
Nonlinear model predictive control of hopping model using approximate
step-to-step models for navigation on complex terrain

Ali Zamani and Pranav A. Bhounsule

Abstract— We consider the motion planning problem of a
hopper navigating a terrain comprising stepping stones while
optimizing an energy metric. The most widely used approach
of discrete searches (e.g., A-star) cannot handle boundary
conditions (e.g., end path constraints on position, velocity).
However, continuous optimizations can easily deal with the
boundary value problem but are not widely used in motion
planning because they are computationally intensive and pos-
sibly non-convex when one considers the terrain. Here we use
a continuous optimization approach within a model predictive
control framework. First, we generate a library comprising
initial states at an instant in the locomotion cycle (e.g., apex),
the controls (e.g., foot placement, amplitude of force), and the
states at the same instant at the next step. Next, we fit these
step-to-step models with low order polynomials (typically 2nd
or 3rd order). Finally, the planner uses these low order step-
to-step models to preview a fixed distance ahead and plans
the optimal steps and controls. Thereafter, we implement the
plan for the first step, followed by replanning. This process
continues until the hopper reaches the end of the terrain. The
main contributions are low-order polynomial models for fast
computation and incorporation of the complex terrain as a
cost function.

I. INTRODUCTION

The ability to use discrete footholds to move around makes
legged robots superior to wheeled robots on terrains with ob-
stacles and ditches. However, planning and control of legged
locomotion on such terrain presents a formidable computa-
tional challenge because of the complexity of locomotion
dynamics (i.e., continuous and discontinuous dynamics) and
the complexity of the terrain. Furthermore, if an objective
function such as a cost metric is to be optimized, there is an
added computational burden of evaluating multiple feasible
solutions to determine the best one. In this work, we address
the problem of navigating a series of stepping stones, a
benchmark problem in dynamic legged locomotion, while
optimizing an objective (e.g., energy, time) while taking into
account the robot dynamics during the planning phase.

We consider a realistic scenario that a robot might be
subjected to and is shown in Fig. 1. Here the robot can see a
fixed distance ahead with an onboard vision sensor. The robot
then plans the optimum number of steps and control strategy
for that fixed distance ahead (planning). Next, the robot
implements the control strategy for a few steps (control).
Subsequently, the robot previews the next horizontal distance
and the process continues until the robot reaches the end of

Dept. of Mechanical and Industrial Engineering, University of
Illinois at Chicago, 842 W Taylor St, Chicago, IL 60607, USA. Email:
alizamani.mecheng@gmail.com, pranav@uic.edu.
This work was supported by NSF grant IIS 1946282.

Terrain with stepping stones

Chosen footholds

Hopper

Planning horizon

Vision
 sensor

Fig. 1. Conceptualization of the problem: The hopper has to negotiate
a terrain consisting of stepping stones (gray rectangles). At mid-flight, the
hopper plans the optimum strategy and the optimal steps for a planning
horizon (yellow patch), then executes the optimum strategy for the first step
until the next mid-flight. Then the hopper replans as before continuing the
process until it finishes crossing the terrain.

the terrain. This formulation of the problem is well known
as receding horizon control or model predictive control

II. BACKGROUND AND RELATED WORK

We limit the review to work done in the area of legged
locomotion on complex terrain consisting of obstacles or
stepping stones.

A computationally simple approach is to follow a two-tier
approach. First, a planner chooses footsteps that enable the
robot to go from start to goal and second, a controller that
controls the robot to move on those footholds. This method
is computationally attractive because the planner only works
with the complexity of the terrain and does not consider
robot dynamics while the controller is only concerned with
the robot dynamics and not the terrain complexity. Chestnutt
et. al. [1] used an A-star planner that minimizes heuristics for
effort, risk, and/or number and complexity of steps taken to
plan footsteps from start to goal. Huang et. al. [2] minimized
the energy usage which they parameterized by step length,
step width, and step steering in addition to the terrain profile
within an A-star planning approach and then solved the
footstep planning problem.

The main issue with this two-tiered approach is that the
footstep planner does not consider the dynamics of the
locomotion and hence there is no guarantee that the plan
can actually be implemented. Moreover, since the planner
is based on heuristics rather than actual costs (e.g., energy,
time), the resulting solution is always sub-optimal.

A more complex but favorable approach is to find all fea-
sible solutions considering the dynamics of the robot. These
feasible solutions are enumerated as discrete control actions.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 3627

Then using these discrete control actions and with a suitable
planner, footholds are planned. Paris et. al. [3] considered the
dynamics of the quadruped to map out the reachable states
from one step to the next. These reachable states were then
searched within an A-star framework to plan jumps on rolling
terrain. Campana and Laumond [4] used a similar approach
to first map out the feasible motion from step to step followed
by footstep planning using probabilistic roadmaps (PRM).
The advantage of this approach is that the footstep planner
uses feasible solutions only. The disadvantage of using a
sampling-based approach like A-star or PRM is that they
do not handle boundary conditions that well (e.g., final state
specified).

Some other works have focused on finding optimal con-
trollers for a given foot placement locations. Rutschmann et.
al. [5] considered the problem of navigating a hopper on
a series of pre-assigned footholds using model predictive
or receding horizon control. The hopper plans for two
steps in succession, but implements only one step and then
replanning. Thereafter, the process continues until the hopper
reaches the end of the terrain. Nguyen et. al. [6] considered
the problem of a biped robot walking on a series of pre-
assigned footholds using a control Lyapunov function for
biped stability and control barrier function for proper foot
placement.

Continuous optimization-based methods overcome bound-
ary value problems. These are optimization formulations
where the states and control actions are continuous variables.
Continuous optimizations are generally used for trajectory
optimization but may be extended to incorporate terrain pro-
file and obstacles. Deits and Tedrake [7], [8] considered the
problem of a humanoid robot navigating a series of stepping
stones. The continuous optimization formulation was based
on kinematic reachability and availability of footholds. The
resulting problem is a mixed-integer problem because each
foothold needs to be placed only on one of the possible
stepping stones. Furthermore, all the nonlinearities were
convexified, thus the problem could be solved relatively fast.
However, their formulation does not consider the dynamics
of the system. More recently Ding et. al. [9] considered the
problem of legged robot jumping on an obstacle course. They
also formulated a mixed-integer convex program and took
into account the reachable space, dynamics, obstacles, and
ground reaction forces by suitable approximations to speed
up computations.

Our approach is also based on continuous optimization.
Like some of the past approaches, we use the step-to-step
model to first ascertain the reachable space. This step-to-
step model is then approximated by a polynomial model
to enable fast computation. The optimization formulation
avoids integer variable by specifying a terrain cost that is
added onto the cost of locomotion (i.e., the cost of transport,
energy used per unit distance moved per unit weight). The
resulting optimization problem is solved within a model
predictive control framework where the robot scans a fixed
distance ahead, then plans footholds, controls, and number
of steps, implements the solution for the first step and

z

z

Poincaré
section

= (z u),Fi +

i

i i

State at ith step

State at
(i+1)th step

Poincaré map

Fig. 2. Dynamical systems tools use for analysis: A Poincaré section is
an instant in the locomotion cycle (e.g., mid-flight phase for hopper). The
state at ith step, zi chosen at the Poincaré section. After applying controls
ui during the step, the system ends at the state zi+1 after one step. There
is a function F that relates the states and controls at step i to the state at
step i+ 1.

continues the process until it reaches the end of the terrain.
Our novel contributions are: (1) model predictive control
framework that incorporates the terrain as a cost avoiding
integer constraints, and (2) approximating the step-to-step
dynamics with polynomials to enable fast calculations.

III. METHODS

A. Poincaré section and Poincaré map

We define some preliminaries that are used to analyze
and consequently develop controllers for legged systems.
Figure 2 (a) (red solid line) shows the trajectory of the robot
in state space. We define the Poincaré section as an instant
or event in the gait (e.g., the apex event occurs when the
vertical velocity is zero during the flight phase for a hopper).
We choose an initial condition at the Poincaré section at step
i, zi, and trace its movement on the application of control
ui for a single step. At the Poincaré section at step i+1, the
state of the robot is zi+1. There is a function F, known as
the step-to-step map or Poincaré map that relates robot state
between steps given by

zi+1 = F(zi,ui). (1)

In most cases, there is no analytical solution to the Poincaré
map F. Hence once resorts to numerical simulation to obtain
zi+1 (output) given the state zi and control ui (inputs). The
numerical integration leads to a computational bottleneck for
real-time control.

B. Approximation of the Poincaré map

One of the contributions of this paper is to create and
then use an approximation of the Poincaré map (F) for
control. There are two stages as shown in Fig. 3 to find
an approximation of the Poincaré map. First, for data gen-
eration, we choose a range of initial states on the Poincaré
section (zi) and a range of control actions in the step (ui).
Next, we use the forward simulation of the system given
by zi+1 = F(zi,ui), to obtain the numerical value for the
system state at the next step zi+1. We show these points as
blue dots in Fig. 3 (a). Some of these inputs will lead to a
failure, i.e., the state at the next step zi+1 is not defined. We
ignore these initial conditions in our curve fitting. Second,
for data fitting, we use a suitable defined regression model

3628

Approximated
Poincaré map (F) Sample points -

(a) Data generation (b) Data fitting

Regression

Fig. 3. Regression to approximate the Poincaré map function F:
(a) Data generation: For a range of values of (zi,ui) at the Poincaré
section, we use the forward simulation to generate the robot state at the
next step zi+1, shown by blue dots on the left plot. (b) Data fitting:
Using an assumed regression model (e.g., 2nd order polynomial), we fit
an approximate function to the Poincaré map F, i.e., zi+1 = F(zi,ui),
shown by the gray plane.

(F) to fit the data as shown by the gray plane in Fig. 3 (b).
Thus, our approximate model is

zi+1 = F(zi,ui). (2)

C. Stepping stones terrain

Another contribution of the paper is the incorporation
of the stepping stones terrain with the optimization. Fig. 4
(a) shows an example terrain consisting of stepping stones.
The gray areas are the allowed foothold positions. Previous
formulations stipulated the stepping areas as feasible regions
and then found foot locations within those feasible regions,
thus converting the problem to a mixed-integer problem.

Here we avoid specifying the stepping stones as a con-
straint, but specify a terrain cost as shown in Fig. 4 (b).
We specify a high cost for stepping into the gaps between
the stepping stones. We fit a cubic spline to the cost. This
formulation is computationally efficient because it does not
need to use branch-and-bounds as needed in mixed-integer
problems and also allows us to use nonlinear optimization
solvers.

D. Non-linear model predictive control problem formulation

The nonlinear model predictive control (MPC) optimiza-
tion problem uses a nonlinear cost function consisting of the
mechanical cost of transport (MCOT) and the terrain cost

min
N,ui,xci

∑i=N
i=1 Ei(ui)

mg × xN
+

i=N∑
i=1

Cterrain(xci)

subject to: zi+1 = F(zi,ui) (or F) (3)
umin < ui < umax

x0 = 0;

xN = dhorizon;

ẋ0, y0 are specified.

where i = 1, 2, ..., N is the planning horizon up to N
steps noting that N is a decision variable, there are three
controls at each step, ui =

[
θ Pb Pt

]
i

thus a total of 3N
decision variables, and the foot locations xci, a total of N

10 1.5 2 2.5 3 3.5 4 4.5

0

 2

 4

 6

 8

10

Cubic
spline

H
ei

gh
t

Terrain

(b) Terrain cost

(a) Stepping stones terrain

10 1.5 2 2.5 3 3.5 4 4.5

C te
rra

in

Fig. 4. Incorporating the terrain profile as a cost: (a) Stepping stones
are shown with gray rectangles and ditches are in the white spaces between
the stepping stones. For feasible movement all footholds should be on the
stepping stones. (b) We model the terrain with piecewise cubic polynomials.
The cost on the stepping stones is zero and increases in the ditches.

decision variables. Also, the mechanical energy per step is
Ei =

∫
(|k(`− `0)d`|+ |Ptd`|+ |Pbd`|), Cterrain(xci) is the

terrain cost as explained in Sec. III-C, and dhorizon is distance
the robot can see and thus plan. The absolute value is a non-
smooth function of its argument, so we can smooth it out
using square-root smoothing [10].

This problem can be solved as a parameter optimization
problem. Since the decision variables depend on N , it is
not possible to simultaneously optimize N as well as other
decision variables. Thus, the optimization has two loops. In
the outer loop we optimize N and in the inner loop (for
a given N) we optimize the other decision variables. Since
planning horizon (dhorizon) is short and there are bounds on
the maximum and minimum step length, this often leads
to solving for only a few number of steps (typically 2 or
3) so it can be done quite fast. We use SNOPT [11] to
solve the problem either with the exact model F or with
approximate model F. Then we choose the control for the
first step and implement on the forward simulation and repeat
the calculation until we reach the end of the terrain.

E. Model

We demonstrate our method on a model of hopping shown
in Fig. 5 (a) [12]. The model consists of a point mass body
m and a massless leg with a maximum leg length `0. Gravity
g points downwards. There is a prismatic actuator that can
generate an axial force F along the leg and a hip actuator that
can place the swing leg at an angle θ. We non-dimensionalize
by dividing the variables with the terms given as follows:
distance and leg length by `0, time by

√
`0/g, velocity by√

g`0, acceleration by g, and force by mg.
The non-dimensionalized states of the model are given by

{x, ẋ, y, ẏ} where x, y are the x- and y- position of the center
of mass and ẋ, ẏ are the respective velocities. A single step of

3629

Prismatic
actuator

θ

iy Foot
placement
angle

(a) Flight phase (b) Compression phase (c) Restitution phase (d) Flight phase

F = P + β ()-tt 1F = P + β ()-bb 1

ix.

i+1x.

i+1y

Fig. 5. A complete step for the hopping model: The model starts in the flight phase at the apex position (vertical velocity is zero), followed by the
stance phase, and finally ending in the flight phase at the apex position of the next step. The hopping model has a prismatic actuator that is used to provide
an axial braking force Fb in the compression phase and axial thrust force Ft in the restitution phase, and a hip actuator (not shown) that can place the
swinging leg at an angle θ with respect to the vertical as the leg lands on the ground.

the hopper is shown in Fig. 5 (a)-(d). The model starts at the
apex (see Fig. 5 (a)) where the state vector is, {xi, ẋi, yi, 0}.
The model then falls under gravity,

ẍ = 0, ÿ = −1 (4)

until contact with the ground is detected by the condition
y − cos θ = 0, where θ is the foot placement angle and
measured relative to the vertical. Thereafter, the ground
contact interaction is given by (see Fig. 5 (b), (c)),

῭= `θ̇2 − cos θ + F `θ̈ = −2 ˙̀θ̇ + sin θ (5)

F > 0 is the non-dimensional linear actuator force along
the leg. The first half of the stance phase from touchdown
to the maximum compression of the leg length (defined by
˙̀ = 0) is called the compression phase, the actuator force is
F = Pb + β(1− `) where Pb is constant braking force and
β = k`0

mg . For the second half of the stance phase from mid-
stance to take-off, called the restitution phase, the actuator
force is F = Pt+β(1−`) where Pt is constant thrust force.

In the above equations ` =
√

(x−xc)2+y2

`0
is the instantaneous

leg length measured relative to the contact point xc. The
take-off phase occurs when the leg is fully extended, that is,
`− 1 = 0. Thereafter, the model has a flight phase and ends
up in the next apex state, {xi+1, ẋi+1, yi+1, 0} (see Fig. 5
(d)).

IV. RESULTS

A. Computer simulator

We built the forward simulator using MATLAB 2018b. It
involves simulating a single step using phases/event stated
in Fig. 5 and Eqns. 4 and 5. We integrate these equations
using dop853 [13], a higher order Runge-Kutta method with
an adaptive step size. The integrator is written as a C file and
called by MATLAB through the MEX interface. This makes
the simulation reasonably fast. The integrator tolerance is
set 10−13. The integrator also has an in-built function events
to detect a change in phase. Since we treat the simulator
as a black-box, we also put checks to detect simulation
failure. We consider the robot has failed if it meets any of
the following conditions: (1) the horizontal velocity (ẋ) is
negative indicating falling backward; (2) the height of the
point mass (y) is below the ground; (3) during take-off from

the ground, the vertical velocity is negative (ẏtake-off < 0); and
(4) at the apex of the flight phase it meets the following
condition, yapex-of-flight-phase < `0. The last condition ensures that
there is sufficient ground clearance for the swing leg. The
only free parameter is β = kl0

mg = 40.

B. Polynomial approximation of the Poincaré map & others

a) Data generation: As mentioned in Sec. IV-B we
need to approximate the Poincaré map. Our data range
for the inputs are: apex horizontal velocity in the range
0.5 ≤ ẋi ≤ 2 in 0.1667 increments; apex height in the range
1.01 ≤ yi ≤ 1.5 in 0.05 increments; foot placement angle
in the range 2◦ (0.035 rad) ≤ θi ≤ 45◦ (0.7854 rad) in
4.77◦ (0.0833 rad) increments; constant braking force in the
range 0 ≤ Pbi ≤ 7 in 0.7778 increments; and constant thrust
force in the range 0 ≤ Pti ≤ 7 in 0.7778 increments. This
generates 100, 000 input data points {ẋi, yi, θi, Pbi, Pti}. For
each input data point, we run a forward simulation (see
Sec. IV-A) and save the output data, {ẋi+1, yi+1}. Out of
these 100, 000 data points, the robot failed 68, 260 times and
successfully took a step 31, 740 times. This means that we
only have 31, 740 data points to fit a closed-form expression.
We use 75% or 23, 805 successful steps for training and the
rest 25% or 7, 935 for testing. Each of the two outputs ẋi+1

and yi+1 is curve fitted to the inputs, zi = {ẋi, yi} and
ui =

{
θi Pbi Pti

}
.

We also save other auxiliary data such as mechanical
energy per step Ei, time from apex to touchdown, time for
stance, time from takeoff to apex, and step length.

b) Data fitting: We use a second order polynomial to
fit the Poincaré map for each of the two outputs ẋi+1 and
yi+1. Each polynomial has 21 constants. We use MATLAB
function lsqnonlin to fit each polynomial. In our testing, we
found that 94.2% and 96.1% of the fit for the horizontal
velocity and height at the apex, respectively, were within
90% accuracy. It is accepted that 90% accuracy is reasonably
good for approximating the model for high fidelity control
[14].

In addition, we fit the auxiliary data with a third order
polynomial. In our testing, we found that 93.1% fit for
mechanical energy, 97% fit for time from apex to touchdown,
93.2% fit for time for stance, 92% for time from takeoff to
apex, and 93.7% of the step length was within 90% accuracy.

3630

0 2 4 6 8 10 12 14 16 18

0

0.5

1

1.5
H

ei
gh

t (
m

)

0 2 4 6 8 10 12 14 16 18

0

0.5

1

1.5

H
ei

gh
t (

m
)

0 2 4 6 8 10 12 14 16 18

Terrain (m)

0

0.5

1

1.5

H
ei

gh
t (

m
)

(1,1.1)

(1.27,1.11)

(1.57,1.11)

(1.6,1.12)

(1.6,1.12)

(1.6,1.12)

(1.6,1.12)

(1.6,1.12)

(1.6,1.1)

(1.6,1.1)

(1.15,1.1)

(1.43,1.15)

(1.6,1.1)

(1.6,1.2)

(1.6,1.2)

(1.6,1.12) (1.36,1.1)

(1.46,1.17)(1.6,1.1)

(1,1.1)

(1,1.1)

(1.1,1.12)

(1.37,1.2)

(1.55,1.16)

(1.5,1.2)

(1.5,1.18)

(1.47,1.2)

(1.5,1.2) (1.35,1.2)

(1.2,1.2)

(a)

(b)

(c)

Fig. 6. Kinematic data for the stepping stones terrain: (a) Baseline with
exact model (b) MPC with exact model, and (c) MPC with approximate
model. The stepping stones terrain is shown as gray blocks. The foot
placement location is shown as a brown dot on the gray blocks. The
trajectory is shown for each of the optimization cases with the apex velocity
and apex height at step i marked as (ẋi, yi).

C. Optimizations

For all optimizations, the robot starts at apex with initial
forward velocity and height of ẋ0 = 1 and y0 = 1.1. The
stepping stones were randomly assigned as shown in Fig. 6.
We did three optimization runs.

a) Baseline optimization: We performed the optimiza-
tion in Sec. III-D but with xN = dlength and with the exact
Poincaré map F (i.e., obtained from integration). This is the
baseline simulation that we can use to compare our model
predictive control results.

b) Model predictive control: We did two model pre-
dictive control optimizations. Both of these with xN =
dhorizon = 4 m. The only difference is one used the exact
Poincaré map F (MPC with exact model) and the other used
the approximate Poincaré map F (MPC with approximate
model).

c) Optimization results: Figure 6 shows results for
baseline in (a), MPC with exact model in (b), and MPC with
approximate model in (c). Each plot shows (1) the number
of steps (2) the footstep locations, (3) the vertical height,
and (4) the horizontal velocity for the terrain. All three runs
produced the same number of steps and approximately the
same step locations. However, these solutions differed in the
kinematics; the baseline and MPC with exact model had
faster speeds and lower jump height compared to MPC with
approximate model.

Figure 7 shows the braking force in (a), the thrust force in
(b), the foot placement angle in (c), and the Mechanical Cost
of Transport in (d) as a function of step number. The braking
force is responsible for extracting energy from the system.
It can be seen that MPC with approximate model has a
higher average force than baseline which is greater than MPC
with exact model. The thrust force is responsible for adding

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P b

Baseline with exact model
MPC with exact model
MPC with approximate model

(a)

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P t

(b)

1 2 3 4 5 6 7 8 9
4

6

8

10

12

14

16

18

20

22
(c)

1 2 3 4 5 6 7 8 9
Step Number

0.07

0.08

0.09

0.1

0.11

0.12

0.13

 M
C

O
T

(d)

Fig. 7. Controls and energetics for the stepping stones terrain: (a)
braking force Pbi (b) thrust force Pti (c) foot placement angle θi (d)
Mechanical Cost of Transport MCOTi.

3631

energy to the system. It can be seen that baseline provides on
average a greater thrust force than the MPC with approximate
model which is greater than MPC with exact model. The
foot placement angle is almost the same except at the end
where MPC has a larger foot placement angle compared to
the baseline. Finally, the MCOT indicates that the baseline
is the cheapest after MPC with exact model and finally
MPC with approximate model. However, the MPC with
approximate model is within 25% of the baseline energetics.
These results indicate that MPC formulations give results
close to the baseline. Furthermore, the approximate model
does reasonably well in terms of control and energetics when
compared with baseline and exact models.

Overall, the MCOT for baseline is 0.085, MPC with exact
model is 0.092, and MPC with approximate model is 0.11.
These results indicate with limited planning such as in MPC
the solution is 10% worst than the baseline solution where
the entire terrain is known in advance. Also, the MPC with
approximate model with 10% modeling error is within 20%
of the exact model. We found that optimization time for
MPC with approximate model is always faster than MPC
with exact model. The speedup is between 2 and 4. This can
be notable when real-time planning using MPC is desired.

V. DISCUSSION

In this paper, we have shown that model predictive control
(MPC) framework is a viable approach for control of legged
locomotion on stepping stones terrain; MPC performs as well
as a baseline (ideal) controller that plans the entire terrain
before execution in terms of energetics and optimal solution.
Furthermore, approximating the step-to-step dynamics with
low order polynomials enables faster planning than using the
exact model based on integrating the equations of motion.

Our MPC formulation is unique in a few ways. We plan
a fixed distance ahead compared to a few steps ahead. The
former is the natural choice when we are optimizing the Cost
of Transport which is based on distance rather than number
of steps. We incorporate the terrain as a cost compared to
other formulations where it is incorporated as a constraint.
In our cases, the resulting optimal control problem has all
real numbers while in the latter there are integers and real
values making it a relatively harder optimization [7].

Using a continuous-time based formulation we are able
to satisfy the boundary conditions (e.g., position, veloc-
ity constraint) which is not possible with sampling-based
formulation (e.g., A-star, Rapidly exploring random trees)
[15]. However, one caveat is that we need to do multiple
optimizations for different step numbers to find the optimal
step number. This is usually not a problem with a small
preview window as we have in MPC formulations.

MPC is an attractive approach for movement on step-
ping stones due to its anticipatory nature. However, it is
paramount that the computations are done quickly since it is
an online method. Since planning the control over continuous
time is time consuming we use step-to-step models, com-
puted offline, for online control. These models help to map
the reachable space over one step. Another advantage is that

these maps are continuous functions of the states and control
and thus can be approximated using low order polynomials as
done here. Once we have these low order polynomials, real-
time planning is feasible. Also, since the plans are computed
once per step, they can be evaluated at a lower speed, about
half step time, by modest computational resources.

Our approach has some limitations. Our formulation relies
on approximating the terrain with a suitable cost function, a
heuristic decision. We rely on being able to approximate the
Poincaré map and auxiliary variables such as energy, step
length, and step time with suitable low order polynomials.
When this is not possible one might have to increase the
order of the polynomial or resort to other parameterization
(e.g., neural network, Gaussian process regression) which
may add to the computational burden. Finally, for longer
planning horizons the approach may be deemed computation-
ally too intensive preventing the real-time implementation.

REFERENCES

[1] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and
T. Kanade, “Footstep planning for the honda asimo humanoid,” in
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on. IEEE, 2005, pp. 629–634.

[2] W. Huang, J. Kim, and C. G. Atkeson, “Energy-based optimal step
planning for humanoids,” in Robotics and Automation (ICRA), 2013
IEEE International Conference on. IEEE, 2013, pp. 3124–3129.

[3] V. Paris, T. Strizic, J. Pusey, and K. Byl, “Tools for the design of
stable yet nonsteady bounding control,” in 2016 American Control
Conference (ACC). IEEE, 2016, pp. 4822–4828.

[4] M. Campana and J.-P. Laumond, “Ballistic motion planning,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016, pp. 1410–1416.

[5] M. Rutschmann, B. Satzinger, M. Byl, and K. Byl, “Nonlinear model
predictive control for rough-terrain robot hopping,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2012, pp. 1859–1864.

[6] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath, “3d
dynamic walking on stepping stones with control barrier functions,” in
2016 IEEE 55th Conference on Decision and Control (CDC). IEEE,
2016, pp. 827–834.

[7] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 2014 IEEE-RAS international
conference on humanoid robots. IEEE, 2014, pp. 279–286.

[8] B. Aceituno-Cabezas, J. Cappelletto, J. C. Grieco, and G. Fernández-
López, “A generalized mixed-integer convex program for mul-
tilegged footstep planning on uneven terrain,” arXiv preprint
arXiv:1612.02109, 2016.

[9] Y. Ding, C. Li, and H.-W. Park, “Single leg dynamic motion planning
with mixed-integer convex optimization,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 1–6.

[10] P. A. Bhounsule, A. Zamani, J. Krause, S. Farra, and J. Pusey, “Control
policies for a large region of attraction for dynamically balancing
legged robots: a sampling-based approach,” Robotica, pp. 1–16, 2020.

[11] P. Gill, W. Murray, and M. Saunders, “SNOPT: An SQP algorithm for
large-scale constrained optimization,” SIAM Journal on Optimization,
vol. 12, no. 4, pp. 979–1006, 2002.

[12] A. Zamani and P. Bhounsule, “Control synergies for rapid stabilization
and enlarged region of attraction for a model of hopping,” Biomimetics,
vol. 3, no. 3, p. 25, 2018.

[13] E. Hairer, S. NORSETT, and G. Wanner, Solving Ordinary, Differential
Equations I, Nonstiff problems/E. Hairer, SP Norsett, G. Wanner, with
135 Figures, Vol.: 1. 2Ed. Springer-Verlag, 2000, 2000, no. BOOK.

[14] W. J. Schwind and D. E. Koditschek, “Approximating the stance map
of a 2-dof monoped runner,” Journal of Nonlinear Science, vol. 10,
no. 5, pp. 533–568, 2000.

[15] A. Zamani, J. D. Galloway, and P. A. Bhounsule, “Feedback motion
planning of legged robots by composing orbital lyapunov functions us-
ing rapidly-exploring random trees,” in 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp. 1410–1416.

3632

