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Abstract—Evidence suggests that the metabolic cost 

associated with the locomotive activity of walking is dependent 

upon ankle stiffness. This stiffness can be a control parameter in 

an ankle-foot prosthesis. Considering unique physical 

interaction between each individual with below-knee 

amputation and robotic ankle-foot prosthesis, individually tuned 

stiffness in a robotic ankle-foot prosthesis may improve 

assistance benefits. This personalization can be accomplished 

through human-in-the-loop (HIL) Bayesian optimization (BO). 

Here, we conducted a pilot study to identify personalized ankle-

foot prosthesis stiffness using the HIL BO to minimize the cost 

of walking, shown by metabolic cost. We used an improved 

versatile ankle-foot prosthesis emulator, which enabled to test 

controllers with a wide range of stiffness conditions. Two 

participants with simulated amputation reduced their cost of 

walking under the condition of personalized (optimized) stiffness 

by 6% and 5%, respectively. This result suggests that 

personalized stiffness may improve assistance benefit.  

Keywords— Ankle-Foot Prosthesis, Stiffness, Metabolic 

Cost, Bayesian Optimization, Human-in-the-loop  

I. INTRODUCTION 

Individuals with a below-knee amputation usually 

present a higher metabolic cost, which is typically measured 

as a respiratory response, when compared to their able-bodied 

counterparts [1]. Studies have shown that the metabolic cost 

can be reduced by modifying the mechanical properties of an 

ankle-foot prosthesis [2-4] such as foot stiffness, perhaps by 

influencing gait [5-8]. In a simulation study, the improved 

locomotive performance was achieved in elastic energy 

storage and return (ESAR) prosthetic foot by stiffening the 

toe and mid-foot and reducing the stiffness in the ankle and 

heel [5]. Adjusting the stiffness throughout the different 

components of the prosthetic foot served to offload the forces 

experienced by the intact knee and accordingly reduced 

metabolic cost [5].  
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Such a mechanical parameter in an ankle-foot prosthesis 
can be personalized. Lower limb prosthesis cannot be a one-
size-fits-all design since each user has a unique weight, limb 
length, leg shape, muscle stiffness, and gait patterns.  
Therefore, the optimal stiffness profile and the relative control 
parameters of an ankle-foot prosthesis can be varied 
depending on the user [5]. A conventional method to tune the 
stiffness is the weight-dependent method [6]. Higher stiffness 
is given to a heavier individual. However, such weight-based 
parameter selection could be inconsistent with a user-
preferred parameter [7]. Another potential solution to this 
parameter selection problem is to utilize a machine learning 
approach. Such algorithms select a control parameter of an 
exoskeleton based on the user’s performance, given 
assistance using a selected parameter [2, 3, 8]. The 
personalization method mostly performed in exoskeletons 
with healthy individuals, but not in an ankle-foot prosthesis.  

Human-in-the-loop (HIL) optimization has been used as a 
personalization method using a machine learning approach. 
The algorithm first estimates a cost function from real-time 
physiological data and then uses this information to determine 
the optimal, low-cost values for specific control parameters 
[4, 8-10]. The human-in-the-loop Bayesian optimization has 
been developed to minimize overall experiment time. This 
minimal experimental time can be important when physical 
exertion for prolonged periods is difficult, especially for 
individuals with impaired mobilities, and also the 
experimental time can affect the accuracy of the metabolic 
cost metric [8]. This human-in-the-loop optimization, 
however, has not been applied for the ankle-foot prosthesis 
optimization, which may have different user-robot 
interactions [11, 12].  

Such parameter optimization requires a versatile ankle-
foot prosthesis testbed, which can present a wide range of 
torque with high-fidelity [13], [14]. An ankle-foot prosthesis 
emulator has shown such a capability of high torque, high 
power, and high control bandwidth [14]. As the human-in-
the-loop optimization often accompanies with testing a wide 
range of parameters during a prolonged period, more robust 
hardware is essential.  

In this study, we explored the importance of the 
personalized stiffness parameter in an ankle-foot prosthesis 
by employing an algorithm used in an exoskeleton. For the 
optimization, we selected ankle-foot prosthesis stiffness, 
which is a common parameter of a passive ankle-foot 
prosthesis [11].  Higher number parameter optimization may 
yield better optimization; however, it increases the 
experimental time and subsequent fatigue [15], which would 
be challenging for individuals with impaired mobilities. In the 
Method section, we first described our robustness 
improvement on the ankle-foot prosthesis emulator to enable 
us to test a wide range of stiffness parameters. Then, we 
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presented our controller implementation, including human-in-
the-loop optimization, and then a pilot study with two 
participants. In section III, we described results and discuss 
the outcomes.  

II. METHODS 

A. Mechanism: 

The two degrees of freedom ankle-foot prosthesis [15] 
was redesigned and manufactured as an end-effector for a 
tethered emulator system (Fig.1). The ankle-foot prosthesis is 
composed of a frame, two toes, and a compliant heel. The 
main body of the ankle-foot prosthesis (including the toes and 
frame) consists of 7075-T6 aluminum and was machined with 
a computer numerical control (CNC) method. Contained 
within the frame are needle bearings, which are press-fit, 
allowing two notched shafts to rotate about the same axis. 
Each shaft is then fixed to a single toe by the use of a set screw. 
The rotation of each shaft-toe assembly is similar to the 
dorsiflexion and plantarflexion of a human ankle joint. A heel 
spring machined of fiberglass provided from Gordon 
Composites is attached to a transverse surface of the frame. 

The ankle-foot prosthesis emulator operates based on 
angle and torque to generate plantar-dorsiflexion movement. 
Plantarflexion is conducted when the heel spring makes 
ground contact and when toe structures produce push-off 
from motor actuation. This emulator can adjust ankle stiffness 
through motor torque output based on ankle angle (Fig. 2).  

 

 

 
Figure 1. Mechanism of the Ankle-foot prosthesis end-effector: 

(Top) CAD model with detailed description, and (Bottom) Hardware 

implementation. We printed strain relief assembly, toes (white part), 

etc. We improved the robustness of the heel (purple part) using 

carbon fiber. Pulling the inner cable provided plantarflexion, 

releasing the inner cable and using rubber bands between screws on 

toes and the main part was for dorsiflexion. 

The redesign consisted of an improved Bowden cable 
strain relief assembly, which utilizes Thermoplastic Urethane 
(TPU) inserts. The improved assembly allows for reduced 
maintenance during walking trials by holding Bowden cables 
in place without a setscrew. The use of 3D printed polymers 
also reduces overall device weight by approximately 0.10 kg. 

 Torque and angular data are processed by sensors to 
produce ankle-foot prosthesis movement using encoders 
(U.S. Digital MAE-5 Encoders), and strain gauges (Omega), 
respectively. All sensors are packaged within newly designed 
Fused Deposition Modeled (FDM) enclosures to prevent 
damage during walking trials. FDM pads with rubber surfaces 
are attached to each toe and heel spring which serve to 
increase ground traction. 

Motors from Humotech Caplex Actuator Units 
(Humotech, Pittsburgh, USA) emit torque values restricted to 
a peak of 180N-m for ankle-foot prosthesis emulator 
application. Powerful actuation and control hardware is 
located off-board to keep worn mass low. Flexible Bowden 
cable tethers transmit mechanical power to the prosthesis but 
do not interfere with the natural movements of the limb. 
Bowden cables exert transmitted torque to the ankle-foot 
prosthesis for movement. As a pulley rotates from the actuator 
units, the conduit of the Bowden cables exerts an equal and 
opposite reaction to reduce any net force experienced by the 
end-effector itself. The inner cables of the Bowden cable then 
pull upward on the posterior aspect of each toe as the opposite 
end contacts the ground to generate a moment. This moment 
results in plantarflexion of the ankle-foot prosthesis. Also, 
during the swing phase, when torque from the actuator units 
is at a minimum, rubber bands act to dorsiflex each toe. 

Multiple preliminary tests were conducted to validate 
ankle-foot prosthesis torque control robustness before 
optimization testing. These tests included sensor calibration, 
bench-top step frequency control, and one degree of freedom 
walking [15]. 

B. Controller 

The controller was composed of three layers: low-level, 
mid-level, and high-level controller. The low-level controller 
controlled ankle-angle position, motor position, motor 
velocity, and torque.  

The mid-level controller was a walking controller based 
upon gait mechanics. We divided gait into two phases: swing 
and stance phases. The stance phase was further divided into 
dorsiflexion and plantarflexion. During the swing phase, we 
conducted ankle-angle position control. During the stance 
phase, we executed torque control. In the mid-level controller, 
it generated an ankle-angle torque curve using an optimizable 
stiffness parameter (Fig 2). Changing the stiffness parameter 
influenced the peak torque and shape of the ankle-angle 
torque curve. The desired torque, in the stance phase, was 
determined from ankle-angle torque based on ankle-angle. 

As a comparison, we also employed a control-off 
condition during walking. In this mode, motor position 
control was conducted. Therefore, the toes could only move 
slightly due to the elasticity of the ropes during walking. 
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Figure 2. Ankle-angle Desire Torque Curve in different stiffness 

values. Stiffness influenced the peak torque and angle, and also the 

shape of the ankle-angle torque curve. Higher stiffness resulted in 

higher torque. 

 

The swing, dorsiflexion, and plantarflexion were detected 
using ankle angle, torque, and power. In the swing phase, 
ankle torque should be close to zero and ankle-angle should 
be higher than 0 degrees. In the stance phase, actual torque 
should be higher than 5 N-m, and ankle-angle should not 
exceed 15 degrees. Plantarflexion occured when the angular 
velocity became zero at high torque.  

The high-level controller is an optimization controller. It 
conducted the Bayesian Stiffness parameter optimization 
using a cost function of the metabolic cost [16]. The 
optimization identified the next parameter and sent back to 
the mid-level controller to generate an ankle-angle torque 
curve. The new curve was used to command the desired 
torque of low-level control.  

C. Human-in-the-loop Bayesian Optimization 

Bayesian optimization is a sequential design strategy for 
near-global optimization of the black-box function. In 
Bayesian optimization, given observed set of data, a new 
parameter is selected 𝑥∗ [17]. These predictions are then used 
in a search for a minimum parameter of the unknown 
objective function, 𝑓 [18].  

Firstly, a probability was set prior to the optimization, 
which means that the hyperparameters were initialized with a 
“best guess” with an assumption that the collected data would 
follow a normal distribution with zero mean and covariance 
of 𝜎𝑛

2  [17]. The covariance function, which encodes the 
assumptions of the unknown objective function that we try to 
minimize, was selected based on our domain knowledge. For 
our experiment, we selected the squared exponential kernel, 
given by (2), as a covariance function [17].  

 

𝑘(𝑥𝑖 , 𝑥𝑗) =  𝜎𝑓
2exp (−

1

2𝑙2 (𝑥𝑖 − 𝑥𝑗)2) + 𝜎𝑛𝑜𝑖𝑠𝑒
2 𝛿𝑖𝑗        (2) 

 

The hyper-parameters of this covariance function, 
expressed as a vector 𝜃 , was continuously optimized by 
maximizing the log marginal likelihood, as given by (3). The 
noise hyperparameter, 𝜎𝑛𝑜𝑖𝑠𝑒 , included measurement noise 

from the respiratory measure and uncertainty due to fatigue or 
short-term adaptation. This optimization process employed 
constrained nonlinear programming to iteratively evaluate the 
log-likelihood through the use of a Cholesky decomposition 
of the covariance matrix, K, and the derivative of the log-
likelihood [17].  

                                    Max
𝜃

log(𝑦 | 𝑋, 𝜃)                           (3) 

 

The kernel function was used to calculate the Gaussian 
Process (GP) regression, which contributed a posterior 
distribution that related the dependent variable, metabolic 
cost, to the stiffness parameter, including uncertainty from the 
measurement noise. The posterior mean and covariance were 
calculated by Gaussian Process through the computation of 
the covariance matrix K, given by (4), the vector of 
covariances k between the unseen value, 𝑥∗, and the observed 
data, given by (5). 

 

                      𝑲 =  (
𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥1, 𝑥𝑛)

⋮ ⋱ ⋮
𝑘(𝑥𝑛, 𝑥1) ⋯ 𝑘(𝑥𝑛, 𝑥𝑛)

)       (4) 

 

                𝒌 = [𝑘(𝑥∗, 𝑥1), 𝑘(𝑥∗, 𝑥2), … , 𝑘(𝑥∗, 𝑥𝑛)]        (5) 

 

The predicted mean and covariance for the distribution 
containing the observed data and the unseen data point 𝑥∗ are 
given by (6) and (7), respectively. 

 

                        µ𝑛(𝑥∗) =  𝒌𝑇𝑲−1𝒚1:𝑛          (6) 

 

                     𝜎𝑛
2(𝑥∗) = 𝑘(𝑥∗, 𝑥∗) − 𝒌𝑇𝑲−1𝒌          (7) 

 

The next control parameter was selected by using the 
acquisition function using the predicted mean and covariance 
functions from Gaussian Process [19]. We used Expected 
Improvement (EI) as an acquisition function, which balances 
exploitation and exploration [8] based on our previous study  
[8], where we found that the exploration-focused Upper 
Confidence Bound method would increase experimental time, 
especially with high measurement uncertainty. The next 
parameter, 𝑥∗+1 , from EI was evaluated (𝑦∗+1 ), and then 
added to the observed dataset D. 

 

𝐸𝐼[𝑥∗] = (𝑓𝑏𝑒𝑠𝑡 − 𝜇∗)𝐶𝐷𝐹(𝑢∗) + 𝜎∗𝑃𝐷𝐹(𝑢∗)     (8) 

 

𝑢∗ =
(𝑓𝑏𝑒𝑠𝑡−𝜇∗)

𝜎∗
                                       (9) 

: mean CDF: Cumulative distribution function. 

:Standard Deviation PDF: Probability density function. 

 

In our experiment, we initialized the Bayesian 
optimization using four randomly selected parameters, 
stiffness, in each bin of 1.25-1.5, 1-1.25, 0.75-1, and 0.5-0.75. 
The range of the stiffness was 0.5 to 1.5. Then, we repeated 
the process of calculating posterior distribution using 
obtained data, parameter selection using EI, and evaluation 
until eight number of iterations (Fig. 3). For each iteration, we  

*

*
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        (a)                                            (d) 

       
        (b)                                            (e) 

       
        (c)                                            (g) 

      
Figure 3. Process of the Bayesian Optimization of 2nd, 4th,and 7th 

iterations (top, middle, bottom, respectively). (a-c) Posterior 

distribution and (d-g) expected improvement. The red stars are 

collected data, the blue line is the estimated value and the gray area 

is the standard deviation; ) 
 

collected about 30 breaths, which took approximately two 
minutes. The number of iterations was decided by visually 
investigating the change in the mean distribution with 
uncertainty from the noise measurement. 

We used cost function ( ) directly from the respiratory 
measure, z. The metabolic rate was predicted by fitting a first-
order dynamic model of 2 min respiratory data using the 
equation (10) [9].   

 

       𝑧(𝑗 + 1) =
(𝜏−𝑑𝑡(𝑗))

𝜏
𝑧(𝑗) +

𝑑𝑡(𝑗)

𝜏
+ 𝑓𝑖𝑛𝑠𝑡               (10) 

 

where j is subject breath's index and dt(j) is the time 

continuation between jth breath and (j+1)th breath.  

Using measured z and dt for 2 min,  was estimated 
using the instantaneous cost mapping method which 

employed the least-squares to minimize the error between the 
measurements and model estimation [20]. 

D. Experiment Protocol  

We tested the feasibility of the individualization by 
conducting a pilot study with two individuals with simulated 
amputation (male, Age: 26, 27, Height 173, 179 cm, Weight: 
71, 84 kg). The overall structure of the system is shown in Fig 
4. We estimated the cost of walking by measuring respiratory 
rate (Cosmed K5, Rome, Italy). The Cosmed K5 sensed 
velocity (L/min) of oxygen and carbon dioxide in the 
subject’s breath. 

 Conditions Time 

1 Standing 3 mins 

2 Control-off  5 mins 

3 Bayesian Optimization 12 mins 

4 Worst Condition 5 mins 

5 Best Condition 5 mins 

6 Control-off 5 mins 

7 Normal Walking 5 mins 

Table 1. Experiment Protocol 
 

Table 1 shows our human subject experiment protocol. 
The experiment started from the standing condition and 
control-off mode (holding the motor). We used Human-in-
the-loop Bayesian optimization method to find the worst and 
best stiffness conditions for each subject. After the HIL 
Bayesian optimization session, we provided the worst and 
best conditions to verify the HIL Bayesian optimization 
results. In the end, control-off mode and normal walking 
conditions were presented to compare to the other conditions. 
In between walking trials, the subject had 5-minute breaks.  

For the best, worst, and control-off conditions, we  
calculated and compared the metabolic cost (Met) with the 
formula (equation 11) [21] using the last two-minute data of 
five-minute walking:  

        𝑀𝑒𝑡 = (16.58 ∗ 𝑉𝑂2 + 4.5 ∗ 𝑉𝐶𝑂2)/60          (11) 

Where, 𝑉𝑂2  is the velocity of oxygen and 𝑉𝐶𝑂2  is the 
velocity of carbon dioxide.  

instf

instf

  

Figure 4. Human-in-the-loop Bayesian 

optimization of AFP stiffness parameter. 

(a) desired torque was decided depending 

on the user’s ankle angle, and the torque 

was sent to the ankle-foot prosthesis 

emulator. (b) the low-level controller 

conducted torque control to meet the 

desired torque and the user walked on a 

treadmill. (c) The measured respiratorty 

rate data were used to estimate the 

metabolic cost. (d) Bayesian optimization 

calculated the posterior distribution and 

selected the next stiffness parameter. The 

stiffness parameter decided the desired 

ankle torque curve ((a)). 
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In general, the participants walked 0.9 m/s, a self-selected 
comfortable speed. During optimization, we provided 
adaptation time to a participant by slowing down the speed 
for one minute when the condition changed. For the first 30 
seconds, the participant walked at 0.45 m/s and then at 0.675 
m/s during the following 30 seconds, and 0.9 m/s for the last 
minutes. To be consistent, we also provided similar 
adaptation periods to other conditions. Subjects were also 
allowed to have enough break time to recover from fatigue 
under the controlled environment such as sound and light.  

III. Results and Discussion 

A. Ankle-foot prosthesis emulator – tracking performance 

The ankle-foot prosthesis emulator presented a wide range 
of torques with small tracking errors (less than 1% compared 
to peak torque for all conditions) (Fig 5a, c, e, g). For the error,  

A. 

(a)                                    (b) 

 
(c)                                    (d) 

 
B. 

(e)                                    (f) 

 
(g)                                    (h) 

 
Figure 5. Ankle angle-torque mechanics for the best condition. (A) 

subject 1 (stiffness = 1.15) and (B) subject 2 (stiffness = 1.5). In the 

figures, we showed the desired torque (blue line), mean value 

(black line), and standard deviation (grey area). Each of A) and B) 

presents four curves, ankle-angle torque curves (a, e), ankle 

position (b, f), ankle torque tracking performance (c, g), and ankle 

power (d, h).  

we used the RMS (Root Mean Square) error between desired 
torque and actual torque using the last two minutes' data, 
which contained approximately 100 steps. The emulator also 
showed a wide range of motion in ankle angle (Fig 5a, b, e, 
f), and provided high power up to 1 kW (Fig 5d, h). These 
characteristics made it ideal for this device to test the 
importance of personalization through human-in-the-loop 
Bayesian Optimization.  

B. Personalized stiffness using HIL Optimization  

The optimal stiffness was vastly different between the two 
subjects, which resulted in different ankle angle torque curves 
and power curves (Fig 5). The best stiffness parameter was 
1.15 and 1.5 for the participants 1 and 2, respectively. For the 
best conditions, the participant 1 and 2 reduced their cost of 
walking by 5% and 6% on average compared to the control-
off condition (Fig. 6). The worst parameters were 0.85 and 0.5 
for participants 1 and 2, respectively, and the participants 
increased the metabolic cost by 3% and 1%, respectively (Fig. 
6). This result is similar to the outcome from the metabolic 
cost landscape, depending on the stiffness conditions (Fig. 7).  

In addition, both of the personalized parameters were 
different from the weight-based parameter, which was about 
0.9 for participant 1 and 1 for participant 2. These parameter 
sets actually could increase the cost of walking. This result 
suggests that personalized assistance can be useful to 
maximize assistance benefits. Rigorous investigation with an 
increased number of participants would clearly reveal the 
importance of personalization.  

 

 
Figure 6. Left: Experimental setup. Right: Metabolic Cost 

Reduction for subject 1 (blue) and subject 2 (orange), for the 

conditions of best personalized stiffness (solid fill) and worst 

personalized stiffness (dashed fill), compared to the powered-off 

condition. The personalized stiffness greatly reduced the cost of 

walking for two participants.  

IV.  CONCLUSION 

We conducted a pilot study to test the importance of 
personalized assistance in ankle-foot prosthesis with 
individuals with simulated amputation, motivated by the 
previous studies on the exoskeleton. For this study with an 
ankle-foot prosthesis, we improved our previous ankle-foot 
prothesis emulator for the purpose of robustness 
improvements and employed human-in-the-loop Bayesian  
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(a) 

 
(b) 

 
Figure 7. Metabolic cost landscape of subject 1 (a) and 2 (b). The 

blue lines are the mean metabolic cost curve, and gray areas 

indicate the uncertainty of the curve. The red star indicates the 

collected data.  

 

optimization to personalize ankle-foot prosthesis parameters. 
The improved emulator enabled us to continuously conduct 
an experiment more than twenty minutes while tracking the 
desired torque with minimum error. Compared with the 
weight-based parameters, the predictive mean of Gaussian 
processes at optimized parameters was lower. The pilot study 
shows that the optimization helped to identify the optimal 
stiffness parameter set, which reduced the cost of walking. 
Future work will include a systematic investigation of the 
stiffness optimization in ankle-foot prosthesis emulator with 
a refined experimental protocol for a rigorous comparison to 
the weight-based parameter. Another direction would be 
investigating the effect of the personalization on the physical 
effort using other clinically relevant parameters with an 
advance in optimization speed. We will also investigate other 
related cost function, such as socket interface pressure [22]. 
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