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Abstract— Animal-level agility and robustness in robots can-
not be accomplished by solely relying on blind locomotion
controllers. A significant portion of a robot’s ability to traverse
terrain comes from reacting to the external world through
visual sensing. However, embedding the sensors and compute
that provide sufficient accuracy at high speeds is challenging,
especially if the robot has significant space limitations. In
this paper, we propose a system integration of a small-scale
quadruped robot, the MIT Mini-Cheetah Vision, that extero-
ceptively senses the terrain and dynamically explores the world
around it at high velocities. Through extensive hardware and
software development, we demonstrate a fully untethered robot
with all hardware onboard running a locomotion controller
that combines state-of-the-art Regularized Predictive Control
(RPC) with Whole-Body Impulse Control (WBIC). We devise
a hierarchical state estimator that integrates kinematic, IMU,
and localization sensor data to provide state estimates specific to
path planning and locomotion tasks. Our integrated system has
demonstrated robust autonomous waypoint tracking in dynamic
real-world environments at speeds of over 1 m/s with high rates
of success.

I. INTRODUCTION

The unique ability of legged systems to exploit discrete
ground contacts provides a massive mobility advantage over
wheeled and tracked systems when it comes to unstructured
terrain. However, this advantage simultaneously invites a
host of new and rich challenges related to planning, con-
trol, and hardware design. The immense upside of legged
robots with animal-level locomotion capabilities has moti-
vated considerable research in recent years [1]–[3]. Impres-
sive developments in locomotion control algorithms [4]–[6]
have opened the door for new research avenues related to
increased autonomy and practical, task-oriented behaviors. In
the area of quadruped locomotion, the majority of these con-
trol algorithms and their practical applications are designed
specifically for medium to large-scale robots [7], [8]. Despite
the many applications of small-scale quadrupeds including
exploration of narrow regions such as tunnels, damaged
buildings, ships, and submarines, they have, in comparison,
received very little research attention [9]. This holds true
to an even greater extent for vision-integrated small-scale
legged robots.

The ability for a robot to blindly traverse terrain is critical
for primitive locomotion balancing, but does not render it
very useful in terms of task execution. As robots mature
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Fig. 1. Mini-Cheetah Vision navigating a real-world environment.
The robot is able to autonomously navigate the rough garden terrain while
avoiding obstacles such as shrubbery and light posts.

to the point where they can capably maneuver challenging
terrain, the ability to actively plan intelligent paths and
footholds within its environment becomes increasingly im-
portant. The robot should possess higher-level reasoning to
compute an optimal path to take between locations as well as
determine whether or not it is feasible to take a certain path.
While these tasks have been studied in depth for various
autonomous systems ranging from ground vehicles [10] to
quadrotors [11], the interactions of controlled-limb systems
with the environment has received arguably less attention.
Of the prior published research, most of them focused on
utilizing A* search for biped humanoid robots as in [12]–
[14].

There has been plenty of success showing various tech-
niques and frameworks for embedding perception into robot
control systems [15]–[17]. Many demonstrate that tightly
embedding external perception data into trajectory planning
and balance, while maintaining the independence of the lo-
comotion control, is crucial for a reliable and robust system.
This work presents our methods for extending blind locomo-
tion capabilities by incorporating perception and higher-level
intelligent path planning.

A. Contributions

Much of the preceding work on the Mini-Cheetah robot
platform focused on improving operator-guided blind loco-
motion performance. In this work, we present the consid-
erable improvements done to the original vision-processing
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Fig. 2. Onboard Sensing Suite. Three Intel RealSense cameras are
mounted on the Mini-Cheetah Vision. Two T265 tracking cameras are
mounted internally on either side, and a D435 depth camera is mounted
at a fixed angle on the front of the robot.

implementation as described in [18], and describe our ad-
dition of higher-level decision-making for autonomous path
planning in dynamic environments. Our system integration of
various components results in an onboard visual-perception
system that is implemented on the small-scale, low-cost
quadruped, Mini-Cheetah Vision. The locomotion framework
previously presented is modified to directly make use of the
visual data by informing the locomotion controllers of the
surrounding terrain, while maintaining the inherent control
robustness demonstrated in prior work. This framework
combines intelligent, perceptive path planning and robust
control to allow the robot to autonomously navigate real-
world environments involving unsteady, unstructured terrain
while deciding whether obstacles are traversable or should
be planned around.

II. SYSTEM OVERVIEW

The platform used in this study is the upgraded MIT Mini-
Cheetah [19], dubbed the Mini-Cheetah Vision. The robot
stands 0.3 m tall with a mass of approximately 9.6 kg.
Its upper and lower leg links measure 0.21 m and 0.20 m,
respectively. The robot is outfitted with a set of exteroceptive
sensors that enable environmental perception and global state
estimation which we describe below.

A. Onboard Exteroceptive Sensing

Perception of the Mini-Cheetah Vision’s environment is
achieved via three Intel RealSense cameras: a D435 depth
camera and two T265 tracking cameras. The layout of the
cameras on the robot is shown in Fig. 2. These particular
cameras were selected because their small size, low power
consumption, and high frame rate fulfill the strict require-
ments necessary for rapid onboard sensing.

The D435 depth camera, mounted on the front of the robot,
is used to detect obstacles and build local maps of the robot’s
terrain. It measures 90 mm× 25 mm× 25 mm, has a mass
of 71.8 g, and a 86◦ × 57◦ × 94◦ field of view. The sensor
publishes 640×480 depth images at a rate of 90 Hz and has
an accuracy of less than 1% error per meter from the sensor.

The T265 tracking cameras, mounted on either side of
the robot, are used for localizing the global position and

orientation of the robot. Each camera measures 108 mm ×
24.5 mm× 12.5 mm with a mass of 55 g. The two fisheye
lenses in each camera have a combined field of view of
163± 5◦. The T265 publishes a pose estimate produced by
its visual-inertial SLAM algorithm at a rate of 200 Hz.

B. Framework Overview

Our framework consists of four primary components: vi-
sion processing and high-level planning, locomotion control,
state estimation, and a motion library. Vision processing
computes the robot’s absolute pose and builds a heightmap
surrounding the robot. The outputs are then sent to the
high-level planner which computes an optimal path to the
desired goal location as a series of discrete waypoints. These
points are then translated into joint torque and velocity
commands for the locomotion controller. The Lightweight
Communication and Marshalling (LCM) [20] library is used
for all data serialization and transfering between modules.
Lastly, the motion library saves pre-optimized motions such
as jumping, backflipping, and recovery stand-up protocols
that can be utilized when normal locomotion is insufficient.

Simultaneous, real-time operation of the vision and control
systems poses a difficult challenge. The dense visual data
processing done by the vision system and the nonlinear opti-
mization of the locomotion controller both require significant
computational bandwidth that must be carried out in realtime
on the robot. A design modification involving extending the
length of the robot’s body frame allowed an NVIDIA Jetson
TX2 to be fit inside the robot’s body along with the standard
UP board. This additional computing power allows for the
Mini-Cheetah Vision to be a fully untethered platform.

C. Global State Estimation

State estimation for the robot is handled via a two-tiered
hierarchical structure, similar to the framework described
in [21] that integrates kinematic, IMU, and localization sen-
sor data. The hierarchical framework leverages the benefits of
the various sensor data streams to create a state estimation
algorithm that is optimized for our dual planning and lo-
comotion control architecture. High-level planning and low-
level locomotion control are executed at different frequencies
and depend on separate states of the robot. Specifically,
high-level planning utilizes the estimated absolute position
and yaw of the robot, while low-level planning requires the
robot’s linear and angular velocity as well as its estimated
height relative to the ground beneath it. Furthermore, the
level of accuracy required for each task is different. The
hierarchical framework is able to accommodate the require-
ments of each task in a way that simultaneously allows for
high-speed locomotion over challenging terrain and efficient,
obstacle-robust planning.

The hierarchical approach differs significantly from ap-
proaches that tightly fuse and smooth all leg odometry,
inertial measurements, and visual odometry into a single
state estimate used for both planning and locomotion. Im-
plementations following this approach have included fusing
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Fig. 3. High-Level System Architecture. Block diagram visualizing the software architecture and the interaction between modules. Green represents the
perception and planning module, blue represents the state estimation module, and red represents the locomotion control module. The motion library (not
shown) is a separate component. The main novelty of this paper is signified by improvements made to the the green section of this schematic.

and smoothing techniques such as extended Kalman Fil-
ters [22] and factor graph optimizations [23], [24]. Previous
work involving high speed locomotion of the MIT Mini-
Cheetah [25] employed a kinematic-inertial state estima-
tion paradigm [26] that assumed flat ground. In this work,
we remove the flat ground assumption by incorporating
heightmap data from the D435 depth camera. Unlike the
“robot-centric” approach [27], [28] that constructs a proba-
bilistic local heightmap based purely on relative localization
from kinematic and inertial measurements, our approach uses
vision-based global localization to construct the heightmap
that then informs the locomotion-level estimator. Estimates
of the height of the terrain at each of the stance foot locations
combined with the kinematic data from each stance leg
enables fast and accurate estimation of the robot’s height
relative to the ground. This technique for synthesizing the
relative body height is preferred over a method that directly
uses the localization data because the localization data up-
dates at a slower frequency and is more sensitive to the
highly dynamic motion of the body as it moves. Using our
technique, the robot’s global position and yaw angle still
suffer from drift, an unavoidable symptom of the kinematic-
inertial estimation paradigm, but this drift has no effect on
the locomotion controller since it does not depend explicitly
on these states.

Autonomous path planning, however, does depend on the
robot’s global position and yaw angle. To this end, the
T265 cameras mounted on either side of the robot provide
the localization measurements upon which the higher-level,
visual-inertial estimation is based. The dual cameras allow
for accurate, drift-robust localization even in cases where
the view from one side of the robot is obstructed. In the
case where both sides of the robot are obstructed or if the
robot is operating in exceptionally low-light conditions, the
state estimator will resort to using only kinematic-inertial
data streams.

D. Heightmap Construction

Our heightmap construction algorithms are similar to work
done in [18]. The Intel Realsense D435 camera mounted
at the front of the robot publishes pointclouds that are
transformed from the camera frame to the world frame using
transformation matrices within the Special Euclidean group
SE(3). This world-frame pointcloud is then used to update
a 2.5D heightmap where the height is encoded as an entry
in a two-dimensional matrix. In particular, we discretize the
world into square cells with side lengths of 10 cm and assign
height values based on the z-coordinate of the most recent
pointcloud point that falls within the corresponding grid cell.

We employ a heightmap filtering and traversability evalua-
tion scheme, as the traversability map is a crucial component
in the path-planning pipeline. The same erosion and dilation
matrices are applied to the heightmap as in [18], as well as
the gradient filters to create compute the traversability of the
terrain. Since in reality the robot body is not a point mass
and has non-negligible length and width, we further apply a
Gaussian blur filter with kernel size 5×5 to expand the non-
traversable regions around obstacles in the traversability map
such that the robot can actually pass by the objects without
any collisions. The result is a two-dimensional matrix where
entries containing zeros mean that the cells are traversable
by the robot’s center of mass (CoM) while entries containing
non-zero values are not.

III. LOCOMOTION CONTROL

The robot is controlled by a set of hierarchical locomotion
controllers that work together to take the desired CoM path
and calculate joint torques that are sent to the robot. A
Regularized Predictive Controller (RPC) uses a nonlinear
optimization formulation on a simplified robot model to
calculate ground reaction forces, footstep locations, and robot
CoM states over a future prediction horizon. The results of
this controller are passed into a Whole-Body Impulse Con-
troller (WBIC), which finds the instantaneous joint torques
that will minimize a quadratic program to track the desired
CoM trajectory, as well as the ground reaction forces coming
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from the RPC on a full robot model. Together, the two
controllers work to take the best parts of each, specifically
the prediction capabilities of RPC and the use of the full
system model in WBIC.

A. Regularized Predictive Control (RPC)
The RPC controller has been demonstrated on the MIT

Cheetah 3 and Mini-Cheetah quadruped robots [5], [29],
[30], which we briefly describe here. Using a simplified
lumped-mass robot model with a massless leg assump-
tion, the number of states describing the robot is largely
reduced. The CoM states, x =

[
pT ΘT ṗT Θ̇T

]T
,

are composed of the position, p, Euler angles, Θ, and
their derivatives while the inputs to the system, u =[
rT1 fT

1 . . . rT4 fT
4

]T
, are the footstep vector and

corresponding ground reaction forces. With this definition of
the system, we can describe the simplified discrete dynamics
to be

xk+1 = Akxk +Bkh(χk,Φk) + dk (1)

where Φ describes the scheduled gait pattern and the matri-
ces are linear and time varying as

Ak =

[
I6 dtkI6
06 I6

]
Bk =

[
dt2k
2 I
−1

dtkI
−1

]
dk =

[
dt2k
2 ag

dtkag

]
. (2)

The net wrench on the CoM is calculated from the cumula-
tive contributions of each stance foot’s ground reaction force
at the step location as

h(χk,Φk) =

[
f
Bτ

]
=

4∑
i=1

[
I3

R(Θk)
T
[
ri,k
]
×

]
Φi,kfi,k.

(3)

Here, the full CoM orientation rotation matrix R(Θk) is
used to convert the torques into the body frame in order
to maintain the linear simplicity of the rest of the discrete
dynamics.

Decision variables in the optimization, χ =
[
xT uT

]T
,

are composed of a combination of robot CoM states and
inputs for all timesteps within the decided prediction horizon,
k ∈ 0, ..., N − 1. The number of timesteps can be selected to
be anything, although in practice it is common to use N = 5.
Decision variables are regularized to simple heuristics that
are expertly designed or extracted from simulation data and
embedded into the cost function through error terms

χ̃ = Hχ

(
χ,Φ,xd

)
− χ. (4)

The process for extracting data-driven heuristics is detailed
in [30]. The controller can be framed as a general nonlinear
optimization formulation written to be

min
χ

J(χ) =
N−1∑
k=0

χ̃T
kWkχ̃k

s.t. xk+1 = Akxk +Bkh(χk,Φk) + dk
ζk(χk,Φk) ≤ 0

ζ′k(χk,χk+1,Φk,Φk+1) ≤ 0

(5)

where ζk and ζ′k are the instantaneous and linking con-
straints, respectively.

While the controller has shown exceptional blind locomo-
tion robustness to various unexpected terrain changes, the
constraint corresponding to placing the feet on the estimated
ground height,

ẑg(p
x
i , p

y
i )− pzi = 0, (6)

can be informed using the height and traversability maps
output by the vision system. Rather than setting the nominal
ground height to be 0 as was done with the blind controller,
the vision system provides an actual estimated ground height,
ẑg(p

x
i , p

y
i ), at each potential footstep location. This change

is simple, but smooths the results to preemptively expect
contact with the ground at a certain height rather than have
to react after the fact. Previously, the controller required off-
board computing to send control results to the Mini-Cheetah
Vision robot, but with the upgrades outlined in Section II, it is
now run entirely on the robot without the need for tethering.

B. Whole-Body Impulse Control (WBIC)

Using the reaction forces found by the RPC, the WBIC
computes joint position, velocity, and torque commands.
Quadratic programming then finds the reaction forces that
reduce both errors in acceleration command tracking and
reaction force command tracking while satisfying inequality
constraints on the resultant reaction forces. The resultant
reaction forces are used to find torque commands from the
multi-body dynamics which can be written as

A

(
q̈f
q̈j

)
+ b+ g =

(
06

τ

)
+ J>c fr, (7)

whereA, b, g, τ , fr, and Jc are the generalized mass matrix,
Coriolis force, gravitation force, joint torque, augmented
reaction force and contact Jacobian, respectively. The term
q̈f ∈ R6 is the acceleration of the floating base and q̈j ∈ Rnj

is the vector of joint accelerations, where nj is the number of
joints. We use 06 to represent a six-dimensional zero vector
and 0n to represent a n-dimensional zero vector.

We compute the final reaction force with the acceleration
command found in the previous step and the reaction force
obtained from RPC. For the optimization, we use an open-
source QP solver [31] that is efficient for small problems.
The formulation of our QP problem is

min
δfr ,δf

δ>frQ1δfr + δ
>
f Q2δf (8)

s.t.

Sf (Aq̈ + b+ g) = SfJ
>
c fr (floating base dyn.)

q̈ = q̈cmd +

[
δf
0nj

]
(acceleration)

fr = fRPC
r + δfr (reaction forces)

Wfr ≥ 0, (contact force constraints)

where fRPC
r and Sf are reaction forces computed by the

RPC and the floating base selection matrix, respectively. Jc

and W are the augmented contact Jacobian and contact
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constraint matrix, respectively. δf and δfr are relaxation
variables for the floating base acceleration and reaction
forces. The method to find the joint position, velocity, and
acceleration commands reflecting prioritized task hierarchy
is explained in more detail in [25].

C. Path Planning

To efficiently reach the desired goal location without col-
liding into obstacles, we implemented an A* search variant
introduced in [32]. The operator selects a 3D coordinate
within the world frame as the destination goal which gets
compared against the robot’s current center-of-mass position
computed by the state estimator. If the distance between the
two points is larger than some small tolerance, the planner
begins computing a path consisting of a discrete set of 3D
points in the world frame. We chose a grid resolution of
10 cm and found that this value was appropriate in terms of
computation time and optimality.

The planner runs at 100 Hz on the NVIDIA Jetson TX2
and continuously publishes paths over LCM to the robot’s
UP board computer where the locomotion controller executes
the path. This continuous replanning allows the robot to
be able to autonomously traverse dynamic environments as
well as be robust to disturbances such as getting pushed or
knocked over. Furthermore, since the selected goal point may
initially be placed outside of the range of the perception
sensors, continuous replanning allows the robot to modify
its trajectory if it encounters a new obstacle anywhere along
the path. If the goal point is placed so far away that the
computation time would exceed the planner’s alotted time
to run, we time-bound the algorithm and return a path to
an explored node in the graph with the smallest Euclidean
distance to the goal. Planning is currently done only in 2D
along the x and y axes for computational efficiency, but we
note that the robot is still able to climb objects and change
its z-coordinate so long as the calculated gradient along the
path is below the threshold value during traversability map
generation.

Once the planner finishes computing, the path is passed
along to the lower-level controller to be converted into a
meaningful command. To follow the path, the controller
computes desired linear and angular velocities in a PD
fashion based on where the next waypoint is located. We
constrain the commands to only forward linear velocities and
angular yaw rates in order to keep the robot in line with the
path and facing the next waypoint, and take in as an input
the maximum desired forward velocity. We note that in order
to prevent jerkiness during locomotion, we smooth out the
path by only requiring the robot’s CoM to come within 5 cm
of the currently tracked waypoint before moving on to the
next one. Path tracking stops once the robot CoM reaches
the final node in the planned path.

D. Posture Adaptation

We adjust the height and pitch of the robot based on
the shape of the terrain where the robot is standing. In the
computation of the height, the current stance feet heights and

upcoming step location heights are used to find the average
ground height. The desired height is then set as a constant
offset from the average ground height. However, simply
updating the desired height based on the upcoming location
can cause sudden jumps in the command, and therefore, we
use a low-pass filter to avoid a jerky height command.

Mini-Cheetah Vision adjusts to sloped terrain by changing
the pitch of its body relative to the positions of its four
feet. We represent individual footstep locations as pi =
(pxi , p

y
i , p

z
i ) for i = 4 feet, and have px, py , pz represent

the locations of each foot in x, y, z respectively, e.g. px =
(px1 , p

x
2 , p

x
3 , p

x
4). We calculate the least-squares plane for the

feet contacting the ground to derive the local slope of the
walking surface, where the surface is modeled as a plane:

z(x, y) = a0 + a1x+ a2y. (9)

Using the plane, we determine the angle of pitch and
adjust the desired posture accordingly. The coefficients a =
(a0, a1, a2)

T of (9) are calculated from the least squares
problem:

a = (W TW )†W Tpz (10)

W = [1 px py]4×3. (11)

This finds the best-fitting plane for the collection of points
for the most recent foot contact of all four legs. Note that
(W TW )† is the pseudoinverse of the non-square matrix
W TW . Pitch posture adaptation was constructed following
the work of [33].

IV. RESULTS

This section presents our results from experiments in a
variety of real-world terrains using the fully-integrated Mini-
Cheetah Vision robotic platform. Simulated environments
were created to test the framework and visualize the path
replanning as obstacles enter the field of view. Real-world
testing in both indoor and outdoor environments with terrain
surface changes as well as naturally-occurring obstacles
verified the upgraded robot’s online autonomy.

A. Path Planning in Simulation

Experimentation directly on the robotic hardware can be
tedious and risky, so we first tested our entire implemen-
tation in simulation using the MIT Biomimetic Robotics
Lab’s open-source simulator1. In particular, we tested our
fully-integrated A* path planner in numerous simulated
environments with varying difficulties of terrain includ-
ing flat ground, uneven ground, narrow hallways (Fig. 4),
mazes (Fig. 5), and stairs (Fig. 6). In all cases, the robot
was able to reach the desired goal point at velocities well
surpassing 1 m/s without colliding into any walls or obsta-
cles. Furthermore, the robot was able to successfully replan
its path when the user changed the location of the waypoint
during locomotion.

1https://github.com/mit-biomimetics/
Cheetah-Software
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Fig. 4. Path planning through a simulated hallway. (a) The robot au-
tonomously navigates through a simulated hallway to the desired waypoint.
The planned path is displayed as a blue line. (b) The local traversability map
is overlaid in simulation. The blue grid represents non-traversable locations
for the robot’s center of mass.

Fig. 5. Path planning through a simulated maze. The robot continuously
replans as the waypoint (red) is moved throughout the maze. The planned
path is displayed as a blue points.

B. Path Planning on Hardware

After verifying our code in simulation, we ran various
experiments on the actual hardware platform in real-world
environments. In particular, we chose environments, both
indoor and outdoor, with assortments of obstacles for the
robot to avoid including trees, rocks, shrubbery, uneven
ground, buckets, and trash cans. During each of the tests, we
manually set a waypoint approximately 40 m away from the
robot and then let it walk on its own. We emphasize that the
selection of the waypoint was the only human interaction re-
quired and that the rest of the experiments were completed in
an entirely autonomous manner with the robot achieving an
average speed of just above 1 m/s. Specific demonstrations
of the real-time path planning implementation on hardware
are shown in Fig. 7 and Fig. 8.

In addition to the general real-world tests, we also specif-
ically evaluated the robot’s ability to continuously replan

Fig. 6. Path planning over stairs. The path planner recognizes stairs as
traversable and the heightmap allows the robot to accurately estimate its
state on non-flat terrain, enabling the robot to climb stairs with steps that
are 25 cm deep and 15 cm tall. state estimation and

trajectories in the presence of randomly-applied disturbances.
We found that when a human pushed the robot while moving,
it was consistently able to maintain balance and replan its
path to reach the desired waypoint despite being thrown off
of the original trajectory. Fig. 9 displays the logged results of
the x and y positions of the robot, where it is clear that the
robot recovered after each shove, showcasing its robustness
to unforeseen disturbances in the real world.

C. Posture Adaption to Terrain

Without prior knowledge of the terrain, the Mini-Cheetah
Vision robot is capable of adjusting its posture to changes in
slope by deriving the plane of the feet location and adjusting
the body pitch accordingly. This enables the robot to more
robustly handle the traversal of unstructured environments
where uneven footing makes a level body posture less
advantageous, as is often the case when walking up ramps
or climbing staircases. Fig. 10 demonstrates the difference
between no posture adjustment in (a) and dynamic pitch
control due to the sloped platform in (b). The robot is
capable of deriving the best fitting plane of its feet contacts in
realtime and using the forward aligned slope angle to adjust
its own body posture pitch.

V. CONCLUSION AND FUTURE WORK

The work presented in this paper represents a culmination
of research efforts towards robot autonomy. The philosophy
of the work by the MIT Biomimetic Robotics lab focuses on
developing blind locomotion controllers [5], [34] to be able
to traverse unstructured terrain without the reliance on exter-
nal perception sensors, but to use knowledge of the environ-
ment when available to augment the locomotion controllers
and autonomously plan paths. The blind controllers are able
to tackle challenging environments including cluttered debris
and stairs, as demonstrated in [33], [35]. However, since this
work was done within controlled environments with user-
guided velocity commands and simple rigid trajectories that
did not incorporate intelligent planning, the robot would fail
to recognize non-traversable obstacles in its path. Recently,
a visual perception system was added to the Mini-Cheetah
Vision robot in order to understand its environment and make
modifications to simple CoM trajectories [18]. With the work
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Fig. 7. Real-time path planning and obstacle avoidance on hardware: Demo 1. The robot recognizes and avoids two obstacles in its path as it walks
across the platform. The visualization in the upper-right corner illustrates what the robot sees, with green cells representing traversable terrain, blue cells
representing non-traversable terrain, and the blue line representing its planned path.

Fig. 8. Real-time path planning and obstacle avoidance on hardware: Demo 2. The robot walks through a cluttered hallway as it tracks the waypoint.

Fig. 9. Perturbation-robust online path planning. A graph showing the
x and y position of the robot’s CoM as it follows a planned trajectory. We
see that the robot successfully reaches the desired waypoint even in the
presence of human-applied pushes at randomly-selected times.

completed in this paper, we build on the aforementioned
results by adding the capability for the robot to autonomously
plan paths in arbitrary environments through higher-level
decision making.

The added autonomy marks a crucial step towards de-
ployment of robots in real-world environments. Despite the
numerous successes in developing robots that can traverse
any terrain, without a higher-level intelligent planner or
constant operator guidance, the robot is not particularly
useful in many of the intended applications of legged robots.
By making use of the vision-modified planning framework
presented, future work can now focus on goal-oriented
tasks. For example, the robot will be able to receive a
certain waypoint location to deliver a payload to and can
continuously replan its trajectory based on the situation to
autonomously avoid unexpected obstacles or other moving
robots and humans.

Fig. 10. Posture pitch adjustment due to sloped terrain. Mini-Cheetah
Vision walking onto a sloped surface: (a) without pitch posture adjustment,
and (b) with pitch posture adjustment added to the desired pitch of the body.

In addition to adding more general autonomy, work is
being done to reduce the computational load of the locomo-
tion controllers for small-scale robots with limited compute
power. With the NVIDIA Jetson TX2 computer, the RPC
optimization is solved online at a frequency of only 50 Hz,
which is within the requirements for steady-state locomotion,
but as found in [29], the performance under disturbances
diminishes with lower solve frequencies. At higher frequen-
cies the controller has greater robustness against disturbances
and overall better locomotion performance. An imitation
learning approach in the form of behavior cloning similar to
[36] is being developed to replace the difficult optimization
problem with a fast neural network. The ground-truth labels
for this supervised-learning problem will be collected from
an expert demonstrator through simulation and used to train a
policy network. Initial experiments performed using a neural
network policy on the robot have shown promising results for
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balancing. This should allow robots with less computational
power to approximate the robust results of RPC and greatly
improve the accessibility of our presented work.
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