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Abstract— Robots encounter many risks that threaten the
success of practical locomotion tasks. Legs break, electrical
components overheat, and feet can unexpectedly slip. When all
risks cannot be completely avoided, how does a robot decide its
best action? We present a method for planning robot motions by
reasoning about risk-of-failure probabilities instead of applying
cost-penalty functions or inflexible path constraints. This work
develops a risk-constrained formulation that can be straight-
forwardly included in existing motion planning optimizations.
The risk constraints scale tractably with many risk sources, and
in some cases, only add linear constraints to the optimization
problem and are therefore compatible with model-predictive
control techniques. We present a toy “Puck World” proof-of-
concept example and a practical implementation on a planar
monopod robot that runs at 3.2 m/s when permitted to take
high-risk maneuvers. We believe this risk approach can be used
to optimize robot behaviors under numerous conflicting task
pressures and model risk-conscious behaviors in animals.

I. INTRODUCTION
The physical world is rife with risks that our robots must

mitigate. Motors can overheat, load-bearing links can break
and critical contact points can slip away (Fig. 1A). In the best
cases, these risks can be avoided simultaneously by strictly
obeying predefined safety limits. However, when the task
becomes sufficiently demanding or risks become unavoid-
able, how do we tractably plan robot motions to allow for
some manageable risk while still gaining maximum benefit?
This work presents a probabilistic model for applying risk
constraints that can be straightforwardly incorporated into
prevalent motion planning methods. As a robotics proof-of-
concept, we demonstrate risk-constrained motion planning
in a high-speed hopping robot [1] that actively balances the
tradeoff between risky leg forces and running at high speeds.

Trajectory optimization is at the core of many robot con-
trol methods; legged locomotion in particular. Researchers
commonly use direct collocation methods [2] to transcribe
trajectory optimization problems into nonlinear programs
(NLP’s) with finite decision variables to optimize. Physical
limits [3] and task constraints [4] are typically encoded as
inflexible equality or inequality constraints for the optimizer
to solve. Commonly, energy economy is chosen as an objec-
tive function to plan efficient walking [5]–[9] and running
[10], [11] gaits. These motions are largely generated such
that they are agnostic to stability, but frequently serve as an
operating point for stabilizing feedback controllers.
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Fig. 1. A. Robots are subject to many potential modes of failure. This work
presents an approach to planning robot motions while balancing multiple
sources of probabilistic risk. B. Concept illustration of risk constraints,
where a predetermined risk tolerance defines the space of admissible loco-
motion strategies. C. Implementation of risk-constrained motion planning
with 3.2 m/s running on a testbed monopod hopper.

However, the optimized motions themselves can be stable
or stabilizable in some form. By encoding a trajectory’s
sensitivity to perturbations into the motion planner, motions
can be designed to be open-loop stable [12], stabilizable [13],
robust to disturbances [14], reachable [15], and insensitive
to sensory delays [16]. Further, stabilization methods use
concepts of safety [17] and barriers [18] to ensure the
planned motion can be tracked. Generally, these planning and
control methods determine whether the robot will attenuate
state perturbations, but not necessarily the likelihood it will
fail at its task.

Probability, in contrast, can serve as a mathematically
viable means of quantifying the likelihood of task success in
practical environments with hazards. One example concept
is metastability [19], a metric that takes the view that failure
can be inevitable in systems with random influences. Instead
of categorizing inevitable failure as “unstable,” metastabil-
ity quantifies the likely time until failure of a controlled
system. However, this likely time-to-failure metric requires
significant computation time to evaluate, making the metric
currently computationally intractable for real-time or near-
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real-time optimization. To achieve real-time optimization,
“chance constrained” convex optimization methods have
been developed for systems with polynomial dynamics sub-
ject to stochastic disturbances [20].

We present a risk-constrained motion planning method for
designing optimal trajectories in the presence of probabilistic
chances of failure. As illustrated in Fig. 1B, the approach
finds the lowest cost solution for achieving the task while
respecting constraints on acceptable risk tolerance. Further,
the presented slack-variable formulation enables the opti-
mization to accommodate many sources of risk while remain-
ing computationally tractable. We further highlight situations
where such risk constraints are compatible with fast convex
optimizations for model-predictive control (MPC). Section II
introduces and explains the formulation and Section III at-
tempts to clearly illustrate how the method works on a simple
toy problem called “PuckWorld.” Section IV describes the
proof-of-concept experiments with a running robot, shown
in Fig. 1C, and Section V explores the implications of the
approach for robotic applications.

II. APPROACH

We begin with a typical trajectory optimization formula-
tion in continuous time. We introduce the state vector, q(t) ∈
RNq , and control input vector, u(t) ∈ RNu , both of which
are dependent on time variable, t. Nq and Nu represent the
numbers of states and control inputs respectively. We take a
direct approach to trajectory optimization which discretizes
the continuous-time problem into N discrete time points
called nodes (sometimes called “knots”). Taking a direct
collocation approach [21], we discretize both system states
and inputs into a set of decision variables, q and u containing
qk and uk respectively, where k ∈ 1, 2, 3, . . . , N . The
discretized time points are evenly spaced between 0 = t1 <
t2 < · · · < tN = T where T is the total duration of the
trajectory.

We then define the system dynamics and constraints. The
system states evolve as per first-order system dynamics,

q̇(t) = f(t, q(t), u(t)), (1)

where the dynamics function f(t, q, u) is vector-valued in
RNq . We now define the scalar-valued objective function to
be minimized, J(t, q, u), and the vector-valued path con-
straints function, h(t, q, u). By approximating the integral
of the dynamics via explicit Euler methods with a time step
∆T = T/(N − 1), the resulting optimization problem takes
the form

min
q,u

J(t, q, u)

s.t. qk+1 − qk − f(tk, qk, uk)∆T = 0

h(t, q, u) ≤ 0, ∀k ∈ 1, 2, . . . , N.

(2)

This work takes this well-established trajectory optimization
approach [2] and adds an additional set of constraints that
ensure the solution does not exceed a predefined tolerance
of acceptable risk of failure.

0% (no risk)

100% (certain failure)

Fig. 2. An example failure probability function, r(δ), as a function of a
risk source, δ. Positive δ has zero failure risk, but as δ becomes increasingly
negative, failure probability approaches 100%. Any time the system spends
in situations where δ ≥ 0 incur no risk, but time spent in situations where
δ < 0 will accrue risk of failure and count toward the acceptable risk
tolerance for the task, Ra. Note: δ can be situationally dependent (i.e.
varying with time, state, and input).

A. Definitions

The presented formulation models risk as an overall prob-
ability of task failure as aggregated from many instantaneous
probabilities of failure. Repeatedly overheating a robot motor
during a task is more likely to result in a burnout occurring
than a single bout of overheating. Risk constrained optimiza-
tion requires three a priori definitions: (1) risk sources, δ, (2)
failure probability functions, r(δ), and (3) an acceptable
risk tolerance, Ra.

We first introduce a potential cause of failure or risk
source, δ(t, q(t), u(t)), which is a scalar-valued function that
can be dependent on the system time, state, and control input
(which we shorten to δ for brevity). The risk source could
represent temperature for a motor that could burn out, or
euclidean distance from a source of danger, or the magnitude
of force that could be injurious to the robot. A risk source,
δ, is used by the failure probability function to compute the
likelihood of failure at a given instant during the trajectory.
Multiple sources of risk are permissible, in which case we
enumerate each individual risk source as δj .

Secondly, we introduce failure probability functions,
r(δ), which are dependent on our risk source, δ. The failure
probability function defines the likelihood that the task will
fail if the risk source, δ, remains at a given value for
some small time duration, ∆T . Fig. 2 illustrates an example
function r(δ), where a positive δ has zero probability of
failure and is thus completely safe. Whereas, once δ becomes
negative, probability of failure rapidly increases toward one,
which is extremely dangerous. Unlike formal probability
distribution functions,

∫∞
−∞ r(δ)dδ need not equal one. We

will later demonstrate a convenient way to design failure
probability functions in a piecewise fashion using logarithmic
functions.
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Thirdly, we introduce an acceptable risk tolerance, Ra.
The trajectory will be deemed feasible if and only if the
probability of failure of the entire trajectory, R, is less than
or equal to Ra. Raising Ra above zero allows the trajectory
to accept some risk if it provides improved performance (as
defined by the objective function, J). R must account for
all risk sources at every time point during the trajectory.
For instance, if two risk sources δ1 and δ2 happen to each
yield coin-flip failure probabilities, i.e. r1(δ1) = 0.5 and
r2(δ2) = 0.5, and the system remains in this situation for
three time durations of ∆T , then the task will fail if it loses
any one of the six coin flips. In this example, R = 1 − S,
where S is the probability of surviving the entire trajectory,
and that survival requires winning both of two coin flips
and repeating that success three times (R = 1 − S = 1 −∏3

k=1

∏2
j=1(1− r(δ)) = 1− 0.56 = 98.4% of the time).

B. Constraint Formulation

For the task to succeed, it must survive every random draw
from all defined failure probability functions, rj(δj), and
at every time window during the trajectory, [tk tk+1]. As
such, the total probability of the motion surviving the entire
task, S = 1−R, is the product of the survival probabilities
Sjk = 1 − rj(δj(tk, qk, uk)) for all Nr risk sources (j ∈
{1, 2, . . . , Nr}) and time segments (k ∈ {1, 2, . . . , N − 1}),
or

S =
∏
∀j

∏
∀k

[1− rj(δj(tk, qk, uk))]

=
∏
∀j

∏
∀k

Sjk.
(3)

With all of the above definitions, one could trivially define
the risk constraint as

S =
∏
∀j

∏
∀k

Sjk ≥ 1−Ra, (4)

meaning that the total survival probability, S, must be greater
than 1 − Ra, where Ra is the acceptable risk tolerance.
However, this constraint as listed is highly nonlinear and thus
can be difficult to solve. So we further develop the constraint
formulation so it can be solved more quickly.

First, we take the logarithm of the constraint in Eq. 4 and
convert the product to a sum via log identities,

log
∏
∀j

∏
∀k

Sjk ≥ log (1−Ra)∑
∀j

∑
∀k

logSjk ≥ log (1−Ra) .
(5)

We next introduce new decision variables (or slack variables)
to the optimization problem called S̃jk. Specifically, we
define S̃jk = logSjk ∀j, k and replace them in the risk
constraint. This simplifies the risk constraint to∑

∀j,k

S̃jk ≥ log (1−Ra) , (6)

which is linear in decision variables S̃jk and right side,
log (1−Ra), is a constant. Theoretically, this renders our

Inadmissible
Bounding Function

Fig. 3. The failure probability function, r(δ), from Fig. 2 constructed using
linear upper bounds in log-survival space, S̃ = log(1− r(δ)). These upper
bound functions, s̃i(δ), are used to design the shape of failure probability
functions to reflect possible dangers from a risk source, δ.

probabilistic constraint on total risk a linear constraint, and
therefore far simpler for solvers to satisfy. Now, we must link
our new S̃jk log-survival decision variables to our failure
probability functions, rj(δj). It is at this point we realize
that it can be much more straightforward to define our rj(δj)
functions in this log-survival space.

We begin this linking by defining bounding functions,
s̃ij(δ), that place upper bounds on the S̃jk. The i subscript
indexes into each of the bounding functions for a particular
risk source δj . The bounding constraint takes the form

S̃jk ≤ s̃ij(δ) ∀i, j. (7)

In effect, these bounding functions, s̃ij(δ), are what we
can use to define the failure probability function. As an
example, refer to the piecewise failure probability function
in Fig. 2. That function is actually piecewise linear after
transforming into a log-survival, S̃, by taking log(1− r(δ)).
Consequently, we can partly define this piecewise curve by
applying overlapping linear bounds on S̃jk. Fig. 3 shows
what the failure probability function from Fig. 2 looks like
as bounded by two linear functions, s̃1(δ) = 0 and s̃2(δ) =
mrδ.

The bounding functions themselves only serve to limit the
upper bound on slack variables, S̃jk. The need to prevent
S̃jk from being too low is satisfied by the risk constraint in
Eq. 6, which incentivizes large S̃jk values wherever possible.
The resulting final risk-constrained optimization formulation

3635



simplifies to the following program:

min
S̃,q,u

J(t, q, u)

s.t. qk+1 − qk − f(tk, qk, uk)∆T = 0

h(t, q, u) ≤ 0∑
∀j,k

S̃jk ≥ log (1−Ra)

S̃jk ≤ s̃ij(δj(tk, qk, uk)), ∀i, j, k.

(8)

We further note that when the functions s̃ij(δj) are linear
in δj and δj(tk, qk, uk) is linear in tk, qk, and uk, the risk-
constrained formulation adds only linear constraints to the
program. This makes the formulation highly scalable to many
sources of risk.

III. TOY EXAMPLE

As a clear example of how risk constraints can shape a
motion plan, we use a simple toy problem called “Puck-
World.” A nod to the ubiquitous “GridWorld” problem in
reinforcement learning tutorials [22] where an agent must
learn to navigate obstructions in discretized 2D environment,
PuckWorld simulates a mass navigating a 2D continuous
environment in Cartesian space [23]. It is substantially simi-
lar to the 1D “double integrator” or “Block-Move” example
[21], except the 2D motion and low ground friction gives the
aesthetic feel of a hockey puck being maneuvered on ice.

A. Example Problem: PuckWorld

We begin by defining the dynamics of our PuckWorld
problem. The puck has a point mass, m = 1 kg, and glides
on a 2D surface under low linear friction, c = 0.5 Ns/m.
The state vector q(t) = [X(t) Ẋ(t) Y (t) Ẏ (t)]T where
X and Y are the positions in Cartesian space and u(t) =
[FX(t) FY (t)]T are time-varying control input forces ap-
plied to the puck. We define the system dynamics, f(t, q, u),
as

q̇ =


Ẋ(t)

(FX(t)− cẊ(t))/m

Ẏ (t)

(FY (t)− cẎ (t))/m

 . (9)

The puck is tasked to start at position (X,Y ) =
(−5 m, 0 m) and end at (X,Y ) = (5 m, 0 m), with velocities
beginning and ending at rest. We constrain the time duration
of the motion to T = 10 s and have the optimization
minimize an efficiency-based objective function,

J(t, q, u) =

∫ T

0

F 2
X + F 2

Y dt. (10)

In effect, the puck must travel to a distance 10 m away in
10 s with minimum effort. Without further complications, the
optimal solution would look nearly identical to many publi-
cations which have previously solved a similar problem [21].
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Fig. 4. Risk-constrained motion planning in a simple PuckWorld example,
where a sliding puck is commanded to efficiently cross the field. However,
when inside a circular danger zone, the puck faces repeated random chances
of failing, a probability which increases as the puck approaches the center.
When commanded to tolerate zero risk, the puck avoids the danger entirely.
However, increasing the acceptable risk tolerance, Ra, results in the puck
crossing closer to the dangerous circle center.

B. Example Risk: Proximity

To demonstrate the risk-constrained formulation, we in-
troduce a risk source to complicate the solution. We place
a proximity risk at the position between the start and the
goal, (X,Y ) = (0 m, 0 m), which threatens failure if you
venture too close (inside a distance of Lr = 4.8 m). Imagine
a guard dog tethered to a post that might decide to attack
as you approach. The puck now faces a dilemma. It can
be maximally safe by staying outside the danger zone com-
pletely or it can cut corners a bit to save some energy. This
problem demonstrates by simply changing the acceptable risk
tolerance, Ra, the risk-constrained motion planner will
generate an efficient trajectory while only being as risky
as the user specifies.

First, we define our sole risk source, δ(t, q, u), as being
a function of the Euclidean distance between the puck and
the danger source at (X,Y ) = (0 m, 0 m), specifically,

δ(t, q(t), u(t)) =
√
X(t)2 + Y (t)2 − Lr. (11)

By this definition, once the puck approaches the danger
source closer than Lr, then δ becomes negative. Next we
define our failure probability function, r(δ), for our risk
source. This function is effectively defined by bounding
functions in the log-survival space, s̃i(δ). We will choose
bounding functions of the same form as in Fig. 3 because,
like in this proximity risk example, it ascribes a negative δ
as incurring an increasing probability of failure. Thus, we
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Fig. 5. Cumulative probability of failure for PuckWorld trajectories,
showing how risk accrues with time spent in risky situations. However, this
increased risk comes with a benefit, increased efficiency of the trajectory,
which is listed above each probability line.

define our bounding functions as

s̃1(δ) = 0

s̃2(δ) = mrδ,
(12)

where mr = 0.01 models the level of danger incurred as the
puck continues to cross the δ = 0 threshold.

Finally, we set our acceptable risk tolerance, Ra for the
motion planning problem. In this case, we generate solutions
for Ra = 0, 25, 50, 75, and 100% to show how the strategy
changes with increasing risk. Theoretically, an acceptable
risk of 0% should yield the same solution as a hard inequality
constraint on proximity, and 100% should behave as though
the proximity danger doesn’t exist.

Constraints were formulated in the manner shown in Eq. 8
using N = 150 nodes to discretize the problem into decision
variables. The objectives, constraints, and their derivatives
w.r.t. all decision variables for the NLP were written as
symbolically generated MATLAB functions using the op-
timization parsing package, COALESCE [24]. The problem
was solved using IPOPT [25] using a straight-line path and
zero force as an initial guess, and primal and dual tolerances
were set to 10−9 and 10−6 respectively. The NLP’s were
each solved with a computation time under one second.

C. PuckWorld Results

The Cartesian trajectories for the puck are plotted in
Fig. 4. As predicted, when the acceptable risk tolerance
was Ra= 0%, the puck dutifully avoided the danger zone
completely, but stayed as close to the limit as possible as
not to require more effort than necessary (taking a longer
path requires higher speed and, thus, more force as tabulated
by the objective). As Ra was increased, the puck began
to risk venturing inside the danger circle and increasingly
closer to the center, culminating in the Ra = 100% trajectory
completely ignoring the danger’s existence.

We further show how these solutions accrue risk of failure
throughout the motion in Fig. 5. As soon as the puck crosses

B

~0.34 m

A

Fig. 6. A. An image of the hopper which is a modified leg from the
Minitaur quadrupedal robot [26] B. An illustration of the math model of the
hopper. Building atop a SLIP model, this model includes parallel actuation
and damping with the left most element representing a spring, the middle
element an actuator, and the right most element a linear damper. We also
model a torsional damping force between the hip and attached boom.

the zero-risk limit, the cumulative probabilities begin to
aggregate, tallying up the likelihood it would fail a particular
dice roll, until it finally exits the circle near the end of
the trajectory. The plot shows the tradeoff associated with
permitting more risk of failure, which is increased efficiency
of the trajectory. Allowing for 25, 50, 75, and 100% chance
of failure reduced the objective function value by, 12%, 26%,
46%, and 67% respectively.

IV. ROBOT EXPERIMENTS

As a practical test of risk-constrained motion planning, we
optimized the behavior of a robot with significant sources of
mechanical/electrical risk: a high-speed single-legged planar
hopping robot, represented in Fig. 6.

A. Legged Simulation Model

The testbed hopper, as seen in Fig. 6, is based on a Spring-
Loaded Inverted Pendulum (SLIP)-based model, named the
Force-driven and Damped SLIP (FD-SLIP) model. The FD-
SLIP dynamics are used to simulate the dynamics of a single-
legged hopper. A brief explanation of the model is presented
here, but for a complete description see [1] for details.

The model1 was a modification of the classic SLIP
model [27], with added dampers and actuators. Each step
(i.e. gait cycle) consists of a stance phase, where the foot
is pinned down to the ground, and a flight phase, where
the body follows a ballistic trajectory. The dynamics of the
model are described by the following equations of motion.
The stance phase dynamics in polar coordinates are defined
as,

ζ̈ = ζψ̇2 − g sinψ − ko
m

(ζ − lo)− bl
m
ζ̇ +

u(t)

m
,

ψ̈ = −2ζ̇ψ̇

ζ
− g cosψ

ζ
− bt
mζ2

ψ̇,

(13)

where ζ is the leg length, ψ is the leg angle, u(t) is the
time-varying control input from the optimized trajectory (See

1Model parameters: g = 9.8 m/s, m = 1.2 kg, lo = 0.17 m, ko =
1700 N/m, bl = 13 Ns/m, bt = 0.081 Nms/rad
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risk of failure per step. While the 0% risk solution dutifully avoids breaching
the zero-risk limit, the higher-risk solutions are reshaped to achieve higher-
speed running while not exceeding 20% or 50% risk of failure respectively.

Fig. 7 for examples), g is gravitational acceleration, m is the
mass at the hip, lo is the nominal leg rest length, ko is the
nominal leg stiffness, bl is the leg linear damping coefficient,
and bt is the hip torsional damping coefficient. The flight
phase dynamics in Cartesian coordinates are defined as,

ẍ = 0,

z̈ = −g.
(14)

where x is the horizontal position and z is the vertical
position.

The equations of motion are then transferred to constraints
in the optimization setup. The control input only takes effect
in the stance phase, so only the stance phase needs to be
optimized. As a result, the flight phase dynamics can be
analytically solved and act as boundary constraints for the
stance phase. Meanwhile, the stance phase dynamics are
converted to trajectory constraints using trapezoidal inte-
gration. Additionally, a simple linear motor model is also
incorporated to reflect a realistic power limit. More detailed
definitions of physical hopper constraints can be found in [1].

B. Running Motion Planning

Described previously, we applied risk formulations as
constraints in a trajectory optimization problem simulating
a SLIP-like runner at high speeds using the same software
package as described in Section III. The optimization prob-
lem passes through a target apex condition, height and speed
[zapex, ẋapex], as well as a desired touchdown angle [ψTD]
for the running robot while minimizing the control input.
The optimization problem is highly similar to that described
in [1], except we add a source of risk to high input force,
u(t). This is a simple model of motor current limits, which
if exceeded consistently can lead to electronic failures. We
model the failure probability function using the form

s̃1(δ) = mrδ,

s̃2(δ) = 0,
(15)

Hopper

Boom

1.15 m

Microcontroller

Fig. 8. The experimental setup for the hopping robot, where the robot is
mounted on the end of a rotating boom, constraining the robot to planar
locomotion. The boom allows for forward locomotion (via sweep angle),
height change (via azimuth angle), but not pitching (via roll angle).

where in the first function, mr = 6.6 × 10−4 is a scalar
that sets the severity of the risk and δ the risk source. The
second risk function acts as a constraint which restricts the
work-space prohibiting the probability of success to be over
100%. The sole risk source, δ, is defined as,

δ = ur − u(t), (16)

where ur is an input force limit and u(t) is the control
input from the trajectory optimization. This limit begins to
incur risk when seven body weights of the robot is exceeded.
Eq. (16) follows the convention from Eq. (12) where negative
δ is associated with accruing risk.

The objective of the optimization problem is to minimize
the following function

J(u(t)) =

∫ T

0

u(t)2dt (17)

and achieve a desired apex height, apex velocity and touch-
down angle [zapex, ẋapex, ψTD] while constrained to a
acceptable risk tolerance, Ra.

We chose this relatively simple risk source and task for
the monopod hopper proof-of-concept for the primary reason
to expediently evaluate and validate the risk-formulation. By
keeping the risk source simple this permitted intuition to
possible solutions. Therefore, by restricting the input force
profile with the risk constraint, it is expected to also restrict
the maximum velocity the robot can achieve. To test this
hypothesis, a range of desired apex velocities were assessed.
We swept desired speeds between 1.8 m/s and 4.0 m/s in
increments of 0.1 for the risk tolerances of 0%, 20%, and
50%. zapex and ψTD were kept at a constant value of 0.18 m
and 77◦, respectively. zapex and ψTD were chosen based
on the findings of previous experiments on the hardware
[1]. It was found that an apex height of 0.18 m resulted
in the most stable gaits. Through iterative testing on the
physical platform it was found that a ψTD of 77◦ most
often produced a stable gait. The stability criterion is defined
simply as whether the robot falls after three laps, and thus we
did not compute exponential stability in the form of Floquet
multipliers.

3638



0.2 s

~0.5 m
Fig. 9. Still frame images of the monopod hopper running at 2.5 m/s.
Three running gaits were optimized using risk-constrained motion planning
and implemented on the planar hopper as shown.

We expected to see that an acceptable risk tolerance (Ra)
of 0% would act as a hard constraint on the input force
profile at the zero-risk limit of seven body weights. As
we raise Ra to 20% and 50%, we expect to see the input
profile breach the seven body weight limit to achieve higher
speeds. As expected, this is the trend we observed in Fig.
7. Increasing the risk tolerance resulted in optimal solutions
with the predicted average step velocity of 3.3 m/s, 3.5 m/s,
and 3.7 m/s for risk tolerances of 0%, 20%, and 50%,
respectively.

C. Hardware Setup

The same single-legged hopper, as introduced in [1] to
instantiate the SLIP-like running behaviors in the sagittal
plane, was used in this work for experimental demonstration.
It uses a modified version of the single leg from the Minitaur
quadrupedal platform [26], where the controllable transparent
transmission between the hip and the toe can be treated as
a combination of a virtual spring, damper and actuator, as
illustrated in Figure 1C. The recent modification to the leg
design, as mentioned in [1], has made the behaviors of the
hopper well-described by the SLIP-based model.

The hopper has two Hall Effect based absolute encoders
for the two hip motors to realize closed-loop control of the
leg length and angle based on the leg kinematics. Addition-
ally, the hopper has two Accu-Coder model 15s encoders
located at the base to monitor the orientation of the boom
and thus the global position of the hip attached at the end
of the boom, using a boom length of 1.15 m. All the data
are recorded on a Teensy 3.6 microcontroller at 500 Hz for
post-processing. The setup of these components is depicted
in Fig. 8.

To implement the optimized controller trajectory from the
risk-constrained approach onto the physical platform, the
generated array of the force trajectory is uploaded to the main
controller board at the base of the hopper through USB-TTL
serial communication. The controller code on the main board
later calls this stored array at 1000 Hz to apply the correct
controller input during the stance phase while the hopper is
operating.

Average Step Velocity (m/s)

R
is

k 
To

le
ra

nc
e

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.5

Desired Apex VelocityB

0

0.1

0.2

0

0.1

0.2

0 5 10 15 20 25 30
0

0.1

0.2

0%
20%
50% Risk

Y
 (

m
)

X (m)

A

Fig. 10. A. Cartesian trajectories for the monopod hopper as it runs for
approximately 10 seconds. Note that the higher risk trajectories move further
in that plotted time window, and are therefore faster. B. Average step velocity
from experimental results for max allowable risks of 0%, 20%, and 50% per
step (error bars ±1σ). While the hopper was unable to achieve the velocity
predicted by the simulation model, the resulting trend clearly shows that
allowing a higher risk tolerance results in a faster gait as predicted.

D. Experimental Results

When executed on the hopper, the optimized gaits ran in a
self-stable fashion for several laps around the circular track,
as depicted in Fig. 9. In the same 10-second time window,
the higher-risk trajectories traveled further than their risk-
averse counterparts as seen in Fig. 10A. Fig. 10B confirms
the fact that average hopper velocity did in fact increase
with higher risk tolerance as predicted, effectively trading
off safety for speed. We note that the actual measured speed
did not achieve the target speed and attribute the difference
to mechanical modeling discrepancies.

V. DISCUSSION

A. Application

This paper focused on rather straightforward applications
of risk models to motion planning with simple risks on states
and inputs. However, more complex constraints are possible.
Motor curves, for instance, could allow the controller to
briefly push outside the rated torque-speed relationship of
the actuator. Slipping risk can be modeled as a risk source
by quantifying the violation of the estimated friction cone.

B. Possible Extensions

There are numerous possible extensions of the constrained
formulation that could broaden its use. Currently the time
duration for these optimization problems is fixed, but many
robot optimizations make use of variable time horizons.
A variable-duration extension of this approach would be a
clear improvement. Further, each individual random draw
from the failure probability functions is assumed to be
independent. Finding ways to couple potential failures early
in the trajectory with effects later in the trajectory could lead
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to greater flexibility in modeling risks. For instance, instead
of a failure being terminal for the task, perhaps it hobbles
the robot and forces it to plan new strategies.

C. Learning Risk

One key advantage to using risk to represent undesirable
behaviors is that probabilities of failure are measurable
quantities. While an abstract penalty term could be added
to the objective function to discourage undesired features in
motion plans, it is unclear how to automatically design these
penalty terms from physical measurements of the system.
Failure probability functions, however, could be fitted to
data collected from a robot’s experience. If a robot were to
shut down when the motor heated up, the failure probability
function could be updated (i.e. learned) to reflect that new
source of risk and subsequently plan motions with newfound
risk-awareness.

VI. CONCLUSIONS
We presented a risk-constrained motion planning method

for finding optimal robot trajectories in the presence of
failure probabilities. By introducing slack variables to the
optimization (bounded by curves in log-survival space), we
created a formulation with easy-to-solve (even linear) con-
straints, allowing for fast solving times (under one second in
our presented applications). We validated the method on a toy
problem called PuckWorld where changing the acceptable
risk tolerance yielded a smooth tradeoff between safety and
efficiency. When applied to a testbed monopod hopper, risk-
constrained motion planning demonstrated how allowing for
some failure risk from large leg forces enabled faster top
speeds, up to 3.2 m/s in our experiments. Future work will
extend the formulation to demonstrate applicability to the
many sources of risk in our complicated world.
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