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Abstract— This paper presents a novel localisation frame-
work based on an omnidirectional camera, targeted at outdoor
urban environments. Bearing only information to persistent
and easily observable high-level semantic landmarks (such
as lamp-posts, street-signs and trees) are perceived using a
Convolutional Neural Network (CNN). The framework utilises
an information theoretic strategy to decide the best viewpoint
to serve as an input to the CNN instead of the full 360°
coverage offered by an omnidirectional camera, in order to
leverage the advantage of having a higher field of view with-
out compromising on performance. Environmental landmark
observations are supplemented with observations to ground
surface boundaries corresponding to high-level features such as
manhole covers, pavement edges and lane markings extracted
from a second CNN. Localisation is carried out in an Extended
Kalman Filter (EKF) framework using a sparse 2D map of
the environmental landmarks and Vector Distance Transform
(VDT) based representation of the ground surface boundaries.
This is in contrast to traditional vision only localisation systems
that have to carry out Visual Odometry (VO) or Simultaneous
Localisation and Mapping (SLAM), since low level features
(such as SIFT, SURF, ORB) do not persist over long time frames
due to radical appearance changes (illumination, occlusions etc)
and dynamic objects. As the proposed framework relies on high-
level persistent semantic features of the environment, it offers
an opportunity to carry out localisation on a prebuilt map,
which is significantly more resource efficient and robust. Ex-
periments using a Personal Mobility Device (PMD) driven in a
representative urban environment are presented to demonstrate
and evaluate the effectiveness of the proposed localiser against
relevant state of the art techniques.

I. INTRODUCTION

Localisation remains one of the most fundamental and
challenging tasks for an autonomous vehicle. Among the
sensor modalities that aid in localisation, vision sensors stand
out as low-cost compact sources that offer rich information
about the operating environment of a mobile robot [1].
This paper presents an outdoor vision based localisation
framework, targeted at low speed (under 15 Kmph), resource
constrained autonomous vehicles operating in urban and
suburban pedestrian environments such as footpaths and
pavements. Typical examples range from Personal Mobility
Devices (PMDs) such as mobility scooters and powered
wheelchairs, to delivery robots. There is a significant in-
terest in incorporating self driving capability to PMDs for
improving their safety and efficacy. The framework proposed
in this paper has been implemented and evaluated on an
instrumented mobility scooter platform described in [2].
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Vision based systems operating in outdoor environments
need to deal with the challenges caused by appearance
changes (illumination, occlusions) and the presence of
dynamic objects. Traditionally this has been addressed
by resorting to Simultaneously Localisation and Mapping
(SLAM) or pure Visual Odometry (VO) which do not require
the environment representation to be invariant. However, this
is at the expense of a significant increase in computational
cost and decrease in robustness. Comparatively, given a
suitable sensor and a representation of the environment
that does not change with time, localisation on a prebuilt
map is a relatively straightforward task. Thus, the proposed
framework aims to address this by focusing on high-level
semantic observations of environmental landmarks (street
lamps, tree trunks, parking meters etc) and ground surface
boundary observations (pavement edges, manhole covers etc)
obtained from state of the art Convolutional Neural Networks
(CNN). Localisation is carried out on a prebuilt sparse 2D
map of the landmark features and Vector Distance Transform
(VDT) representation of ground surface boundaries. The
work presented in this paper builds on our previous work [2],
[3] by leveraging an omnidirectional camera and an active
vision paradigm to improve robustness and performance.

The use of an omnidirectional camera overcomes an
inherent limitation most vision based localisation approaches
face due to the limited field of view (FoV) of conventional
cameras, in comparison to the blanket coverage that sensors
such as LIDARs offer. This is specially crippling in highly
dynamic environments such as outdoor urban settings where
significant portions of the available FoV maybe occluded [4].
However, utilising omnidirectional cameras for localisation
also introduces it’s own set of challenges. In particular, a
high resolution sensor is required to counteract the impact
of the large field of view on the environmental features
resulting in an increase in the computational cost. An active
perception paradigm [5] to determine when and where to
make observations is proposed to deal with this issue. An
information gain based metric is employed to select the
portion of the image that is to be processed for feature
extraction instead of the entire 360 image, in order to
provide the best trade off between processing limitations and
localisation accuracy. The contributions of this paper are:

• A localisation framework that takes advantage of omni-
directional cameras through CNN based perception of
high-level semantic information of the environment.

• An information gain based active vision paradigm for
perspective viewpoint selection to improve the efficacy
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and functionality of the proposed framework.
• A detailed evaluation, comparison (against ORB-

SLAM2 [6], VINS [7] and RTAB [8]) and demon-
stration of the proposed system based on real world
experiments carried out using an instrumented PMD.

The remainder of this paper is structured as follows:
Section II discusses the state of the art related to the work
presented in this paper. Section III details the proposed
localisation framework. Section IV provides a brief overview
of the configuration of the hardware platform that was used
for evaluation. Section V presents an evaluation of the
proposed system on real world data, including a comparison
with state of the art open source visual localisation schemes.
Finally, Section VI offers a brief discussion on the results
and proposed future work.

II. RELATED WORK

The past decade has witnessed enormous progress in the
field of vision based localisation. Feature based approaches
that first extract low level handcrafted features such as SIFT,
SURF or ORB features in order to carry out pose estimation,
such as ORB-SLAM [6], [9], VINS [7], Kimera [10] and
RTAB [8] are noteworthy state of the art contributions. Direct
and semi-direct appearance based approaches that take into
account pixel intensities of the entire image for motion
estimation such as LSD-SLAM [11] and DSO [12] have
also proven to be remarkably effective. However, all these
techniques rely on generating a location estimate while at
the same time building a local or global representation of
the environment, significantly adding to the computational
effort required. Furthermore, these rely on “loop closure”
which is essential to avoid the inevitable drift in the location
estimate, which is challenging in outdoor urban settings due
to dynamic objects and appearance changes [13] [14].

Some of these challenges can be dealt with by extending
the above techniques to accommodate omnidirectional cam-
eras with the expectation that the large FoV will offer better
feature tracking and robustness to occlusion [4]. Notable
examples include both feature based techniques [15]–[18]
and direct techniques [19]–[22]. Complications associated
with using omnidirectional cameras include large image
distortions and low pixel resolutions which make calibration
and selecting the appropriate camera models and image
projections of paramount importance [23].

Another approach to tackle some of these challenges
is to leverage high-level semantic information to aid in
the localisation task. For instance, dynamic objects such
as cars are recognised and rejected in work presented in
[22], [24], [25]. However, the localisation task can be made
significantly simpler and robust if a map of the environment
that can be reused as and when required, can be prebuilt. For
instance most autonomous cars rely on prebuilt point cloud
based high definition 3D maps [26] in order to achieve the
robustness and accuracy required for a fast moving vehicle
[1], [27]. However, constructing and maintaining such maps
demand expensive sensors and high resources in terms of
data collection, storage, and processing [28]. Alternatively,

Xaio et. al. [29] extracts landmarks such as poles, street signs
and traffic lights obtained through a semantic segmentation
process to match these against a 3D map of such features.
Authors in [30] use a combination of LIDARs and cameras to
observe similar high-level features as well as road-markings
and facades to localise on a 3D map.

Our previous work [3] proposed an Extended Kalman
Filter (EKF) based localisation scheme that fuses CNN
based object detection of common environmental landmarks
and ground surface boundaries for localisation on a sparse
2D map. However, the sparse nature of the bearing only
environmental landmark observations is a major limitation
to the robustness and accuracy of the framework presented
in [3]. The work presented in this paper, proposes to use
an omnidirectional camera to overcome this challenge. Al-
though CNN based semantic segmentation and object detec-
tion schemes that directly apply to distorted fish-eye images
have been attempted [31]–[33], these do not match the real-
time performance and accuracy required to carry out visual
localisation. Comparatively, the YOLO CNN object detection
framework [34], [35] which was used in our previous work,
offers state of the art performance and accuracy. Although
it is possible to re-project the image from a fish-eye camera
into multiple perspective images that are suitable for YOLO,
using the set of all re-projected images incurs a significant
computational cost and therefore is not suitable in a resource
constrained platform. Hence an active vision paradigm is
proposed to maintain an efficient processing pipeline for
YOLO, in order to perform real-time localisation on our
mobility scooter platform.

Active perception that directs the sensors on board a
mobile platform in order to improve localisation performance
has been proposed for use with sonar [36], LIDAR [37]
and vision. Active vision is generally achieved through some
form of visual servoing of cameras mounted on mechanical
pan-tilt units [38]–[41] or selecting optimal navigational
trajectories that maximise information gathered [42]. Metrics
based on the trace of the covariance matrix [43], the D-
optimality criterion [44], entropy [45] and fisher information
[46] have been used to make active perception decisions. In
this work, active panning of a virtual perspective camera to
select the best viewpoint within a 360° spherical image is
proposed. The trace of the covariance matrix is used as a
metric to determine this optimal viewpoint.

III. LOCALISATION FRAMEWORK

A. Overview

The overall framework (see figure 1) consists of a CNN
aided perceptual front end that consists of environmental
landmark observations obtained through YOLO [34] and
ground surface boundary observations obtained via HED
[47]. Observations for the environmental landmark model
which is the focus of this work, are obtained using an
omnidirectional camera. Bearing only observations to these
detected landmarks are then fused with the VDT based
ground surface observations using an Extended Kalman Filter
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Fig. 1: Overview of Framework

Fig. 2: Projection Pipeline

(EKF) back-end in order to localise on a sparse 2D map of
the environment.

B. Omnidirectional perception

Omnidirectional cameras include catadioptric sensors,
multiple camera rigs with 360° coverage, as well as dual-fish-
eye lenses. In principle, the proposed framework is applicable
to all of the above omnidirectional sensor types, subject to
the availability of an appropriate camera models and image
projections. The following section is described based on a
dual-fisheye lens setup due to the wide availability of low-
cost consumer grade dual-fisheye 360° cameras and its use
in the operational hardware platform (see section IV).

Dual-fisheye lenses consist of two fisheye lenses that each
cover a FoV of 180° horizontally and vertically. The fisheye
camera model is based on spherical projection. In the case
of a single fisheye lens, a 3D point P = [Xp, Yp, Zp] in
space (refer figure 2a), is projected onto a sphere of radius
fs at point p∗. This describes the mapping between real-
world spatial points, to points on the surface of a sphere
given by:

p∗ = [fs · sinα · sinβ, fs · sinα · cosβ, fs · cosα] (1)

Thus, p∗ = λP where λ = fs/
√
X2

p + Y 2
p + Z2

p . p∗ can
be projected onto the 2D image plane at point p given by
equation:

p = [fs · sinα · sinβ, fs · sinα · cosβ, 0] (2)

In the case of two fisheye lenses that provide 360°
coverage, a dual-circular fisheye image (one for each lens)
is obtained as in figure 2b. This is the format of the raw
images obtained from a dual fisheye camera.

Reprojecting the dual-fisheye image onto a spherical pro-
jection with fs = 1, gives an image that behaves as a scaled
down version of the 3D spatial information of the real world,
while preserving the bearings (see 2c). Sections of this unit
sphere can then be projected from the centre of the sphere
onto an image plane using a pinhole camera model to obtain
undistorted perspective images (see figure 2d). These images
are equivalent to images obtained from a regular perspective
camera inside a scaled down version of the world.

C. Feature extraction with a CNN

CNN based object detection framework YOLO provides a
convenient way to extract persistent and easily observable
landmarks in pedestrian environments such as road-signs,
traffic lights, parking meters and trees. However, YOLO is
designed to be used with perspective images. Retraining
YOLO with a curated custom dataset of circular fisheye
images of landmarks collected in an around the Sydney City
area was unsuccessful as the detection accuracy was poor.
The detection rate was also poor due to the large resolution
of the dual fisheye images making it untenable for real
time operation. Resizing the images to speed up the process
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resulted in further reduction in detection accuracy due to
the landmarks being too small relative to the whole image.
Similar results with CNN based object detection on fisheye
images are reported in [48].

Use of the undistorted perspective images as seen in figure
2d resulted in detection performance comparative to that
obtained using a conventional camera. However, for real-
time performance on the current hardware platform only
a projected perspective window representing a 416x416 px
image with a horizontal and vertical FoV of 60° could be
processed in a single iteration. This problem is addressed by
our active vision strategy described in section III-E.

D. EKF backend

The EKF framework used for location estimation is de-
scribed in detail in [3]. The relevant equations are presented
below for completeness and later used for describing the
active vision strategy described in section III-E. The pre-
dicted pose estimate X̂t|t−1 is calculated using the generic
motion model of the system (given by equation 3), based on
odometry information at time t, Ut:

X̂t|t−1 = g(X̂t−1, Ut) (3)

The associated prediction covariance Pt|t−1 is given by

Pt|t−1 = ∇Gx · Pt−1 · ∇G>x +∇Gu ·Q · ∇G>u (4)

where the ∇Gx and ∇Gu are the jacobians of the motion
model with respect to X and U . Q is the noise in odometry
measurements.

The YOLO framework produces bearings Θt =
[θ1t , θ

2
t , ..., θ

n
t ] and the associated semantic label vector Lt =

[l1t , l
2
t , ..., l

n
t ] after processing a given perspective image.

Each observation (θit, l
i
t) is associated with a landmark

located on the map ML, using an innovation gate based
on the Mahalanobis distance. The generic landmark based
observation model h is given by:

Θ̂t = h(X̂t|t−1,ML) (5)

The innovation can then be calculated as:

νl = Θ̂t −Θt (6)

and corresponding innovation covariance Sl by:

Sl = R+∇Hx · Pt|t−1 · ∇H>x (7)

where R is the bearing measurement noise. ∇Hx is the
Jacobian of the observation model with respect to X .

The Kalman gain Kl is then calculated as:

Kl = Pt|t−1 · ∇H>x · S−1l (8)

Then the pose estimate and covariance are updated using:

X̂t = X̂t|t−1 +Kl · νl
Pt = Pt|t−1 −Kl · Sl ·K>l

(9)

A similar EKF update is carried out based on ground
surface observations obtained using the HED neural network.
This is implemented using a 2D Vector Distance Transform
representation of a binary image map of ground surface
boundaries. A detailed explanation of this can be found in
our previous work [3].

E. Active vision
Considering the sparse nature of environmental landmark

observations in a typical urban scene, consistent tracking
of important landmarks over a longer time period is more
important than observing the whole surroundings at a given
moment. Thus an active vision approach was developed to
select the best view point for projecting a perspective image
for YOLO to process, in order to achieve optimal localisation
results. The active view point selection process was limited
to a selection between four possible fixed viewpoints. These
were selected to avoid the camera mounts and the highly
distorted seam where the two 180° images are stitched
together (see viewpoints: A,B,C,D in figure 3). These images
therefore provide a coverage of 240°. Raw dual-fisheye
images from the camera was processed using the Unity
3D physics engine [49] to obtain the perspective images
using a virtual pinhole camera placed in the unit sphere
projection. At each iteration of the EKF at time t, a predicted

Fig. 3: Virtual perspective camera viewpoints

pose estimate X̂t|t−1 and it’s associated covariance Pt|t−1
are calculated based on the motion model described in
equation 3. This pose estimate is fed into the observation
model h (See equation 5) along with the 2D map of the
landmark locations, to generate a set of predicted bearing
observations for each possible camera view point. Based on
these predicted observations, the EKF covariance update (See
equation 9) is carried out for each of the possible camera
viewpoints which generates 4 possible predicted covariances
for each viewpoint: P̂ vp

t where vp = A,B,C,D.
In order to quantify the information related to each possi-

ble viewpoint, the trace of these covariance matrices tr(P̂ vp
t ),

which provides a strong measure of the pose uncertainty is
calculated. The metric, ∆P vp that quantifies the impact on
the overall pose uncertainty from each viewpoint (A,B,C,D)
is then calculated by equation 10:

∆P vp = tr(Pt|t−1)− tr(P̂ vp
t ) (10)
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This provides a straightforward scoring system for each
viewpoint. The maximum reduction in the trace of the
covariance (highest ∆P vp) corresponds to the viewpoint that
provides the most information required for better localisation
performance. Once the best viewpoint is selected based on
this scoring system, a perspective projection corresponding
to that viewpoint from within the unit sphere is captured
and sent to the YOLO object detection framework. Bearing
information from successful detections are then sent to the
EKF back-end described in section III-D.

To deal with scenarios where a landmarks maybe occluded
due to environment dynamics, the system uses a heuristic to
switch to the viewpoint with second highest score when no
detections are reported from the selected best view point.

IV. HARDWARE SYSTEM OVERVIEW

Fig. 4: Hardware overview of retrofitted mobility scooter

The hardware platform (Figure 4) comprises of the Pride
Pathrider 10 mobility scooter instrumented with a low cost
computation and sensor package (See [2], [3] for a detailed
description). A Ricoh Theta S, omnidirectional dual fisheye
camera is mounted on the platform and acts as the primary
visual sensor for the environment landmark observations. For
evaluation and map building purposes, the scooter is also
equipped with a Piksi Multi Real Time Kinematic (RTK)
GPS unit and Hokuyo UTM-30LX 2D laser.

A. Calibration

Intrinsic and extrinsic calibration of the cameras were
carried out with the aid of an opti-track system and motion
capture markers placed on a calibration target. The virtual
pin-hole camera was treated as if it were a physical camera
placed at each view point A,B,C,D as seen in figure 3.
Four discrete viewpoints were selected instead of having a
continuous virtual panning camera to ease the intrinsic and
extrinsic calibration process.

V. EXPERIMENTAL RESULTS & DISCUSSION

A. Results

This section describes the experimental evaluation of the
proposed framewsork based on real world data obtained by
driving the mobility scooter platform (described in section

IV) in a ∼8000m2 area in Glebe, Sydney, Australia. The
terrain was representative of a typical suburban pedestrian
setting. A 2D map of the environmental landmarks and
a VDT representation of ground surface boundaries were
constructed based on known vehicle poses. These known
poses were obtained by conducting careful mapping missions
using the Real-Time Appearance-Based Mapping (RTAB)
RGBD and LIDAR Graph-Based SLAM framework [8].
Mapping involved running RTAB on data collected in tightly
controlled small loops, within short time frames (typically
under one hour) during times of the day when the envi-
ronment remained relatively static. These mapping missions
were conducted roughly 6 months prior to the data collected
for localisation.

Experimental evaluation of the proposed system is pre-
sented along with a comparison of the results obtained from
two state of the art open source visual SLAM systems;
ORBSLAM2 [6] and VINS-Fusion [7], [50]. Both the above
techniques are run in stereo mode (in order to recover scale)
using the mounted Realsense D435i. Additionally, results
obtained from RTAB [8] based on the the RGBD data (from
Realsense D435i) and laser data (from Hokuyo UTM-30LX)
post graph based optimisation are also presented.

TABLE I: Root Mean Square Errors

Technique RMSE: [m]

Proposed (Active vision) 0.11
Proposed (Unconstrained) 0.11
VINS 0.65
ORBSLAM2 1.35
RTAB 4.56

In order to ascertain the impact of the active vision strat-
egy, results obtained by assuming no processing limitations is
also presented. This was generated by feeding all 4 available
viewpoints to YOLO in an unconstrained manner with no
processing and time delay limitations considered.

Ground truth for this evaluation was obtained using RTK
GPS. RTK GPS results are generally provided in 3 levels
of precision. RTK fixed, RTK float, SPP (Single Point
Positioning-acts as regular GPS) in descending order of
precision. Only RTK-fixed provides centimetre level accu-
racy and was used during the error calculation. However,
continuous RTK fixed GPS results are difficult to come by
within a large urban environment. Thus, quantitative error
calculations are carried out in sporadic locations along the
trajectory of the mobility scooter whenever RTK fixes are
available. Table I reports the root mean square error (RMSE)
of all evaluated techniques. A qualitative analysis of the
trajectories are also presented in figure 5.

B. Discussion

Results show that the accuracy of the proposed active
vision strategy is comparable to that of the unconstrained
processing of the full 360° FoV provided by the omnidirec-
tional camera (see table I). This shows that in this particular
environment, the active vision strategy is successful in taking
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Fig. 5: Localisation trajectories

full advantage of the available field of view while balancing
performance accuracy with processing limitations. This is
perhaps because the landmarks in this particular environment
are sparse enough that only choosing a particular viewpoint
instead of processing the whole image has a negligible effect
on accuracy. This might not be the case in a different en-
vironment with a dense number of landmarks spread evenly
within a 360° view, in which case we posit that processing
the entire 360° FoV although impossible in real time on the
current platform, may yield better results.

The performance of ORB-SLAM2, VINS and RTAB is
indicative of the inherent drift associated with SLAM sys-
tems, specially in highly dynamic outdoor environments.
The scooter was driven along the path in the order A-B-
C-D-E-F-B-A-G-F-B-A (see figure 5. It is clear that without
any loop closure, the techniques under comparison start to
show drift by D-E. However, when allowed to complete loop
closure (See loop F-B-A-G-F) all techniques perform well,
but the accumulated drift is not corrected since this forms a
disconnected drifted loop.

The proposed framework performs better as localisation
is carried out on a prebuilt map of high-level semantic
landmarks and ground surface boundaries. Although the
sparse nature of the landmarks is addressed by the use of
an omnidirectional camera, a potential failure scenario of
the proposed framework is locations with no observable
environmental landmarks or ground surface information.

Another possible but less probable failure scenario may
occur if radical changes are made to the landmarks in the
environment.

VI. FUTURE WORK AND CONCLUSION

In terms of future work we hope to explore the fusion of
absolute global location information obtained through GPS
into the EKF framework, specially to aid in initialisation.
Furthermore, the fusing of VO based odometry will also
be explored to aid in locations with little to no landmark
features. A long term map maintenance strategy will also be
considered in the future in order to account for changes that
could potentially occur in the environment.

In conclusion, the proposed framework aims to offer a
vision based localisation framework that can function suc-
cessfully on a prebuilt map of high-level semantic features. A
major challenge faced due to the sparse nature of landmarks
is addressed using an omnidirectional camera and processing
limitations are tackled using an active vision strategy to offer
a low-cost, resource efficient outdoor vison based localisation
framework.
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