque constant, E{motor,gear} is a transmission
efficiency of the motor or gear, Dgear is a gear ratio, and
Dpulley is a radius of the pulley. We organize Eq. 1 and Eq. 2
with K =Re(Dpulley/(EgearDgearEmotorKt))

2, as shown below,

ċ1 =
K
C1

f 2− c1− c2

R1C1
(5)

ċ2 =
c1− c2

R1C2
− c2− ca

R2C2
(6)

where ċ{1,2} represents dc{1,2}/dt. c1 can be calculated by
discretely repeating the recurrence relations of Eq. 5 and
Eq. 6. Also, in the usual case that c2 can be obtained
from a thermal sensor attached to motor housing, c1 can
be calculated just by repeating Eq. 5.

However, the actual thermal parameters are different from
the parameters obtained from datasheets. This is considered
to be because of heat dissipation to the attached metal parts,
error of the ambient temperature, deterioration or burnout of
motors, etc. As one example, we compared a new motor and
an old motor used for over half a year, whose rotation is
inferior. We show the difference of the transition of c2 when
applying f = 200 [N] over 90 seconds in Fig. 3. c2 of the
two motors were different by about 15 ◦C in 90 seconds.
Because c1 is more sensitive than c2, a larger difference
must be generated. Thus, the thermal model should always
be updated, and we propose the method below.



B. Proposed Thermal Model

We construct a model shown below, by setting the param-
eters in Eq. 5 and Eq. 6 as variables,

ċ1 =W1exp(P1) f 2− c1− c2

W2exp(P2)
(7)

ċ2 =
c1− c2

W3exp(P3)
− c2−W5(1+P5)

W4exp(P4)
(8)

where W1 = K/C1, W2 = R1C1, W3 = R1C2, W4 = R2C2, and
W5 = ca. P{1,2,3,4,5} are parameters updated in this study,
and exp(·) is an exponential function. The reason why
the exponential function is applied to P{1,2,3,4} is because
W{1,2,3,4}exp(P{1,2,3,4}) must be positive. When P{1,2,3,4,5} =
0, this model is equivalent with Eq. 5 and Eq. 6. We can
interpret P1 as a coefficient to determine the quantity of heat
from the current, P2 as a time constant of heat escaping
from the motor core to the motor housing, P3 as a time
constant of heat flowing in the motor housing from the motor
core, P4 as a time constant of heat escaping from the motor
housing to the ambient, and P5 as a coefficient expressing
the ambient temperature (W5(1+P5) expresses the updated
ambient temperature).

We can simply express this model by using the function
of h1 and h2, as shown below.

ċ1 = h1( f ,c1,c2) (9)
ċ2 = h2(c1,c2) (10)

In this study, we update P{1,2,3,4,5} to match the actual
parameters of the robot online for the accurate thermal
estimation and control using Eq. 9 and Eq. 10.

C. Thermal Estimator: Estimation of Motor Core Tempera-
ture

In this study, as a common configuration of motors,
we assume that a thermal sensor is attached to the motor
housing. In this case, a method to estimate c1 is simple. We
determine an update interval ∆test and estimate c1 as below,

c1,t+1 = c1,t +h1( ft ,c1,t ,c2,t)∆test (11)

where {c1,c2, f}t is {c1,c2, f} at the current time step t.
In this study, we set ∆test = 0.02 [sec].

D. Online Learning of Thermal Model

By using the obtained sensor data of c2 and f , we update
P{1,2,3,4,5}.

First, we accumulate sensor data. We set the interval
of data accumulation ∆tdata, the number of sequences of
one batch Nseq, and the batch size Nbatch. We accumulate
{c1,c2, f}data which is Nseq consecutive data of {c1,c2, f} at
intervals of ∆tdata. Because c1 cannot be directly obtained,
we accumulate its estimated value explained in Section II-C.
We accumulate the batch of Nseq number of {c1,c2, f}data,
and begin to update the thermal model when the number
of the batches exceeds Nbatch. After finishing the update of
the thermal model using Nbatch number of data batches, we
remove the first of Nbatch batches, and update the model

when the number of batches exceeds Nbatch again. These
procedures are repeated online.

Next, we will explain the details of the online model
update. Although we use only Eq. 9 for the estimation of
c1, we can also estimate c2 by Eq. 10 at the same time. By
comparing the estimated c2 and the actual obtained c2, we
can update P{1,2,3,4,5}. Among the accumulated data sequence
of {c1,c2, f}data

[k,k+Nseq−1], first we pick out cdata
1,k , cdata

2,k , and
f data
[k,k+Nseq−1]. As c1,k = cdata

1,k , c2,k = cdata
2,k , and f[k,k+Nseq−1] =

f data
[k,k+Nseq−1], we repeat the equation below Nseq−1 times.

c1,k+1 = c1,k +h1( fk,c1,k,c2,k)∆tdata (12)
c2,k+1 = c2,k +h2(c1,k,c2,k)∆tdata (13)

Then, we can obtain c1,[k+1,k+Nseq−1] and c2,[k+1,k+Nseq−1]. We
compare the accumulated data of cdata

2,[k+1,k+Nseq−1] and the data
of c2,[k+1,k+Nseq−1] estimated using the current parameters, by
the equation below,

Lupdate = MSE(c2,[k+1,k+Nseq−1],c
data
2,[k+1,k+Nseq−1]) (14)

where MSE represents mean squared error. Then, we up-
date P{1,2,3,4,5} from this loss function by backpropagation
through time [11], as shown below,

P{1,2,3,4,5}← P{1,2,3,4,5}−α
∂Lupdate

∂P{1,2,3,4,5}
(15)

where α is a learning rate. This is equivalent to updating
weights of a neural network that represent parameters of
the thermal model by a gradient descent method. Here,
these parameters are actually updated using the average of
the gradient calculated from the Nbatch data. Also, we set
the maximum norm of the gradient as Dclip by a gradient
clipping method [12].

The problem of this method is that cdata
1,k is not the actual

sensor data but the estimated value. However, the change in
c2 is not very sensitive to the initial value of c1, and from the
subsequent experiments, we can verify that the parameters
can be updated correctly.

In this study, we set ∆tdata = 1.0 [sec], Nseq = 30, Nbatch =
10, α = 0.02, and Dclip = 5.0. These parameters are set
from preliminary experiments to quickly converge the online
update and not to exceed the time limit.

E. Anomaly Detection of Motors

In this study, because the updated P{1,2,3,4,5} have physical
meanings, we can conduct anomaly detection using the
change in these parameters. This is the difference from a
neural network whose parameters are difficult to interpret.
We regard the current situation as anomaly simply when the
value g shown below exceeds a threshold Ddetect ,

g = RMSE([P1,P2,P3,P4]
T , [Pinit

1 ,Pinit
2 ,Pinit

3 ,Pinit
4 ]T ) (16)

where Pinit
{1,2,3,4} is P{1,2,3,4} at the start of the experiment,

and RMSE represents root mean squared error. Because P5
is a parameter of the ambient temperature and can always
change, we do not use it for g. Also, when executing online
learning for the first time, we start with P{1,2,3,4} = 0, and



P{1,2,3,4} can change greatly. Therefore, anomaly detection
should be executed after the parameters are firmly updated
once. Also, one of the simplest methods of anomaly detection
is displaying and monitoring these four parameters at all
times.

In this study, we set Ddetect = 1.0.

F. Thermal Controller: Control of Motor Core Temperature

The thermal controller is a control to calculate the smooth
sequence of maximum muscle tension f limit to rapidly
achieve the maximum motor core temperature cmax

1 and to
restrict motor output by this value. In this section, we will
only explain the optimization part. We set the time interval
∆tcontrol and the number of sequences to consider Ncontrol .
Then, we optimize the sequence of f during Ncontrol∆tcontrol
seconds to achieve cmax

1 as rapidly as possible.
First, we represent the current estimated c1 as ccurrent

1,t , and
c2 obtained from the thermal sensor as ccurrent

2,t . Also, we de-
termine the sequence of f before optimization f limit

[k,k+Ncontrol−1].
By setting c1,k = ccurrent

1,k , c2,k = ccurrent
2,k , and f[k,k+Ncontrol−1] =

f limit
[k,k+Ncontrol−1], we repeat the recurrence relations below

Ncontrol−1 times.

c1,k+1 = c1,k +h1( fk,c1,k,c2,k)∆tcontrol (17)
c2,k+1 = c2,k +h2(c1,k,c2,k)∆tcontrol (18)

Then, we can obtain c1,[k+1,k+Ncontrol−1] and
c2,[k+1,k+Ncontrol−1]. We calculate the loss between
cmax

1,[k+1,k+Ncontrol−1], which is a vector in which Ncontrol
numbers of cmax

1 are arranged, and the estimated
c1,[k+1,k+Ncontrol−1] as below,

Lcontrol = MSE(c1,[k+1,k+Ncontrol−1],c
max
1,[k+1,k+Ncontrol−1])

+WcontrolMSE(0, f limit
[k,k+Ncontrol−1]) (19)

where Wcontrol is a constant weight. By adding the minimiza-
tion term of f limit , the transition of f limit optimized from
Lcontrol becomes smooth, and the stability of optimization
increases. Although the term minimizing the difference of
f limit at adjacent time steps is suitable for the purpose of this
study, we found that the term destabilizes the optimization
from preliminary experiments. By using the loss of Lcontrol ,
f limit
[k,k+Ncontrol−1] is updated by backpropagation through time

[11], as shown below,

f limit
[k,k+Ncontrol−1]← f limit

[k,k+Ncontrol−1]−β
∂Lcontrol

∂ f limit
[k,k+Ncontrol−1]

(20)

where β is a learning rate.
In actuality, we determine the maximum and minimum

value of muscle tension f {min,max} for safety, and restrict
f limit . Also, the initial value of f limit

[k,k+Ncontrol−1] is deter-

mined as [ f limit,T
[k,k+Ncontrol−2], f limit

k+Ncontrol−2]
T by combining the

shifted value of the previously optimized sequence of
f limit
[k−1,k+Ncontrol−2] and its last term. When it is the first time to

optimize and there is no previously optimized value, we use
a value in which is a vector that Ncontrol numbers of f max

are arranged.
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Fig. 4: Muscle actuator configuration in Musashi: sensor-
driver integrated muscle module [14] and miniature bone-
muscle module [15].

In this study, we set ∆tcontrol = 1.0 [sec], cmax
1 = 80 [◦C],

Ncontrol = 30, Wcontrol = 0.001, β = 30 [N], f min = 10 [N],
and f max = 300 [N]. From preliminary experiments, ∆tcontrol
and Ncontrol are set not to exceed the time limit, cmax

1 and
f {min,max} are set within the range of ordinary use, and
Wcontrol and β are set to quickly stabilize the calculation
of f limit .

G. Muscle Tension Limiter

The muscle tension limiter restricts f by the maximum
value of f limit

k calculated by Section II-F. Although we can
set the maximum muscle tension easily when using tension-
based control [13], when using length-based control, we
elongate the muscle length and send lre f +∆lk to the robot
as below, as the muscle does not vibrate,

i f f > f limit
k

∆lk = ∆lk−1 +min(Dgaind−∆lk−1,∆lplusd) (21)
else

∆lk = ∆lk−1 +max(0−∆lk−1,−∆lminusd) (22)

d = | f − f limit
k | (23)

where | · | is an absolute value, ∆l{minus,plus} is a coefficient
to determine the change in muscle length at one time step in
the negative or positive direction, and Dgain is a coefficient
to determine the maximum elongation value. Thus, while
restricting the change in muscle length by ∆lminusd and
∆lplusd, muscle length is elongated or pulled as f does not
exceed f limit

k . By using this control, even when an excessive
muscle length is sent to the robot, the muscle actuator
elongates automatically so that c1 does not exceed cmax

1 .
In this study, we set ∆lminus = 0.001, ∆lplus = 0.003, and

Dgain = 2.0, and this control is executed every 8 msec. These
parameters are set from preliminary experiments to limit
muscle tension quickly and to not vibrate.

III. EXPERIMENTS

We conducted (A) a simulation and (B) actual motor
experiments using one muscle actuator, as well as (C) using
multiple muscle actuators of the musculoskeletal humanoid.

We show the configuration of muscle actuators of Musashi
[9] used in this study: sensor-driver integrated muscle module
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Fig. 5: Transition of errors in thermal model parameters
between simulator and current model during online learning.

[14] and miniature bone-muscle module [15], in Fig. 4.
Maxon brushless DC motor of EC-4pole 22 90W with 29:1
gear ratio is used for the former and EC 16 60W with 128:1
gear ratio is used for the latter. The former is used for the
shoulder and elbow, and the latter is used for the wrist and
fingers. As stated so far, a thermal sensor is attached to the
motor housing. The wire of the muscle is wound by a pulley,
and it comes out from the tension measurement unit, which
can measure f . A motor driver, which can do current control,
is attached to the motor, with a cover.

We describe the default parameters of these muscle actu-
ators. Regarding EC-4pole 22 90W with 29:1 (sensor-driver
integrated muscle module), C1 = 2.10 [J/K], C2 = 29.0 [J/K],
R1 = 1.20 [K/W], R2 = 10.3 [K/W], and K = 2.97E − 4
[J/N2s]. Regarding EC 16 60W with 128:1 (miniature bone-
muscle module), C1 = 1.19 [J/K], C2 = 12.2 [J/K], R1 = 4.30
[K/W], R2 = 39.5 [K/W], and K = 4.50E − 5 [J/N2s]. All
parameters can be obtained from the datasheet of motors.
Only C{1,2} cannot be directly obtained, but these parameters
are approximated by T{1,2}/R{1,2} (T{1,2} are thermal time
constants of motor core and housing). Also, we set ca = 30
[◦C] as a default value.

A. Simulation Experiment of One Muscle Actuator

1) Online Learning: We used a simulator of EC-4pole
22 90W with modified parameters of P1,sim = 0.5,P2,sim =
0.5,P3,sim =−0.5,P4,sim =−0.5,P5,sim = 0.5. We set both the
initial c1 and c2 as 30 ◦C. f was updated by the equation of
f ← f +Rand(−50.0,50.0) every ∆tdata seconds (Rand(a,b)
is a random value in [a,b], and f is limited within [10,200]
[N]), and was sent to the simulator. Only c2 and f can
be observed from the simulator. There is a thermal model
corresponding to the simulator, with default parameters of
P{1,2,3,4,5} = 0. By using this model, c1 is estimated from
the observed c2 and f (the initial value of c1 is 30 ◦C), and
online learning of the current model is executed using the
obtained (c1,c2, f ). This procedure makes the parameters of
the current model closer to those of the simulator. We show
the absolute errors of parameters between the simulator and
current model |P{1,2,3,4,5},sim−P{1,2,3,4,5}| and the transition
of RMSE of these five parameters over 3600 seconds in
Fig. 5. We can see that each parameter of the current model
became closer to that of the simulator, and the transition of
errors converged in about 1200 seconds. Although the error
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of P5 did not decrease to around 0, this is considered to be
because the transition of c2, which is effective in updating
P5, could not be obtained.

Also, after executing online learning over 3600 seconds,
we sent f as stated above again to the simulator, the model
before online learning, and the model after online learning.
The result before online learning is the same with the result
of the previous study [6]. We show the transition of ( f ,c1,c2)
in Fig. 6. The thermal estimation of c1 and c2 after online
learning became closer to that of the simulator compared
with before online learning. Although we used only c2 as a
teaching signal, c1 also became closer to that of the simulator,
and so this method is effective.
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2) Quantitative Evaluation of Online Learning: We con-
structed 10 parameters of simulators P{1,2,3,4,5},sim with ad-
ditional random changes from the default parameters of
P{1,2,3,4,5}. Here, we set the RMSE between default and mod-
ified parameters to 0.5. We show the average and standard
deviation of RMSE of five parameters between the current
model and the simulator with 10 modified parameters every
10 minutes of online learning, when executing the same
experiment with Section III-A.1, in Fig. 7. Here, we consider
the problem explained in Section II-D, that not the actual
but only the estimated c1 can be obtained. Thus, we also
show the difference of errors when using the actual and
estimated c1 as cdata

1 in Section II-D, in Fig. 7. As seen from
the graph, when using the actual c1 as cdata

1 , compared with
using the estimated one, the error decreased rapidly and its
variance was small. On the other hand, although there was
a certain degree of variance, the current model parameters
also gradually became closer to those of the simulator when
using the estimated c1. Also, this result indicates that this
study is applicable to various motors with different thermal
parameters.

3) Anomaly Detection: We executed online learning by
setting parameters of the simulator and current model to
P{1,2,3,4,5},sim = 0. Here, we consider two situations. One is a
situation where the observed c2 is always 30, because of the
broken thermal sensor. Second is a situation where f = 200
is always sent to the simulator although the observed f is
correctly updated, because a gear or muscle wire is caught
and the muscle does not move as intended. We show the
transition of parameter errors |P{1,2,3,4},sim − P{1,2,3,4}| and
g for anomaly detection during online learning for these
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Fig. 9: Calculation of the optimized muscle tension to control
c1 and its evaluation. The graph shows the transition of the
calculated f limit and observed c1 with initial c1 and c2 of 60
or 75.

two situations, in the upper graph of Fig. 8. Also, in the
lower graph of Fig. 8, we show the raw change of P{1,2,3,4}.
Regarding the former of the two situations, an anomaly was
detected after 400 seconds of online learning, and regarding
the latter, it was detected after 600 seconds. When looking
at the values of P{1,2,3,4}, regarding the former, the change
in model parameters to constantly keep c2 = 30 occurred.
This was due to the increase in the heat escaping from the
motor core to the motor housing by making P2 small and
decreasing heat capacity in motor core, and the decrease
in the heat flowing in motor housing from the motor core
by making P3 large and increasing heat capacity in motor
housing. Regarding the latter, by increasing P4 and inhibiting
the escape of heat from the motor housing to the ambient,
a situation in which high c2 is constantly observed due to
f = 200 was produced. Thus, we can detect and interpret
anomalies such as a broken thermal sensor, broken gear, and
burnout of motors by using the interpretability of thermal
model parameters.

4) Thermal Controller: Regarding the model of Section
III-A.1 before and after online learning, when both the
current c1 and c2 are 60 or 75, we observed the calculated
f limit
[k,k+Ncontrol−1]. Also, we compared the transition of c1 when

sending the calculated f limit
[k,k+Ncontrol−1] to the simulator, the

model before online learning, and the model after online
learning. As shown in Fig. 9, regarding both the initial
temperatures of 60 and 75, the calculated f limit is high at
first, gradually decreases, and is finally kept constant. Also,
while c1 achieved cmax

1 accurately when using the model after
online learning, c1 largely exceeded cmax

1 when using the
model before online learning. Thus, online learning of the
thermal model is effective for the thermal controller, and
this method can always keep c1 below cmax

1 .

B. Actual Experiment with One Muscle Actuator

1) Online Learning: We fixed the end position of the
muscle, pulled lre f by Rand(−16,0) [mm] over 10 seconds,
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Fig. 10: Online learning experiment with one actual muscle
actuator. The upper graph shows the transition of the applied
f during online learning, the middle graph shows the transi-
tion of P{1,2,3,4,5}, and the lower graph shows the transition
of the estimated c2 before and after online learning.

elongated it over 10 seconds, and repeated these procedures.
We show the transition of f and P{1,2,3,4,5} during online
learning in Fig. 10. After the online learning, when changing
lre f as stated above again, we compared the obtained c2 from
the actual muscle actuator and the estimated c2 using the
model before and after online learning, in the lower graph
of Fig. 10. After online learning, the estimated value became
closer to the actual sensor value than before online learning.
Although the comparison of c1 is difficult because the actual
c1 cannot be obtained, from Fig. 6 in Section III-A.1, the
estimated c1 is considered to become accurate by making
c2 correct. Therefore, this method is also applicable to the
actual muscle actuator.

2) Thermal Controller: We verified whether c1 can be
always kept below cmax

1 by using the methods of Section II-
F and Section II-G, and the updated model. We fixed the
muscle endpoint, sent -16 mm for lre f , and generated f of
about 200 N. At the same time, by the muscle tension limiter
of Section II-G, f was restricted by f limit . We show the
transition of the observed f , calculated f limit , ∆l, estimated
c1, and observed c2 in Fig. 11. c1 gradually increased by
keeping high f , and f limit began to decrease below f max in
about 70 seconds. In about 90 seconds, f exceeded f limit ,
and f was inhibited by gradually increasing ∆l. We can see
that c1 constantly achieves cmax

1 by this control. Although
f max should be about 100 N in order to keep c1 below cmax

1 ,
by using this study, large f is ordinarily outputted but the
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Fig. 11: Thermal control experiment with one actual muscle
actuator. The upper graph shows the transition of f and
calculated f limit , the middle graph shows the transition of
∆l, and the lower graph shows the transition of c1 and c2.

output can be restricted by watching c1.

C. Application to the Musculoskeletal Humanoid

We consider how this study contributes to movements of
the actual robot, by applying to the muscles of the left arm
of Musashi [9]. While executing online learning, thermal
estimation, thermal controller, and muscle tension limiter, we
sent random joint angles to the robot as shown in Fig. 12.
We moved the robot so that high f is constantly generated by
using variable stiffness control [16]. The important point here
is not only limiting c1 but also displaying the estimated c1
with colors, as shown in Fig. 13. By monitoring c1 updated
accurately by online learning, we can rapidly find anomaly
during experiments. Also, we show the transition of f and
c1 of 10 muscles #1-#10 contributing to the shoulder and
elbow of Musashi, in Fig. 14. The main muscles with high
tension were #1, #2, #6, and #8. Although high f of about
350 N occurred at the initial stage, as c1 increased, the
maximum f was inhibited to about 250 N. Especially, the
c1 of #1, #2, and #6 vibrated around below 80, and we can
see that the continuous movements of Musashi are achieved
by the developed thermal controller. Therefore, this study is
applicable to multiple muscle actuators, and is effective in
movements of the actual robot.

In applying this study to the 36 muscles of both arms
of Musashi, the calculation of the thermal estimator, online
learning, and thermal controller takes 5, 200, and 200 msec,
respectively. By rewriting the current program written in
Python using C++ or modifying parameters of Nseq, Ncontrol ,
and Nbatch, this study can work at a higher frequency.



Fig. 12: Random movements of the left arm of the muscu-
loskeletal humanoid Musashi [9].

Fig. 13: Monitoring of c1 with colors for manual thermal
management. Each value shows c1 included in the left arm
of Musashi. When the value is colored red, the temperature
is high (>70 ◦C), and when the value is colored yellow, the
temperature is slightly high (>50 ◦C).

IV. CONCLUSION

In this study, for smart management of motor temperature,
we proposed an online learning method of thermal model
parameters, estimation of motor core temperature, anomaly
detection of motors, and control of motor core temperature
by optimization. By referring to the observed motor housing
temperature, the thermal model parameters can be updated
online. Anomaly detection is easily enabled by using not a
neural network but explicit parameters of the thermal model.
The time series maximum output to achieve the maximum
motor core temperature can be calculated by backpropa-
gation, and motor core temperature can be managed by
using it. Finally, we verified the effectiveness of this study
in a simulation and in the actual robot, and achieved its
application to the musculoskeletal humanoid.

In the current form, the thermal management can change
the whole-body motion of the robot, and this can cause severe
trouble for walking, task execution, etc. In future works, we
would like to embed the calculated maximum output value
in motion planning.
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