
Real-Time Constrained Nonlinear Model Predictive Control on SO(3) for
Dynamic Legged Locomotion*

Seungwoo Hong1, Joon-Ha Kim1, Hae-Won Park1

Abstract— This paper presents a constrained nonlinear model
predictive control (NMPC) framework for legged locomotion.
The framework assumes a legged robot as a floating base
single rigid body with contact forces being applied to the
body as external forces. With consideration of orientation
dynamics evolving on the rotation manifold SO(3), analytic
Jacobians which are necessary for constructing the gradient
and the Gauss-Newton Hessian approximation of the objective
function are derived. This procedure also includes the repa-
rameterization of the robot orientation on SO(3) to orientation
error in the tangent space of that manifold. Obtained gradient
and Gauss-Newton Hessian approximation are utilized to solve
nonlinear least squares problems formulated from NMPC in
a computationally efficient manner. The proposed algorithm
is verified on various types of legged robots and gaits in a
simulation environment.

I. INTRODUCTION

Animals in the real world are capable of traversing in
a precarious environment. For instance, an ibex can climb
nearly vertical cliffs by controlling and coordinating their
dexterous hooves. Those incredible capabilities in nature
motivate the realm of legged robotics to mimick the highly
dynamic locomotion that animals can achieve. However,
controlling the sophisticated dynamic locomotion of robots
is a demanding issue because of the nonlinear dynamics and
the under-actuation of the floating base that can only be
controlled indirectly by the internal motion of the robot and
the external wrenches exerted on the robot. This difficulty
is further complicated by the constraints such as friction
cone constraints that should be imposed on those external
wrenches to avoid slip motion. One of the promising ap-
proaches that can solve this problem is the model predictive
control (MPC) approach that has recently shown remarkable
performance.

Successful implementations of whole-body MPC on
legged robots [1], [2] have demonstrated the capability of
MPC to stabilize a variety of complicated motions on hard-
ware platforms. However, the complex dynamics of legged
robots with high degree-of-freedom results in a complicated
non-linear problem with constraints and solving this problem
in a real-time manner is computationally challenging. To
overcome this issue, many researchers tried to approximate

*This research was supported by the Defense Challengeable Future
Technology Program of Agency for Defense Development, Republic of
Korea

1The authors are with the Humanoid Robot Research Center, School
of Mechanical, Aerospace & Systems Engineering, Department of
Mechanical Engineering, Korea Advanced Institute of Science and
Technology, Yuseong-gu, Daejeon 34141, Republic of Korea. email:
seungwoohong@kaist.ac.kr, kjhpo226@kaist.ac.kr,
haewonpark@kaist.ac.kr

the whole-body dynamics with simpler approximated dynam-
ics models. Various examples for approximated dynamics
include linear inverted pendulum model [3], single rigid body
dynamics model [4], [5], [6], [7], [8], [9], [10], and centroidal
dynamics model [11].

Among these examples, single rigid body dynamics pro-
vides not only tractable model accuracy but also compu-
tational efficiency under the condition that the leg inertia
is negligible compared to the total mass of the robot.
However, it is not straightforward to properly parameterize
the nonlinear orientation dynamics evolving on SO(3) to
perform dynamic maneuvers involving large angular mo-
tions or singular configurations such as back-flip and wall-
climbing motions using model predictive control. Some
researchers adopted local parameterization of SO(3), such
as Euler angles [5], [6], [7], [8]. Despite their intuitive
expression of orientation, using Euler angles as parameter-
ization for rotations is not properly invariant under rigid
transformations [12], and also known to have singularities
in specific configurations. To avoid these issues, a variation-
based linearization approach [13] is adopted to linearize
the nonlinear orientation dynamics around the operating
point [9] or reference trajectory [10] to obtain a singularity-
free linear dynamics. However, the linearization depends on
the prediction step time being contained within the small
range to guarantee the predicted variables being close to the
operating point [9]; the locally-valid domain of attraction for
the linearization depends on the dynamic system [10].

Therefore, in this study, we address the manifold configu-
ration of the rotation group SO(3) [12], [14], [15] to properly
consider the nonlinear orientation dynamics of the robot. We
parameterize the orientation error in the tangent space of
SO(3) manifold. Based on that, a novel NMPC framework is
formulated as a constrained nonlinear least squares problem,
which is solved by using an efficient algorithm that enables
real-time calculation of optimal solutions. Specifically, we
derive gradient and Gauss-Newton Hessian approximation
of the objective function of the NMPC problem while taking
into account the manifold configuration of the rotation group.

The remainder of the paper is structured as follows.
Section II describes the dynamics model and the NMPC
framework in detail. Section III introduces the derivation
of Jacobians required for constructing the gradient and the
Gauss-Newton Hessian approximation of the nonlinear ob-
jective function. Section IV describes an efficient algorithm
for solving the NMPC problem as a constrained nonlinear
least squares problem. Section V shows the results of the
proposed NMPC applied to various types of legged robots

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 3982

in simulation environments. Finally, Section VI briefly dis-
cusses the conclusion of the paper.

II. NONLINEAR MODEL PREDICTIVE CONTROL

In this section, we formulate a legged locomotion control
problem in terms of an NMPC problem. Consider an optimal
control problem of a discrete-time deterministic system that
consists of states xk ∈ Rn and control inputs uk ∈ Rm
with a finite time horizon N . This optimal control problem
consists of three parts. The first part is a nonlinear model
xk+1 = f(xk,uk), k ∈ {0, 1, · · · , N} that represents the
dynamics of the robot.

The second part is the objective function J , which is the
sum of weighted deviations of the states and control inputs
from a set of desired quantities in a least-squares sense over
the entire time horizon considered

J =

N∑
k=1

1

2
‖rxk
‖2
Q̃k

+

N−1∑
k=0

1

2
‖ruk
‖2
R̃k

(1)

where rxk
= h(xk) is a nonlinear residual error of state, and

ruk
= uk − udk is a linear residual error of control input at

time step k, respectively; Q̃k ∈ Sn+ and R̃k ∈ Sm++ are the
corresponding weight matrices.

The last part contains constraints on control inputs, and
only linear constraints

Akuk ≤ bk,Ckuk = dk (2)

are considered in this paper.
Next, we eliminate the state variables from the decision

variables by representing them as a function of only u
using model dynamics. For notational convenience, we define
fuk

(x) := f(xk,uk) and the collection of control inputs and
desired control inputs up to the time step k − 1, Uk :=

[uT0 , · · · ,uTk−1]T and Ud
k := [ud0

T
, · · · ,udk−1

T
]T . Then, the

state xk can be expressed as

xk = φk(Uk) = fuk−1
◦ fuk−2

◦ · · · ◦ fu0
(x0) (3)

From now on, we will express the collection of any indexed
quantities ai from index 0 to k−1, [aT0 , · · · ,aTk−1]T , as Ak.

Substituting (3) into the objective function (1) with
hk(x) := h(xk) yields

J(UN) =

N∑
k=1

1

2
‖hk(φk(Uk))‖2

Q̃k
+

N−1∑
k=0

1

2
‖uk − udk‖2R̃k

(4)

With the objective function (4), the optimal control prob-
lem becomes

min
UN

N∑
k=1

1

2
‖hk(φk(Uk))‖2

Q̃k
+

N−1∑
k=0

1

2
‖uk − udk‖2R̃k

s.t. Akuk ≤ bk,Ckuk = dk

(5)

which is in the form of a constrained nonlinear least squares
problem.

In general, most of the derivative-based algorithms for
solving this constrained nonlinear least squares problem

𝒇𝟐

𝒇𝟏

𝒇𝟑

𝒓𝟏

𝒓𝟐

𝒇𝟒
𝒓𝟑

𝒓𝟒

𝒑𝒇𝟏

𝒑𝒇𝟐

𝒑

Fig. 1: Illustration of a single rigid body dynamics model for a quadruped
robot. Note that the number of legs can be changed to model other types
of legged robots.

require derivative information of the objective function to
find a good search direction. Therefore, we will mainly
focus on deriving the associated derivatives in the remaining
sections.

The gradient of the objective function (4) is given by

J =

N∑
k=1

∂φk
∂UN

T

Q̃
′

khk(φk(Uk)) + ΦR̃(UN −Ud
N) (6)

where Q̃
′

k = (∂hk

∂x)T Q̃k, and ΦR̃ is a block diagonal
matrix formed with diagonal elements as {R̃0, · · · , R̃N−1}.
Similarly, the Gauss-Newton Hessian approximation of the
objective function (4) is given by

HGN =

N∑
k=1

∂φk
∂UN

T

Q̃
′′

k

∂φk
∂UN

+ ΦR̃ (7)

where Q̃
′′

k = (∂hk

∂x)T Q̃k(∂hk

∂x).
The first term of J and HGN has ∂φi

∂UN
=[

∂φi

∂u0
· · · ∂φi

∂uN−1

]
∈ Rn×Nm and ∂φi

∂uj
is given by

∂φi
∂uj

= πi,j
∂fj
∂u

(8)

where,

πi,j =


∏i−1
k=j+1

∂fk
∂x i ≥ j + 2

In×n i = j + 1

0n×n otherwise

(9)

with ∂fj
∂x :=

∂f(xj ,uj)
∂x , ∂fj∂u :=

∂f(xj ,uj)
∂u .

The details of formulating the legged locomotion problem
as an NMPC framework will be provided in Section II-A, II-
B, II-C, II-D, and all the Jacobians required for constructing
the gradient and the Gauss-Newton Hessian approximation
of the objective function will be introduced in Section III.

A. Model Dynamics

By approximating a legged robot as a single rigid body
with point foot, as shown in Figure 1, the dynamics together
with kinematics are as follows

3983

ṗ = v (10a)

v̇ =
1

m

∑
i

fi + g (10b)

Ṙ = R · ŵ (10c)

ẇ = I−1(RT (
∑
i

ri × fi)−w × (Iw)) (10d)

where p ∈ R3 and v ∈ R3 are the position and velocity
of body COM, respectively; m is the mass of the robot;
fi ∈ R3 is the ground reaction force (GRF) exerted on the
ith contact point; g ∈ R3 is the gravitational acceleration;
R ∈ SO(3) is a 3-D rotation matrix, which is an element
of Lie group, representing spatial orientation of the body
frame B; I ∈ R3×3 and w ∈ R3 are the intertia tensor at
the nominal posture and body angular velocity expressed in
the body frame B respectively; ri ∈ R3 is the vector from
the COM to the ith contact point. Note that p, fi, g, and ri
are expressed in the inertial frame I. The hat operator (̂·) :
R3 → so(3) converts elements of 3-D vector into elements
of Lie algebra consists of skew-symmetric matrices such that
âb = a × b for all a,b ∈ R3, where × is the vector cross
product. This dynamic model is not restricted to model only
quadrupeds. The number of legs can be changed to model
other types of legged robots.

We discretize the continuous-time dynamics (10) using
forward Euler integration with sampling time ∆t to describe
the discrete-time model dynamics as follows

Rk+1 = Rkexp(ŵk∆t) (11a)
wk+1 = wk + ẇk∆t (11b)

pk+1 = pk + vk∆t+
1

2
v̇k∆t2 (11c)

vk+1 = vk + v̇k∆t (11d)

where exp : so(3)→ SO(3) represents the exponential map
around the identity, which coincides with the Rodrigues’
formula, transforms elements of Lie algebra to elements of
Lie group [14], [15].

The discrete-time state of the system at time step k is now
defined as xk := [Rk,wk,pk,vk] ∈ X = SO(3)×R3×R3×
R3, where we use a rotation matrix, which provides global
parameterization of SO(3), to represent the robot orientation.
The discrete-time control input to the system at time step k
is defined in terms of GRFs as uk :=

[
fT1k , · · · , f

T
ck

]T ∈ R3c.

B. Objective Function

As the state contains a 3-D rotation matrix which evolves
on a SO(3) manifold, it is difficult to properly define
the residual error in a least-squares sense. To tackle this
problem, we express the orientation error in terms of the
exponential coordinates, which coincides with the tangent
space around the identity element of the manifold SO(3).
Thus, we define the residual errors in (1) as h(xk) :=

[hTϕk
,hTwk

,hTpk
,hTvk

]T ∈ R12 with each term defined as

hϕk
= log(Rd

k

T
Rk)∨ (12a)

hwk
= wk −RT

kwd
k (12b)

hpk
= pk − pdk (12c)

hvk
= vk − vdk (12d)

where Rd
k ∈ SO(3), and wd

k ∈ R3, pdk ∈ R3, vdk ∈ R3 are
the corresponding desired motions represented in the inertial
frame I. The operator log : SO(3) → so(3) represents the
logarithm map [14], [15], which is the inverse of exponential
map. The vee operator (·)∨ : so(3) → R3 is the inverse of
hat operator.

In this work, no desired control input is provided to the
robot, thereby udk = 0 for all k.

C. Foot Reference Generation

We use a foot placement strategy for the swing foot similar
to the one introduced in [16], [6],

pfi = pfffi + pfbfi = phi
+

1

2
vdTst +

√
pz
g

(v − vd) (13)

where pfi and phi are the touch down location of ith swing
foot and the position of ith hip expressed in the inertial frame
I, respectively; Tst is the stance time; pz is the height of the
body COM.

D. Constraints

To prevent the foot slip motion occured as well as to avoid
the GRF generating excessive or negative force, we impose
the linearized friction cone and box constraints on ith contact
foot, i.e., ∀i ∈ {Stance Phase}

|fix | ≤ µfiz , |fiy | ≤ µfiz , fmin ≤ fiz ≤ fmax (14)

where µ is the friction coefficient given as 0.6 in this work.
In order to make the robot comply with the desired gait
sequence, we impose all feet forces in swing phase to zero

fi = 0, ∀i ∈ {Swing Phase} (15)

III. DERIVATION OF ANALYTICAL JACOBIANS

In this section, we will mainly focus on deriving the
Jacobians for calculating the gradient and Gauss-Newton
Hessian approximation of the nonlinear objective function
in (5). They will be used in the optimization algorithm
in Section IV to find a good search direction of optimal
solution.

In general, the derivative-based algorithms iteratively finds
the minimizer of the quadratic objective function, which is
expressed in terms of state deviation δxk and control devia-
tion δuk, to update the current iterate xk and uk. For the state
variable Rk ∈ SO(3), the exponential map is selected as the
retraction on a manifold [17], i.e., Rk = Rkexp(δ̂ϕk) with
δϕk ∈ R3. Throughout, variables with overline represent
the nominal state at the associated time step. For the other
state variables pk,wk,vk living in the vector space R3, their
corresponding deviations also belong to the vector space

3984

Fig. 2: Illustration of the relation between the manifold SO(3) and the
tangent space so(3). The right-Jacobian Jr relates the variations in the
tangent space to the variations on the SO(3) manifold.

R3. Thus, we can define the state deviation at time step k
as δxk := [δϕTk , δw

T
k , δp

T
k , δv

T
k]T ∈ R12. Similarly, the

deviation of control input at time step k can be defined as
δuk := [δfT1k , · · · , δf

T
ck

]
T ∈ R3c.

We now consider the residual error h : X → R12

in (12). A standard approach to find the Jacobian of h(xk)
is to introduce a basis for X , find the Jacobian of the
corresponding function, and substitute the result back into X .
Instead, we will directly derive the first-order approximation
of h at xk.

In the process of derivation, we will use the first-order
approximation for the exponential and logarithm adopted
from [12], [18],

Exp(ψ + δψ) ≈ Exp(ψ)Exp(Jr(ψ)δψ) (16)

Log (Exp(ψ)Exp(δψ)) ≈ ψ + J−1r (ψ)δψ (17)

where Jr(·) and J−1r (·) are the right-Jacobian and inverse
of right-Jacobian for exponential coordinates [15], and as
shown in Figure 2, they relate the variations between the
tangent space and the SO(3) [12]; Exp : R3 → SO(3) and
Log : SO(3) → R3 are compact notations for exp(·) and
log(·) used in [12], we will also use those compact notations
for readability.

Let xk ∈ X be close to the nominal state xk, and let δxk
assumed to be small. Similarly, let uk ∈ R3c be close to uk
with δuk assumed to be small. We have

Rk = RkExp(δϕk) (18a)
wk = wk + δwk (18b)
pk = pk + δpk (18c)
vk = vk + δvk (18d)
uk = uk + δuk (18e)

Now, with the above preliminaries, we will derive the
Jacobians of h(xk) and f(xk,uk) in the remaining section.

1) Jacobians of h(xk): First, Jacobians of hϕk
, hwk

, hpk

and hvk
are derived as below.

a) Jacobians of hϕk
: Since hϕk

is a function of only
Rk, thereby the partial derivatives with respect to δwk, δpk,
and δvk are zero matrices. The first-order approximation of

hϕk
at Rk is

hϕk

(
RkExp(δϕk)

)
= Log

(
Rd
k

T
RkExp(δϕk)

)
(17)
≈ Rd

k

T
Rk + J−1r (Rd

k

T
Rk)δφk (19)

b) Jacobians of hwk
: Because hwk

is linear in δwk,
thereby the partial derivative with respect to δwk is an
identity matrix. In addition, hwk

is independent of pk and
vk, thereby the partial derivatives with respect to δpk and
δvk are zero matrices. The first-order approximation of hwk

at Rk is

hwk

(
RkExp(δϕk)

)
= wk −RkExp(δϕk)

T
wd
k

= wk − Exp(−δϕk)R
T

kwd
k

(a)
≈ wk − (I− δ̂ϕk)R

T

kwd
k

(b)
≈ wk −R

T

kwd
k + (R̂

T

kwd
k)T δϕk (20)

where (a) we have used the approximation of exponential
map up to first-order term Exp(δϕk) ≈ I + δ̂ϕk with I ∈
R3×3 representing an identity matrix; (b) we have used the
property âb = −b̂a.

c) Jacobians of hpk
and hvk

: It is straightforward that
hpk

and hvk
are linear in δpk and δvk respectively, thereby

the corresponding partial derivatives with respect to δpk and
δvk are identity matrices, while the other partial derivatives
are zero matrices.

As a result, the Jacobian of h(xk) is given by

∂hk
∂x

=


J−1r (Rd

k

T
Rk) 0 0 0

(R̂
T

kwd
k)T I 0 0

0 0 I 0

0 0 0 I

 (21)

2) Jacobians of f(xk,uk): Next, Jacobians of fϕk
, fwk

,
fpk

and fvk
are derived as below.

a) Jacobians of fϕk
: We first note that fϕk

is inde-
pendent of pk, vk, uk, thereby the partial derivatives with
respect to δpk, δvk, δuk are zero matrices. The remaning
Jacobians with respect to δϕk and δwk will be derived.
Substituting (18a) at step time k + 1 and k respectively
into (11a) and rearranging the equation, we get

Exp(δϕk+1)

≈ R
T

k+1RkExp(δϕk)Exp(wk∆t)

(a)
= R

T

k+1RkExp(wk∆t)Exp(ExpT (wk∆t)δϕk)

(b)
= Exp(ExpT (wk∆t)δϕk) (22)

where (a) we have used the property Exp(ϕ)R =
RExp(RTϕ); (b) is because the first two terms cancel each

3985

other by the fact Rk+1 = RkExp(wk∆t). Taking logarithm
map on both sides of (22) yields

δϕk+1 ≈ ExpT (wk∆t)δϕk (23)

Similarly, plugging (18a) at step time k + 1 and (18b) at
step time k into (11a) and rearranging the equation, we have

Exp(δϕk+1)

= R
T

k+1RkExp((wk + δwk)∆t)
(16)
≈ R

T

k+1RkExp(wk∆t)Exp(Jr(wk∆t)∆tδwk)

(a)
= Exp(Jr(wk∆t)∆tδwk) (24)

where (a) we have used the fact Rk+1 = RkExp(wk∆t).
Taking logarithm map on both sides of (24) yields

δϕk+1 ≈ Jr(wk∆t)∆tδwk (25)

b) Jacobians of fwk
: Similar to the previous section,

fwk
is independent of pk and vk, thereby the partial deriva-

tives with respect to δpk and δvk are zero matrices. We will
focus on the remaning Jacobians with respect to δϕk, δwk

and δuk. Substituting (18b) at step time k + 1 and (18a) at
step time k into (11b) and rearranging the equation up to
first-order terms

δwk+1 ≈ −I−1
[
δ̂ϕkR

T

k [rk]uk

]
∆t (26)

= I−1
[

̂
R
T

k [rk]uk

]
∆tδϕk (27)

where [rk] := [r̂1k , · · · , r̂ck] ∈ R3×3c.
Similarly, plugging (18b) at step time k + 1 and at step

time k respectively into (11b) and rearranging the equation
up to first-order terms, we have

δwk+1 ≈ δwk − I−1
[
ŵk(Iδwk) + δ̂wk(Iwk)

]
∆t

=
(
I− I−1

[
ŵkI− (Îwk)

]
∆t
)
δwk (28)

Plugging (18b) at step time k + 1 and (18e) at step time
k into (11b) and rearranging the equation up to first-order
terms

δwk+1 ≈ I−1
(
R
T

k [rk]
)

∆tδuk (29)

c) Jacobians of fpk
and fvk

: Repeating application of
the first-order approximation on (12c) and (12d), we get

δpk+1 ≈ ∆tδvk (30a)

δpk+1 ≈ (
∆t2

2m
[I])δuk (30b)

δvk+1 ≈ (
∆t

m
[I])δuk (30c)

where [I] := [I, · · · , I] ∈ R3×3c with I ∈ R3×3 representing
an identity matrix.

In summary, the Jacobians of f(xk,uk) are

∂fk
∂x

=


∂δϕk+1

∂δϕk

∂δϕk+1

∂δwk
0 0

∂δwk+1

∂δϕk

∂δwk+1

∂δwk
0 0

0 0 I I∆t
0 0 0 I

 (31)

with each partial derivatives specified as
∂δϕk+1

∂δϕk
= ExpT (wk∆t), ∂δϕk+1

∂δwk
= Jr(wk∆t)∆t,

∂δwk+1

∂δϕk
= I−1[

̂
R
T

k [rk]uk]∆t, ∂δwk+1

∂δwk
= (I − I−1[ŵkI −

(Îwk)]∆t), and

∂fk
∂u

=


0

I−1
(
R
T

k [rk]
)

∆t
1
2 (1
m [I]∆t2)(
1
m [I]∆t

)
 (32)

IV. PROXIMAL GAUSS-NEWTON METHOD

This section briefly summarizes an optimization algorithm
to solve for constrained nonlinear least squares problem
introduced in Section II. We combine Gauss-Newton method
for nonlinear least squares problem with a proximal operator
to handle inequality constraints. The gradient and Gauss-
Newton Hessian approximation obtained in Section II and III
are utilized in this optimization algorithm.

A. Proximal Operator

Proximal methods minimize an objective function in
the form of g + f with a differentiable function g and
a non-differentiable function f [19]. To handle the non-
differentiable part of the objective function f , a proximal
operator of f at v is introduced,

proxf (v) = arg min
z

(
f(z) +

1

2
‖z− v‖2

)
. (33)

When f is the indicator function of the set C, i.e., IC(v) = 0
if v ∈ C and IC(v) = +∞ if v /∈ C which is convex for
a closed nonempty convex set C, the output value of the
proximal operator (33) at v is equivalent to the solution of
the following optimization problem,

min
z ∈ C

1

2
‖z− v‖2 (34)

Geometrically, when v /∈ C, the proximal operator maps the
point v to the closest point in the set C, whereas the output
of the operator is the same as v when v ∈ C. This proximal
operator can be utilized to modify search directions in the
line search algorithms to optimize composite functions with
non-differentiable part f . For example, proximal gradient
descent algorithm for the Lasso regression was discussed
in [20] which modifies search directions obtained from the
gradient of the continuous part of the objective function using
the proximal operator. Also, a proximal Newton-type method
is introduced in [21] to modify the Newton step obtained
from the Hessian and gradient of the differentiable part of
the objective function g. In this method, a scaled proximal
operator is introduced,

proxP
f (v) = arg min

z

(
f(z) +

1

2
‖z− v‖2P

)
. (35)

where, the positive definite matrix P is chosen as the
Hessian of the differentiable part of the objective function
∂2g
∂v2 . Compared to the proximal gradient descent algorithm,

3986

the proximal Newton-type algorithm showed an improved
convergence rate.

If the set C is in the form of {v |Av ≤ b,Cv = d}, then
the value of the scaled proximal operator in (35) can be
obtained by solving the following Quadratic Program (QP),

min
z

1

2
‖z− v‖2H

s.t. Az ≤ b,Cz = d,
(36)

and many state-of-the-art solvers are available to solve this
problem in a very efficient manner.

B. Proximal Gauss-Newton Algorithm

The Gauss-Newton algorithm solves nonlinear least
squares problems minv J(v) = 1

2

∑
i ‖ri(v)‖2Qi

. Unlike the
Newton’s algorithm using a Hessian, the Gauss-Newton algo-
rithm uses Gauss-Newton Hessian approximation, HGN :=∑
i
∂ri(v)
∂v

T
Qi

∂ri(v)
∂v , to obtain line search directions.

This Gauss-Newton Hessian approximation has desirable
properties such as guaranteed positive semidefiteness and low
computational complexity due to ignorance of the second-
order derivative of ri. In this paper, the Gauess-Newton
algorithm will be extended to handle following constrained
nonlinear least squares problems,

min
v

1

2

∑
i

‖ri(v)‖2Qi

s.t. Av ≤ b,Cv = d

(37)

using the scaled proximal operator.
First, the constrained nonlinear least squares problem (37)

is converted into the equivalent unconstrained optimization
problem with a composite objective function,

min
v

g(v) + IC(v) (38)

where g(v) = 1
2

∑
i ‖ri(v)‖2Qi

and C = {Av ≤ b,Cv =
d}. A search direction can be obtained using the Gauss-
Newton Hessian approximation and gradient of the con-
tinuous part of the objective function δv = −H−1GNJ,
where J is the gradient of the objective function given by∑
i
∂ri(v)
∂v

T
Qiri(v).

To handle the non-differentiable part of the objective
function IC(v), this search direction is modified using the
scaled proximal operator in (35),

δv = proxHGN

IC

(
v(k) − δv

)
− v(k) (39)

where, v(k) is the current iterate.
With this modified search direction, the proximal Gauss-

Newton algorithm is shown in Algorithm 1.
In Algorithm 1, t(k) is the step length to determine the

amount to move along the modified search direction and
its values are obtained using a backtracking line search
algorithm based on the Armijo condition. The detailed de-
scription of the backtracking line search algorithm can be
found in [21] and omitted here due to the limitation of space.

Algorithm 1 Proximal Gauss-Newton Algorithm

Require: min 1
2

∑
i ‖ri(v)‖2Qi

s.t.Av ≤ b,Cv = d

1: Choose MAX ITER� 0 and 0 < ε� 1

2: Initialize v with some v(0)

3: while 1 do
4: Obtain δv using (39)
5: Obtain t(k) using backtracking line search
6: v(k+1) = v(k) + t(k)δv

7: if i ≥ MAX ITER or ‖v(k) − vk+1‖ ≤ ε then
8: break
9: end if

10: k = k + 1

11: end while

C. Efficient Calculation of Search Direction and Proximal
Operator

With the derived Jacobians in Section III, HGN and J
can be calculated analytically using equations (6) and (7).
Utilizing these matrices, search direction δUN = −H−1GNJ
can be obtained and proximal operator can be evaluated
using (39). However, the construction of the matrix HGN is
computationally challenging for real-time implementation in
the case of a complex nonlinear MPC problem. Furthermore,
because HGN is a dense matrix, solve time of QP for
proximal operator will increase quickly as the size of HGN

increases. Hence, we propose a method to obtain the search
direction and the value of proximal operator while avoiding
the construction of HGN .

First, consider yk := ∂φk

∂UN
δUN , then yk can be obtained

through the following recursive relation,

yi =
∂fi−1
∂x

yi−1 +
∂fi−1
∂u

δui−1,y0 = 0, i = 1, · · · , k.
(40)

Also, we can easily identify that search direction δUN =
−H−1GNJ is the solution of the following optimization prob-
lem,

min
δUN

1

2
δUT

NHGNδUN + δUN
TJ (41)

by the first-order optimality condition for a positive defi-
nite HGN .We introduce auxiliary variables yk into (41) to
replace ∂φk

∂UN
δUN in (41) with yk and recursive relations

in (40). With this procedure, an equivalent optimization
problem can be obtained as follows,

min
δuk,yk

N∑
k=1

1

2
αk(yk) + βk(yk)

+

N−1∑
k=0

1

2
γk(δuk) + ξk(δuk)

s.t. yk+1 =
∂fk
∂x

yk +
∂fk
∂u

δuk, y0 = 0

(42)

with αk(yk) = ‖yk‖2Q̃′′k
, βk(yk) = yTk Q̃

′

khk(φk(Uk)),

γk(δuk) = ‖δuk‖2R̃k
, and ξk(δuk) = δuTk R̃k(uk−udk). For

3987

this optimization problem, a sparse QP formulation can be
easily obtained where the sparsity pattern can be efficiently
utilized to significantly decrease solve time.

Now, we formulate a sparse QP formulation with a solu-
tion equivalent to the proxHGN

IC
(UN − δUN) in (39). Let

ŨN := UN − δUN , then the value of the scaled proximal
operator can be obtained by solving the following dense QP,

min
zk

1

2
‖Zn − ŨN‖2HGN

=
1

2
(Zn − ŨN)THGN (Zn − ŨN)

s.t. Akzk ≤ bk, k = 0, · · · , N − 1,

Ckzk = dk, k = 0, · · · , N − 1.

(43)

Likewise, ∂φk

∂UN
(Zn − ŨN) in the objective function can be

replaced with the recursive relation in (40) by substituting
δUN with Zn − ŨN and the introduction of auxiliary
variables yk. Through this process, following equivalent
sparse QP formulation is obtained,

min
zk,yk

N∑
k=1

1

2
‖yk‖2Q̃′′k +

N−1∑
k=0

1

2
‖zk − ũk‖2R̃k

s.t. yk+1 =
∂fk
∂x

yk +
∂fk
∂u

(zk − ũk), y0 = 0,

Akzk ≤ bk,Ckzk = dk.

(44)

With the proper choice of QP solver, sparsity patterns in (42)
and (44) can be efficiently utilized. We chose qpSWIFT
proposed in [22] as a QP solver since it is specifically
designed to utilize sparsity patterns of QP formulation.

V. SIMULATION RESULTS

The proposed NMPC framework with the proximal Gauss-
Newton algorithm will be evaluated in this section.

A. Simulation Setup

The NMPC framework as well as the efficient proximal
Gauss-Newton Algorithm proposed in this work were tested
in MATLAB simulation. The simulation was implemented on
a standard desktop running with Intel® i7-8700 CPU 3.2 GHz
processors. For all the simulation experiments represented
in this work, we used a horizon length of N = 12 with
a sampling time ∆t = 0.025 sec. At each step time, we
find the optimal control inputs by using Algorithm 1 to
update the current iterate. Then we update the state using
the continuous-time dynamics (10) via MATLAB function
“ode45”, and use the updated control inputs as a warm
start for the next iterate. To speed up the solve time, the
objective function and functions for calculating nominal
states and gradient with analytic Jacobians were converted
into C-codes. The parameters of the robot model and NMPC
controller used in the simulation experiments are listed in
Table I.

Parameter Value
m 43 kg

Ixx 0.41 kgm2

Iyy 2.1 kgm2

Izz 2.1 kgm2

Body Length 0.6 m

Body Width 0.256 m

Leg Length 0.34 m

Parameter Value
Q̃ϕ [1, 1, 1]

Q̃w [10−2, 10−2, 10−2]

Q̃p [1, 1, 50]

Q̃v [10−1, 10−1, 10−3]

R̃ [10−1, 10−1, 10−3]
fmin 10 N
fmax 666 N

TABLE I: Parameters of model and NMPC controller

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

R
M

SE

0

10

20

30

40

50

60

70)
D

is
tu

rb
an

ce
 F

or
ce

(N

Orientation (rad)
CoM Position (m)
Disturbance Force (N)

0 5 10 15 20 25

Time (sec)

0

2

4

6

8

10

It
er

at
io

n
N

um
be

r

0

10

20

30

40

50

60

70)
D

is
tu

rb
an

ce
 F

or
ce

(N

Iteration Number
Disturbance Force (N)

0 0.005 0.01 0.015 0.02 0.025 0.03

Solve Time (sec)

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

B
ou

nd
ar

y
of

 S
am

pl
in

g
T

im
e

Solve Time
Sampling Time

Fig. 3: NMPC of a quadrupedal trotting with the forward speed of 1.5 m/s,
while 3-D random disturbance forces of which the magnitude belongs to
[0, 100] N were applied. The top figure shows the magnitude of disturbance
forces along with root-mean-square-error (RMSE) of orientation and CoM
position, respectively. The middle figure displays the iteration number at
each step of NMPC during the simulation. The bottom figure displays the
histogram of NMPC solve time during the simulation.

B. Dynamic Quadrupedal Locomotion

To verify the performance of the NMPC controller, several
dynamic quadrupedal gaits, including trot, pace, bound, and
gallop with aerial phase were implemented. Since those
simulation results are well described in the supplementary
video, here we focus on the trot gait, which can be thought
of as a baseline gait. We used Tswing = 0.2 sec, Tstance =
0.1 sec, and a set of weight matrices shown in Table I for
all the gaits represented in this section.

The robot was instructed with a forward velocity of
1.5 m/s. While moving, a set of 3-D random disturbance
forces with a magnitude ranging from 0 N to 100 N were

3988

applied to the robot, as shown in Figure 3. We can identify
that the robot can stabilize its balance under strong pushes
while tracking the desired quantities well. Even though the
iteration number temporarily increases at the moment when a
disturbance force is applied to the robot, the NMPC problem
could still be solved in real-time in virtue of the efficient
proximal Gauss-Newton algorithm proposed in this work.

C. Wall-Climbing Locomotion

Besides the dynamic locomotion on the flat ground, dy-
namic wall-climbing locomotion was implemented to evalu-
ate the benefit of the orientation parameterization on SO(3)
manifold. In this application, we used Tswing = 0.15 sec,
Tstance = 0.25 sec, and the same weight matrices in
Section V-B except for the weight matrix of position, which
was set as Q̃p = [20, 1, 20]. In contrast to the experiments
performed in Section V-B, we assume that the sole of the
robot can generate negative normal forces on the wall by
means of magnets or suction pads. For this reason, the
constraints in (14) should be modified accordingly as

|fit | ≤ µ(fpull − fin), |fin | ≤ min(fpull, fmax)

where fit and fin are tangential and normal components
of the wall reaction forces exerted on ith sole, respectively;
fpull is a pulling force generated at the sole in stance phase,
and given as fpull = fmax = 666 N. Under the condition that
the pulling force fpull is large enough to sustain the robot’s
weight, the robot could stabilize its balance while smoothly
tracking the desired reference trajectory without falling, and
the results can be seen in the supplementary video.

D. Application of Other Legged Robots

In addition to quadrupedal locomotion presented in Sec-
tion V-B, various types of legged robots, including mono-
pod, biped, tripod, and quintaped robots were successfully
performed to further evaluate the performance of proposed
NMPC controller. Those simulation results can be seen in
the supplementary video.

VI. CONCLUSION

In this work, a novel NMPC framework for dynamic
legged locomotion and an efficient algorithm to solve this
constrained nonlinear optimization problem are presented.
Moreover, the orientation of the robot among the components
that make up the objective function of the optimization
problem adopts the manifold configuration of the rotation
group. Through the reparameterization, dynamic motions
that include configurations in which local parameterizations
such as Euler angles suffer singular problems are properly
implemented. Furthermore, we derive the analytic Jaco-
bians required for constructing the gradient and the Gauss-
Newton Hessian approximation matrix used in the process
of solving constrained nonlinear least squares problems.
The computational efficiency obtained through the proposed
control framework has given a great advantage in real-time
implementation of dynamic locomotion control of various
types of legged robots. The effects are verified by showing

robust stabilization in simulation environments, including
push recovery and acrobatic situations such as wall-climbing.

REFERENCES

[1] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, “Whole-body model-predictive control ap-
plied to the HRP-2 humanoid,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2015, pp. 3346–3351.

[2] M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius,
C. Gehring, M. Hutter, and J. Buchli, “Whole-body nonlinear model
predictive control through contacts for quadrupeds,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1458–1465, 2018.

[3] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl, “Online walking motion generation with automatic footstep
placement,” Advanced Robotics, vol. 24, no. 5-6, pp. 719–737, 2010.

[4] H.-W. Park, P. M. Wensing, and S. Kim, “Online planning for
autonomous running jumps over obstacles in high-speed quadrupeds,”
in Robotics: Science and Systems, 2015.

[5] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the MIT cheetah 3 through convex model-predictive
control,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2018, pp. 1–9.

[6] G. Bledt and S. Kim, “Implementing regularized predictive control for
simultaneous real-time footstep and ground reaction force optimiza-
tion,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2019, pp. 6316–6323.

[7] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli,
“Real-time motion planning of legged robots: A model predictive con-
trol approach,” in IEEE-RAS International Conference on Humanoid
Robotics, 2017, pp. 577–584.

[8] R. Grandia, F. Farshidian, A. Dosovitskiy, R. Ranftl, and M. Hutter,
“Frequency-aware model predictive control,” IEEE Robotics and Au-
tomation Letters, vol. 4, no. 2, pp. 1517–1524, 2019.

[9] Y. Ding, A. Pandala, and H.-W. Park, “Real-time model predictive
control for versatile dynamic motions in quadrupedal robots,” in
International Conference on Robotics and Automation, May 2019, pp.
8484–8490.

[10] M. Chignoli and P. M. Wensing, “Variational-based optimal control
of underactuated balancing for dynamic quadrupeds,” IEEE Access,
vol. 8, pp. 49 785–49 797, 2020.

[11] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous robots, vol. 40, no. 3, pp. 429–455,
2016.

[12] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual–inertial odometry,” IEEE Transac-
tions on Robotics, vol. 33, no. 1, pp. 1–21, 2016.

[13] G. Wu and K. Sreenath, “Variation-based linearization of nonlinear
systems evolving on SO(3) and S2,” IEEE Access, vol. 3, pp. 1592–
1604, 2015.

[14] K. M. Lynch and F. C. Park, Modern Robotics. Cambridge University
Press, 2017.

[15] G. S. Chirikjian, Stochastic Models, Information Theory, and Lie
Groups, Volume 2: Analytic Methods and Modern Applications.
Springer Science & Business Media, 2011, vol. 2.

[16] C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. A. Hoepflinger, and
R. Siegwart, “Control of dynamic gaits for a quadrupedal robot,” in
IEEE international conference on Robotics and automation, 2013, pp.
3287–3292.

[17] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms
on matrix manifolds. Princeton University Press, 2009.

[18] T. D. Barfoot and P. T. Furgale, “Associating uncertainty with three-
dimensional poses for use in estimation problems,” IEEE Transactions
on Robotics, vol. 30, no. 3, pp. 679–693, 2014.

[19] A. Beck, First-order methods in optimization. SIAM, 2017, vol. 25.
[20] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding

algorithm for linear inverse problems,” SIAM journal on imaging
sciences, vol. 2, no. 1, pp. 183–202, 2009.

[21] J. D. Lee, Y. Sun, and M. A. Saunders, “Proximal newton-type
methods for minimizing composite functions,” SIAM Journal on
Optimization, vol. 24, no. 3, pp. 1420–1443, 2014.

[22] A. G. Pandala, Y. Ding, and H.-W. Park, “qpSWIFT: A real-
time sparse quadratic program solver for robotic applications,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3355–3362, 2019.

3989

