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Abstract— With the development of robotic technology, the
demand for state-of-the-art technology in the field of rehabil-
itation is rapidly increasing for the elderly and people with
disabilities. In this paper, we propose a real-time virtual coach
to assist physical therapists with the end-effector-based robot-
assisted gait training for stroke survivors using Long Short-
Term Memory (LSTM) networks. Our proposed virtual coach
consists of the sensor module for data gathering and dataset
generation, real-time classification of the pathologic patient
gait during the training using LSTM networks, and delivery
of the coaching recommendations in an audiovisual form.
Our preliminary study determined the selection of coaching
recommendations. LSTM networks are trained to provide the
selected coaching recommendations. The performance of the
proposed virtual coach is verified using classification simulation
of an able-bodied person on the rehabilitation robot, G-EO
System. The usability was verified through a satisfaction survey
of five professional physical therapists.

I. INTRODUCTION

Gait training is one of the most significant rehabilitation

trainings to improve the quality of life for stroke survivors.

Motor learning for stroke patients becomes greatly produc-

tive in robot-assisted gait training with real-time feedbacks

such as motion interventions from a professional physical

therapist [1], [2]. A physical therapist strives to successfully

rehabilitate a stroke patient by observing whether the patient

is safely using the robot and doing the intended movement

with it [3]. However, in most cases, stroke survivors learn

unstable and abnormal gait patterns due to muscle weakness

and impaired movement coordination [4].

For the effective rehabilitation of patients, Khokhlova et

al. carried out a study to distinguish normal and patholog-

ical gait using artificial intelligence and image sensors [5].

More specifically, they proposed a Long Short-Term Memory

(LSTM) ensemble model to create an unsupervised gait clas-

sification tool based on computer vision technologies. Also,

LSTM-based human gait stability predictor was presented

using RGB-D and laser range finder data by Chalvatzake et

al. [6]. The prediction algorithm of the stability of the pa-

tient’s center of gravity was developed using an image sensor

and Kalman filter to prevent the patient in the robot from
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falling over. Similarly, pose estimation for the elderly using

Kinect was conducted [7]. Several human gait monitoring

systems based on Inertial Measurement Units (IMU) have

also been developed [8]. These systems have the equivalent

performance of the current golden standard, Vicon, but there

is potential for further development of applications that assist

physical therapists in gait rehabilitation using the results of

monitoring.

In this paper, we propose a real-time virtual coach to assist

physical therapists with robot-assisted gait training using

LSTM networks, which is practically applicable to rehabilita-

tion training. We implemented a real-time virtual coach that

proposes five coaching recommendations based on LSTM

by utilizing time series data of inertial measurement units

that are relatively small compared to image sensor data. Five

LSTM networks were used to provide real-time coaching

recommendations according to the patient kinematics. The

coaching simulation was intentionally used to construct the

LSTM network for gathering training data. The feasibility of

proposed virtual coach including the evaluation of acquired

data and observations of real-time implementation has been

verified by five physical therapists. Therefore, our virtual

coach can assist physical therapists in robot-assisted gait

training in practice.

This paper is organized as follows. In Section II, we briefly

highlight the implications of previous studies conducted by

the National Rehabilitation Center (NRC) in the Republic

of Korea. The concept of the proposed virtual coach is also

presented in Section II. In Section III, the implementation of

the proposed virtual coach is presented in detail. The imple-

mentation result of the proposed virtual coach is presented

in Section IV. Five physical therapists were interviewed for

the feasibility verification of the proposed virtual coach in

Section IV. The conclusions and future works are given in

Section V.

II. VIRTUAL COACH FOR ROBOT-ASSISTED GAIT

TRAINING

A. Preliminary research

The role of physical therapist has become more significant

in rehabilitation hospitals that use rehabilitation robots. NRC

in the Republic of Korea, which is equipped with a variety of

rehabilitation robots, has been performing studies on robot-

assisted gait training for several years [9]. It is noteworthy

that each rehabilitation robot, such as G-EO System and

ErigoPro, has unique desired joint trajectories [10], [11]. The

physical therapists have also provided various interventions
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Fig. 1: Gait training of the stroke patient using G-EO System

(Reha Technologies, AG, Olten, Switzerland) with six IMU

attachments (6 units, sensor positions: head, sacrum, left

thigh, right thigh, left shank, and right shank) to the body

of the stroke patient, at the National Rehabilitation Center

(NRC), Republic of Korea.

for a patient according to the characteristics of the rehabili-

tation robot. Table I shows the types and coaching count that

occurred when using the G-EO System. A physical therapist

would make more meaningful interventions or coaching

recommendations in the G-EO System because, the high

degree of freedom offered by the G-EO System is higher than

that of the exoskeleton robot that directly restrains the joint of

the patient. For a physical therapist to provide proper coach-

ing, specialized gait rehabilitation knowledge and continuous

patient monitoring are indispensable. The physical therapist

should be able to understand robot characteristics and exam-

ine the human-robot interaction carefully. Therefore, high-

level interventions or coaching by the physical therapists

are required for effective or successful robot-assisted gait

training for stroke survivors.

B. Concept of the proposed virtual coach

Based on the previous studies [10], [11] conducted by

the NRC, the role of a physical therapist becomes more

significant for encouraging a subject during end-effector-

based robot-assisted gait training. Although existing phys-

ical/psychological burden on the physical therapist perform-

ing manual therapy has been meaningfully reduced by using

rehabilitation robots, careful attention from physical thera-

pists is still necessary for adequate intervention. A physical

therapist should necessarily check whether a patient is using

the rehabilitation robot safely and is operating it as per the

design. For reducing the burden on a physical therapist and

TABLE I: Number of coaching instructions given by the

physical therapist in robot-assisted gait training of stroke

survivors using the G-EO System (Reha Technologies, AG,

Olten, Switzerland) in 343 sessions of 23 patients. The count

is the number of times a physical therapist has coached a

patient. Each session lasted 30 min.

Coaching Count Ratio

Mid-line alignment 1108 31.68%

Knee flexion in preswing 803 22.96%

Trunk upright 549 15.70%

Head upright 299 8.55%

Heel strike in initial contact 251 7.18%

Knee extension in mid stance 163 4.66%

Trunk rotation alignment 157 4.49%

Heel strike in initial contact with visual feedback 95 2.72%

Plantar flexion in preswing 72 2.06%

(a)

(b)

Fig. 2: Concept of the proposed virtual coach on robot-

assisted gait training (a) Conventional robot-assisted gait

training, (b) Robot-assisted gait training with the proposed

virtual coach.

improving the performance of robot-assisted gait training by

providing supplementary information, we propose a virtual

coach. The proposed virtual coach aims to analyze the state

of a patient using the kinematic data from the sensor module

and provide coaching recommendation to physical therapists

to correct patient motion during gait training. As shown in

Fig. 2a, in conventional robot-assisted gait training, physical

therapists mainly observe the patient. The proposed virtual

coach, which consists of the sensor module, the classifica-

tion, and the coaching recommendation, is introduced as

shown in Fig. 2b. The role of the sensor module is to

gather patient kinematic data and to construct datasets for

classification. In classification, the constructed datasets are

analyzed using pre-defined classifiers. The coaching recom-

mendation provides an appropriate recommendation based on
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(a)

(b)

(c)

(d)

(e)

Fig. 3: Pathologic gait pattern in gait training using G-EO

System, (a) Lack of head upright, (b) Lack of trunk upright,

(c) Lack of mid-line alignment, (d) Lack of knee flexion in

the swing phase, (e) Lack of knee extension in the mid-stance

phase.

the classification. As shown in Fig. 2, a new concept of robot-

assisted gait training is generated with the proposed virtual

coach, thus reducing the burden on the physical therapist.

III. IMPLEMENTATION OF THE PROPOSED VIRTUAL

COACH

A. Selection of coaching recommendations

Our proposed virtual coach is designed to provide five

coaching recommendations that are frequently used during

the robot-assisted gait training for stroke survivors under the

supervision of a professional physical therapist. It should

be noted that the following five motions can be classified

using the kinematic information as shown in Fig. 3. Heel

strike in the initial contact with visual feedback requires

ground contact sensors. Therefore, considering the results

of Table I, required number of sensors, and the perspectives

about normal gait from professional physical therapists, five

coaching recommendations that are selected is as follows.

1) Head upright: Head upright is significant for main-

taining the overall center of gravity of the patient with a

strong relation to the motion of the patient. This is also

selected because it is an essential factor that affects the level

of concentration during the gait rehabilitation training.

2) Trunk upright: According to professional physical

therapists, trunk bending occurs when muscles are weakened

and rely too much on the robot safety bar during gait training.

The trunk bending deteriorates the knee joint motion of the

patient. Therefore, the trunk upright is selected.

3) Midline alignment: Most stroke patients have hemi-

plegia, so they do not hold the center of the body rigidly

during robot-assisted gait training and is often biased to one

side. Moreover, the midline alignment is a key factor in

the clinical gait index, such as the Timed Up and Go test

(TUG) [12]. The midline alignment is selected as corrective

coaching because its misalignment causes an imbalance in

the overall gait.

4) Knee flexion in the swing phase: Knee flexion in the

swing phase is the main point due to the range of motion

of knee and its strength on gait. Table I shows that many

stroke patients had weakened muscles during clinical trials

and were unable to perform proper knee flexion. Therefore,

the knee flexion motion is selected.

5) Knee extension in the mid-stance phase: The knee

extension in the mid-stance phase influences the range of

motion and the muscle strength like the knee flexion in swing

phase. Most stroke survivors had difficulty straightening their

knees in the mid-stance phase.

B. Data gathering

Since the coaching recommendations are selected to be

distinguishable using the kinematic data, a total of 6 IMUs

are used in the proposed algorithm. The specifications of the

sensor used are as follows: the accelerometer ranged ± 2 g,

the gyroscope ranged ± 2000 deg/s, and the magnetometer

ranged ± 49.7 Gauss [13]. The IMUs and the computer

communicates via Bluetooth 4.0. The sensor locations are

described in Fig. 1 and Fig. 5. Two IMUs are attached to

the back of the head and the sacrum located at the waist,

respectively. Four IMUs are attached on the outer part of

each thigh and shank to measure joint angles. During the gait

training, Velcro straps are fastened to minimize the vibration

of the sensor.

C. Training for classification

1) Training datasets: We set a basic unit for the training

dataset as 5 s for the time series data with labels because

professional physical therapists make coaching recommen-

dations after observing at least two or three cadences, which

take about 3 to 5 s. It should be noted that the number

of data generated from the robot-assisted gait training of
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Fig. 4: Training structure for the proposed virtual coach. The pathological gait pattern selected above is shown. In addition,

a comparison between pathological gait pattern and normal gait pattern in end-effector based robot-assisted gait training is

exemplified. The simplified description of training datasets and the training structure of Long Short-Term Memory (LSTM)

networks are presented.

23 stroke patients are not enough to apply for training the

LSTM. Therefore, we created many pseudo pathological

motion data by allowing an able-bodied person to simulate

the pathologic gait of the patient continuously under the

supervision of a professional therapist. The simulation of the

pseudo pathologic gait of an able-bodied person is attached

as a video attachment. The types of selected data are shown

in Table II. In Table II, IMU data refer to the 3-axis

accelerations, 3-axis angular velocities, and 3-axis magnetic

fields. The joint angle denotes the 3-axis joint angles, and

the absolute angle denotes the 3-axis absolute angles. As

shown in Fig. 4, five datasets were constructed to provide

five coaching recommendations. In each dataset, N denotes

the number of gait data and is set to 10,000. In other word,

each dataset for a coaching recommendation is composed of

a group of 10,000 labeled time series data for 5 s of normal

gait and pathologic gait.

2) Training and Selection of classifier: Fig. 4 illustrates

the overall structure of the proposed virtual coach. In this

paper, we apply an LSTM network for the classification

of the five coaching recommendations. The complicated

processes such as feature extraction in machine learning-

TABLE II: Dataset structure to provide each coaching rec-

ommendation.

Coaching Dataset
recommendation structure

Head Head IMU data
upright Head absolute and joint angle

Trunk Sacrum IMU data
upright Trunk absolute and joint angle

Midline Head, trunk, left/right hip and knee
alignment absolute and joint angle

Knee flexion Left/right hip absolute and joint angle
in the swing phase Left/right knee absolute and joint angle

Knee extension Left/right hip absolute and joint angle
in the mid-stance phase Left/right knee absolute and joint angle

based methods are avoided by using the deep learning-

based method. Moreover, LSTM is highly specialized for

processing time series data, and it is easy to expand using

new training data obtained from clinical trials.

LSTM networks are independently constructed because

each coaching recommendation occur simultaneously. LSTM

network training consists of a sequence input layer, an
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Fig. 5: Architecture of virtual coach in real-time.

Fig. 6: Classification results for coaching recommendations (a) Head upright, (b) Trunk upright, (c) Midline alignment, (d)

Knee flexion in the swing phase, (e) Knee extension in the mid-stance phase.

LSTM layer, a fully connected layer, a softmax layer, and a

classification layer. In LSTM training, 70 % of the time series

data in each dataset are used for training, while rest of it is

used for verification. In view of accuracy, the LSTM achieved

99.7 % accuracy. For the performance comparison, typical

Support Vector Machine (SVM) and k-Nearest Neighbor

(kNN) algorithm were used, which were implemented using

the machine learning toolbox from MATLAB 2019a. The

identical training data were used. SVM and kNN showed

mean accuracies of 88.8 % and 88.1 %, respectively. There-

fore, LSTM network is chosen because of its suitability for

time series data processing and shows an accuracy higher

than other classification algorithms such as SVM and kNN.

The training environments are set as follows. LSTM network

trainings are performed using MATLAB. The GPU used for

training is NVidia TITAN RTX. The number of hidden cells

is 100, InitialLearnRate is 0.001, L2 regularization is 0.1,

MaxEpoch is 10, GradientThreshold is 2, LearnRateDrop-

Factor is set to 0.2, and LearnRateDropPeriod is set to 5.

Through this training, five LSTM networks are derived for

the classification of coaching recommendations.

D. Architecture of the proposed coach

Fig. 5 shows the architecture of the real-time virtual coach.

The IMU data is acquired using 6 IMUs, and time series

data for classification are constructed in the sensor module

block. The sampling frequency (fs) is set to 50 Hz, which

is sufficient to contain human movements [14]. Through the

sequence windowing block, gathered data are transformed

into sequence data of 5-s durations, and then classified

using the trained LSTM networks. In order to provide the

coaching recommendation and reflect the characteristics of

the physical therapist, three parameters are used, the level of

activity of physical therapists, coaching probability margin,

and coaching hold time. In the following description, index

i is the selected coaching recommendation of Section II and

k denotes the current time index. The level of activity of

the physical therapist (Pai) refers to how often the therapist

coaches. The probability margin of coaching (Pmi) is the

degree to which the coaching judgment is reserved. The

coaching hold time (τi) is the minimum interval for coaching.

The final coaching recommendation (yi(k)) is determined by

comparing the current coaching probability (λi(k)) and the

recommended coaching threshold values (λi(k)). The current

coaching probability is calculated as

pi(k) =
1

Nw

Nw∑

j=1

ŷi(k −Nw + j) (1)

where ŷ(k) represents the output of the LSTM networks, and

Pmi denotes the number of sequences. The recommended

coaching threshold values are derived as

λi(k) = λi(k− 1)+PMyi(k− 1)+
pa,i

Nw

Nw∑

j=1

e(k−Nw + j).

(2)

The final coaching recommendations are decided as

yi(k) = 0 if λ(k) ≥ pi(k)

yi(m) = 1 if λ(k) < pi(k)

m = k, k + 1, ..., k + fsτi − 1

(3)

where m denotes an index used to maintain the final coaching

recommendation for the coaching hold time.

IV. EXPERIMENTAL VERIFICATION

The results of coaching recommendations are presented

to the physical therapist in the form of sound and visual
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TABLE III: Accuracy of the LSTM network classification

result.

Coaching Correct Incorrect Data Accuracy
recommendation case case number

Head upright 117 0 117 100.00%

Trunk upright 109 3 112 97.32%

Midline alignment 85 20 105 80.95%

Knee flexion 99 5 104 95.19%

Knee extension 107 3 110 97.27%

graphs using the MATLAB Graphic User Interface (GUI).

This GUI is implemented in Windows 10 with Intel i7-9900K

CPU, and is configured to operate in real-time by using

an external clock of National Instruments PCIe 6321. The

classification performance of the proposed virtual coach is

verified using the classification simulation of an able-bodied

person on the rehabilitation robot, G-EO System, using

the implemented GUI. As shown in Fig. 2, the proposed

virtual coach corresponds to a kind of human-in-the-loop

system because physical therapist’s coaching and the patient

are included in the block diagram of the robot-assisted

gait training with the proposed virtual coach. Therefore, it

was confirmed whether our proposed virtual coach provides

proper coaching in an adequate time when an able-bodied

person intentionally performs the pathologic gait motion

that requires coaching under supervision of a professional

physical therapist. The results are shown in Table III and

Fig. 7. Looking at the results in Table III, we found that

the coaching recommendation had an accuracy of over 95

percent, except for mid-alignment with about 80 percent ac-

curacy. In addition to these results, five therapists underwent

satisfaction surveys to observe the robot-assisted gait training

with our proposed virtual coach. As shown in Fig. 7, the

results of the satisfaction score were 76.16, 67.44, 63.37,

87.20, and 84.30. The survey information was attached to

the video.

V. CONCLUSIONS AND FUTURE WORKS

We propose a virtual coach to assist the physical therapist.

The proposed virtual coach was able to provide coaching rec-

ommendations, which are frequently used during the robot-

assisted gait training, according to the inclination of physical

therapist using LSTM networks in real-time. The state of

the patient was clearly identifiable. Finally, the proposed

virtual coach assisted the professional physical therapists to

increase the efficiency of gait training and enable safer and

systematic rehabilitation training. Since our virtual coach is

implemented using IMUs and GUI, training is required for

the hardware and software operations. The safe and proper

method of donning and doffing of IMUs for stroke patients

must also be provided. Since the virtual coach is dependent

on the sensor measurement accuracy, the operation status

of sensors must be verified. The training dataset must be

improved by deriving and updating it with clinical trials of

stroke patients.

Fig. 7: Result of satisfaction score with the observation of

the proposed virtual coach by five physical therapists.

Since this study aims to assist physical therapists, more

clinical feasibility studies are necessary. Our further studies

will include: improved classification accuracy of coaching

recommendations, more coaching recommendations, clear

evaluation of the human-in-the-loop-system, clinical study

for the effectiveness of the proposed virtual coach, and

constructing an add-on safety monitoring module to prevent

unexpected operations.
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