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Abstract— This paper investigates the safe path planning
problem for an autonomous vehicle operating in unstructured,
cluttered environments. While some objects may be accurately
with canonical perception algorithms, other objects and clutter
may be harder to track. We present an approach that combines
two methods of risk assessment: for objects with reliable
tracking, we use a Gaussian Process (GP) regulated risk map
to describe the risk map information; for unknown objects
that we fail to accurately track, we compute a Dynamic Risk
Density (DRD) from the overall occupancy and velocity field
from LiDAR scan snapshots. Several methods are proposed for
combining the GP risk map and DRD, and the resultant hybrid
risk map is used for the proposed safe path planning algorithm.
Experimental results on an autonomous buggy show that the
hybrid risk map is able to yield a safe path planner to navigate
the autonomous testbed within the cluttered environments.

I. INTRODUCTION

As autonomous mobility integrates into human-centric
environments, these autonomous systems need to perceive
the environment and move safely without collisions. For safe
navigation, the autonomous systems often identify objects
within the environment, then assign a risk of collision. State-
of-the-art methods now allow for accurate object tracking
and behavior predictions. However, the challenge of per-
ceiving the environment still remains a major hurdle. While
recent advances make certain objects easy to track with
high precision, these systems are not always robust when
facing random changes, dropped detection, or other unknown
entities in the environment. In this paper, we explore how
to combine a perception pipeline that tracks objects with a
“safety net” to the perception system relying on only the
occupancy density and velocity field to fill in the gaps in
detection.

This paper focuses on navigation in crowded and un-
structured or semi-structured environments, such as plazas,
pedestrian crosswalks, or other areas where a vehicle may
need to interact with humans, bicycles, cars, or other au-
tonomous agents. Our goal is to study cases at the limits
of current state-of-the-art perception pipelines. In a prior
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(a) Autonomous Buggy Testbed (b) Risk Map Illustration

Fig. 1: Autonomous buggy testbed in the unstructured envi-
ronment and an illustrative example of the risk map generated
and the corresponding re-planned path.

paper, we introduced a Gaussian Process (GP) regulated risk
map for navigation, which is capable of predicting cars and
pedestrians [1]. However, it is limited to tracking only a few
number of objects within the environment, and limited to
the known objects. To complement this risk map, we also
incorporate the Dynamic Risk Density (DRD) [2], which
creates a “safety net” for the autonomous system, based on
the occupancy density and velocity field of the environment.
While the DRD does not predict complex behaviors or
maneuvers, it does not rely on explicit object tracking and
can capture unknown clutter. We combine these two methods
into a unified risk map for the vehicle, and then execute the
path planning with the combined risk map. Our experiments
illustrate how these two modes of combined risk create a
better assessment of the environment than either individual
method. The main contributions of this paper are:
• Combined pipeline for fusing multiple models of risk

assessment;
• Variation of risk based on different levels of conserva-

tiveness;
• Risk-aware safe path planner; and
• Experiments on an autonomous buggy in unstructured,

and semi-structured environments (illustrated in Fig-
ure 1).

A. Related Work

Designing safe and efficient path planning algorithms
for autonomous vehicles remains an open problem. These
approaches can typically be classified as graph-based,
sampling-based, or trajectory optimization methods [3]. With
graph-based planners, the environment is discretized such
that efficient methods like Dijkstra’s algorithm [4], or A? and
related algorithms [5], [6] can be applied. Sampling-based
planners randomly sample the environment to generate feasi-
ble trajectories that conform to vehicle dynamics, including
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(a) Gaussian Process Risk Map (b) Dynamic Risk Density (c) Hybrid Risk Map

Fig. 2: We combine multiple models of risk into a single risk assessment. Here, we show different risk map representations
and the resulting planned safe path for the same scenario snapshots: the green path is the reference path planned beforehand,
the yellow path is the re-planned path based on different risk map representations.

RRT, RRT?, and PRM [7], [8], [9], [10], [11]. Trajectory
optimization methods formulate a constrained optimization
problem and employ techniques from model predictive con-
trol or receding horizon control to solve for the optimal
path with finite time horizon [12], [13], [14]. Collision
avoidance for autonomous systems is a well-studied field
within robotics [15]. Common approaches assume that the
agent positions are known [16], [17] or focus on static obsta-
cles [18], [19], [20], [21]. For dynamic obstacles, reciprocal
velocity obstacles [22], [23] provide collision avoidance, but
assume all the agents make the same symmetric decision
making. Other approaches may employ probabilistically-safe
motion generation [24], or control barrier functions [25],
[26], [27].

We are interested in designing safe path planning methods
that are risk-averse by design. In particular, we focus on
methods that prescribe risk to objects based on their prox-
imity and velocity. This work builds upon the authors’ prior
work in risk level sets [28], [2] and Gaussian Process (GP)
regulated risk [1]. Gaussian processes are a common method
to model the uncertainty propagation in the system [29], [30],
[31], [32], [33]. Here, we combine these models of risk into
a single hybrid metric for the vehicle.

The remainder of the paper is organized as follows: In
Section II, we introduce our problem formulation and de-
scribe both the GP regulated risk and Dynamic Risk Density.
Section III presents our method for creating our multi-model
risk map, and our safe path planner. Experiments using an
autonomous buggy are presented in Section IV, and we state
our conclusions in Section V.

II. MODELS OF RISK

In generating our combined risk map, we consider how to
both quantify a high-fidelity estimate of behaviors for objects
that we can track, as well as a risk assessment for all the
objects that we cannot track. For objects we can track, we
choose the GP regulated risk [1], and use the Dynamic Risk
Density [2] for everything else. In this section, we provide
a background summary of each of these methods and how
each method generates a risk map of the environment.

Figure 2 illustrates the two types of risk maps we will
combine in this paper, as well as the resulting combined

map. The GP regulated risk creates a risk map based on
object-tracking and behavior prediction, while Dynamic Risk
Density combines the occupancy density of the environment
with a velocity field estimate. From Figure 2(a), we can see
that the GP risk map performs quite well for the objects that
are detected and tracked very well, however, when there are
detection dropout and/or undetectable objects, the GP risk
map tends to ignore them, and the resulting planned path is
unsafe in that case. On the other hand, the DRD method uses
the Lidar snapshot difference as the input, and it captures the
overall movement of all the objects (without object dropout),
therefore, the risk map captures all the moving objects, as is
shown in Figure 2(b). However, since the DRD risk map
focuses on the overall movement of all the objects, the
objects near the ego vehicle are treated equally important as
the far-away objects. In this case, the risk map is not accurate
enough to describe the nearby areas, and the resulting path
is unsafe as well. Therefore, a combination for the two risk
map models is needed, displayed in Figure 2(c).

A. GP Regulated Risk Map

For detected and tracked objects in the environment, we
generate a risk map that computes the probability that a point
in the environment is occupied or in the direct path of an
object. For an environment Q ⊂ R2, we define points in Q
as q = (x, y)>, where x and y are the coordinates of the
2D environment. We model our object detection module by
a Gaussian process, which returns a probability p(x, y) that
a point in the environment is occupied by the tracked object
or its path.

In our object detection module, we denote µ̂t:t+k as the
streamline output from time t to time t+k, and the posterior
distribution after k outputs as p(µ|µ̂t:t+k). We update our
risk map by deriving p(µ|µ̂t:t+k) given p(µ|µ̂t:t+k−1) and
µ̂k. The complete derivation procedure is presented in [1],
and outlined here:

p(µ|µ̂1:k) ∝ p(µ̂1:k|µ)p(µ)

= p(µ)
k∏
i=1

p(µ̂i|µ)

∝ exp
(
− 1

2

(
(µ− µk)>Σ−1

k (µ− µk)
))
,

(1)
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where Σk denotes the covariance and µk denotes the mean.
The mean and covariance are defined

Σk = (Σ−1
0 + kΣ−1

µ )−1

µk = (Σ−1
0 + kΣ−1

µ )−1(Σ−1
0 µ0 +

k∑
i=1

Σ−1
µ µ̂i).

(2)

Additionally, we can update the risk map online by recur-
sively computing µk and Σk given the real-time inputs µ̂k,
and the previous posterior parameterization µk−1, and Σk−1

at time k−1. The recursive online update of the posterior is

Σk = (Σ−1
k−1 + Σ−1

µ )−1, (3)

µk = (Σ−1
k−1 + Σ−1

µ )−1(Σ−1
k−1µk−1 + Σ−1

µ µ̂k) (4)

From the one-static-obstacle GP risk derivation procedure,
we can see that the posterior distribution of the obstacle given
an output stream from the object detection module follows a
Gaussian process with µk and covariance function Σk. For
i = {1, ...,m} static obstacles, we define the risk map that
pertains to obstacle i by

pi(x, y) =
exp

(
− 1

2 ((x, y)> − µk)>Σ−1
k ((x, y)> − µk)

)√
|2πΣk|

.

(5)
We define the overall risk map for all the m obstacles as:

p(x, y) = 1−
m∏
i=1

(1− pi(x, y)) (6)

We refer the reader to [1] for the full derivation process for
dynamic obstacles.

B. Dynamic Risk Density
For the objects we cannot identify and track, we still wish

to assign a risk to those objects and regions for our path
planner, creating a “safety net” for the autonomous vehicle.
Here, we implement the Dynamic Risk Density introduced
in [2], summarized below. For points q ∈ Q, let ρ(q, t) define
the occupation density at point q in the environment at time t.
We also define V(q, t) as the velocity field of the environment
at time t. The Dynamic Risk Density is [2]

Hρ(q, t, ρ,V) =
ρ(q, t)

1 + exp (α∇ρ(q, t) · V(q, t))
, (7)

where ∇ρ(q, t) is the gradient of the density, and α is a user-
designed scaling factor. For brevity, we use the superscript
t to denote time, letting ρt and Vt denote the density and
velocity field, respectively.

While the occupation density is easily obtained from laser
scanners, we need to estimate the velocity field of the
environment. Here, we estimate the velocity field Vt from
changes in density between ρt and ρt−1, inspired by dense
optical flow estimation from the computer vision community.
Consider a voxel at location q = (x, y, t), with density
ρ(x, y, t). Between measurements, the voxel moves by ∆x,
∆y, and ∆t, which allows us to write the density constancy
constraint:

ρt(x, y) = ρ(x, y, t) = ρ(x+ ∆x, y + ∆y, t+ ∆t) (8)

Assuming this movement between time steps is small, we
approximate the density with a first-order Taylor expansion,

ρ(x+ ∆x, y + ∆x, t+ ∆t) =

ρ(x, y, t) +
∂ρ

∂x
∆x+

∂ρ

∂y
∆y +

∂ρ

∂t
∆t+ H.O.T. (9)

From the density constancy condition (8) and dividing the
partial differential equation by ∆t

∂ρ

∂x

∆x

∆t
+
∂ρ

∂y

∆y

∆t
+
∂ρ

∂t
= 0, (10)

we relate the density gradient ∇ρ = ( ∂ρ∂x ,
∂ρ
∂y ) to the density

flow Vt = (∆x
∆t ,

∆y
∆t ). We then solve (10) similar to [34]

to estimate the density flow Vt given sequential densities
ρt, ρt−∆t with a local polynomial expansion.

III. NAVIGATION WITH MULTI-MODEL RISK

In this section, we first present our method for combin-
ing the risk maps into a single unified metric, and then
describe our safe path planner given the combined risk map.
Algorithm 1 summarizes our planning process, which is
implemented in the experiments in Section IV.

Algorithm 1 Navigation with Multi-Model Risk

1: Find Dynamic Risk Density H(x, y) (7)
2: Find GP regulated risk p(x, y) (6)
3: Calculate combined risk r(x, y) with one of the four

combination models [(11), (12), (13), or (14)]
4: Choose ε-safe threshold (15)
5: Find shortest safe path from (16)
6: if no feasible path then
7: Find the next safe action from (17)
8: end if

A. Multi-Model Risk Map Construction

Within our perception pipeline, we can calculate both
models of risk presented in Section II at each point in time.
The GP regulated risk provides risk values for the tracked
objects in the environment, while the Dynamic Risk Density
assigns risk to any objects in the environment that cannot
be explicitly tracked, or for which we do not have a reliable
prediction model. Given both models, the task is to combine
them in a way that is not overly conservative or aggressive.
Here, we present four possible alternatives, which are later
analyzed in the experiments section.

We denote the combined risk map as r(x, y), which as-
signs a value of risk to points on a grid (x, y). The combined
map r(x, y) is constructed as a combination of the GP reg-
ulated risk p(x, y) and the Dynamic Risk Density H(x, y).
We normalize both risk densities, p(x, y) and H(x, y), to
take values between [0, 1] to allow for comparisons and
combination of the two methods. Furthermore, this also
allows the combination result r(x, y) to map to the same
range. Here, we present four possible methods for combining
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these risk maps, which we refer to as the “Maximum-
Safety” model (rm), the “Joint-Minimum” model (rj), the
“Aggressive” model (ra), and the “Convex Combination”
model (rc).

1) Maximum-Safety Model (rm): This model constructs
the most conservative estimate of the combined risk by
multiplying both risk maps, and rm is calculated as:

rm(x, y) = 1− (1− p(x, y)) (1−H(x, y)) . (11)

We consider this model the most conservative, as any amount
of risk in either map will be enlarged in this map.

2) Joint-Minimum Model (rj): For this model, we choose
the minimum between the two models as the risk value. For a
node (x, y) to be considered “safe” under this construction,
the node must be considered “safe” by both models. We
calculate rj as:

rj(x, y) = 1−min{1− p(x, y), 1−H(x, y)}. (12)

The Joint-Minimum model is appropriate in situations where
we are worried about missed detections, and the probability
of false positives is low for either map.

3) The Aggressive Model (ra): In contrast to the Joint-
Minimum model, the Aggressive model takes the maximum
value between the two risk maps. Thus, a location in r(x, y)
is deemed safe when considered safe by either one of the
two models.

ra(x, y) = 1−max{1− p(x, y), 1−H(x, y)}, (13)

The Aggressive model is useful when both maps may (in-
dependently) produce a large number of false-positive risk
detections, and we tend to ignore the falsely detected risk
values.

4) The Convex Combination Model (rc): Our final model
finds the convex combination of the two individual risk maps,
calculates rc as:

rc(x, y) = 1−
(
θ(1−p(x, y))+(1−θ)(1−H(x, y)

)
, (14)

where θ ∈ (0, 1) is a scaling factor. Here, we can tune θ
to bias the weight of one map over another. For instance, a
larger value of θ biases the belief of the GP regulated risk
model more than the Dynamic Risk Density one.

B. Safe Path Planner

Once the combined risk map r(x, y) has been calculated,
we input the map into our safe path planner, summarized in
Algorithm 1. The planner calculates the shortest safe path
connecting the ego vehicle from its origin location, denoted
as O, to a desired destination point, denoted as D in the
2D environment. We define the path on a discretized grid
gt of the environment, where sO and sd are the origin and
destination in the grid, respectively. Safety is specified by
some threshold ε, which can be tuned to the given task and
application. The following defines the ε-safe node and ε-safe
path.

Definition 1. An ε-safe node: A node in a 2D grid map is

said to be ‘ε-safe’ if the risk value of it is less than ε,

(x, y) ∈ {x, y : r(x, y) < ε}. (15)

Definition 2. An ε-safe path: A path is defined as ‘ε-safe’ if
all the nodes contained in the path are ε-safe nodes.

From these definitions, we can then formulate the safe
path planning problem as follows:

Problem 1. (ε-Safe Path Planning) An ε-safe path travers-
ing the environment can be found by solving the following
optimization:

minimize
g1,··· ,gT

T

subject to gt ∈ A(gt−1) ∀1 ≤ t ≤ T,
r(gt) ≤ ε ∀1 ≤ t ≤ T,
g0 = s0, (16)
gT = sd,

where A(gt−1) refers to the set of nodes that are reachable
from gt−1, i.e., the neighbour set of gt−1, and r(gt) is the
multi-model risk value of the node gt at time t.

To solve the path planning problem defined in (16), we
use Dijkstra’s algorithm by removing all the nodes that are
not ε-safe. The optimization then returns the minimum-time
ε-safe path from the specified origin to the destination.

In highly cluttered environments, there may be no feasible
path between the origin and destination, especially if the
chosen risk model is too conservative and ε threshold is too
small. To address the potentially infeasible path problem,
we relax the constraint that all the nodes along the path
must be ε-safe, and instead only constrain that the immediate
next node is ε-safe. The relaxed safe path planning problem
becomes:

Problem 2. (ε-safe Next Action) If there is no feasible ε-
safe path, we can find the immediate safe action from the
relaxed problem:

maximize
g1,··· ,gT

T∑
i=1

log
(
1− r(gi)

)
subject to gt ∈ A(gt−1) ∀1 ≤ t ≤ T

r(g1) ≤ ε, (17)
g0 = s0, (18)
gT = sd.

Note the constraint in (17) only requires that r(g1) <
ε, instead of r(gt) < ε in (16), and the objective is to
maximize the path’s overall safety score which is defined
as
∑T
i=1 log

(
1 − r(gi)

)
. In Algorithm 1, if we cannot find

a feasible solution to (16), we use the relaxed planner as
defined in (17) to find the next safe action for the ego vehicle.

IV. EXPERIMENTS AND ANALYSIS

We implemented our safe planner from Algorithm 1 to-
gether with the hybrid risk map calculation method on an
autonomous buggy testbed. More details on our autonomous
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buggy platform can be found in [35]. A Sick LMS 151
2D Lidar is the primary sensor for object localization and
multi-model risk map assessment. The buggy navigates
itself within a 2D map of the environment constructed
through laser-based SLAM (Simultaneous Localization and
Mapping), and the ego autonomous testbed’s localization
is through an adaptive Monte-Carlo localization (AMCL)
method [36].

For our experiments, we compare the various methods
of combined risk, as detailed in Section III, in two envi-
ronments. First, we consider a semi-structured tunnel envi-
ronment, where the flow of traffic follows the direction of
the tunnel. Next, we analyze performance in an unstructured
busy pedestrian mall, which has traffic in all directions. We
first compare how the chosen risk model impacts the safe
planning region, then compare variations in path deviations
when re-planning around an obstacle.

A. Object Detection Pipeline

To construct the GP regulated risk map p(x, y), we need to
detect, localize and track the objects within the environment.
For object detection, we used the spatial-temporal approach
for LiDAR object detection as outlined in [37]. The object
detection module has been further tuned to enable higher
detection rates for pedestrians in order to suit the golf cart
test platform in the plaza test environment. Furthermore, the
permanent features in the environment, e.g. walls, mirrors
and pillars, have been masked away to minimize false
positives. For object tracking, we employ the Kalman Filter
and Hungarian Algorithm [38] as the tracking pipeline, as
well as a novel data association maneuver with velocity
priors in certain regions to incorporate symbolic road context
information. Normally, a constant velocity motion transition
model is supplied to the Kalman Filter, however, when
the environment contains specific structures such as road
curvatures or crosswalks, we change the velocity priors so
as to embed this information. For example, we update the
belief to include that pedestrians are most likely to cross at
crosswalks, or that vehicles will probably follow the road
curvatures. This is most used in areas where the constant-
velocity model is less precise, e.g. entering or leaving road
sections, roundabouts, and road crossings.

In the implementation, the obstacle detection and tracking
module operates at around 10Hz, and the risk map update
and safe path planner of Algorithm 1 is operating at 5Hz.
The micro-controller for low-level planning of the vehicle
operates at 40Hz. During our experiments, the ego vehicle
reacts within 200ms to decisions made by the safe path
planner, hence, we call our safe path planner real time. This
planning loop also includes any path re-planning whenever
the previous path becomes unsafe or infeasible.

B. Safe Path Planning in Semi-Structured Environment

We tested the safe path planner together with the multi-
model risk map in a semi-structured environment, i.e. a
tunnel environment, where the flow of pedestrians and bi-
cycles is, more or less, in a fixed direction, by design of the

(a) (b)

(c) (d)

Fig. 3: Risk map and planned path in a tunnel environment.
(a) GP regulated risk p(x, y) and (b) Dynamic Risk Density
H(x, y), (c) maximum-safety risk rm(x, y) and (d) Convex
Combination rc(x, y) (with θ = 0.5) respectively. A feasible
path (green) exists when only using a single model of risk
in (a) or (b). When using the combined risk in (c) and (d),
we can see that the safe path plan is infeasible (red), thus
the vehicle should use the relaxed safe path planner, slow its
speed, and re-plan at a higher frequency.

environment. In this testing scenario, the buggy encountered
both the pedestrians and bicyclists going through the tunnel.

Figure 3 illustrates how the original (a) GP regulated risk
and (b) Dynamic Risk Density compare to both the (c)
Maximum-Safety model rm(x, y) and (d) Convex Combi-
nation model rc(x, y). Note that we have not plotted the
Joint-Minimum model rj(x, y) nor the Aggressive model
ra(x, y). While the GP regulated risk is good at detecting
easily-identifiable pedestrian’s motion near the vehicle, the
Dynamic Risk Density adds more information about other
pedestrians, walls and obstacles in the environment, and the
movement motion which is missed by the object detection
and tracking pipeline. We also plot the ego vehicle’s planned
path in Figure 3. When only a single model of risk is
considered, the vehicle computes a safe path (green) through
the environment. However, when we take both models in
combination, the red path indicates that the region is no
longer safe, and the vehicle has switched to the relaxed
safe path planner, and it needs to slow down and plan at a
higher re-planning frequency. A comparison of all four risk
models is presented in the following section on unstructured
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(a) rm(x, y) (b) rj(x, y)

(c) ra(x, y) (d) rc(x, y)

Fig. 4: Comparison of planned paths for various calcula-
tion models of risk in an unstructured environment. (a)
Maximum-Safety, (b) Joint-Minimum, (c) Aggressive, and
(d) Convex Combination Models for combining the GP reg-
ulated risk and Dynamic Risk Density. Note (a) provides the
most conservative estimate, while (c) is the most aggressive.

environments.

C. Navigating Unstructured Environments

As detailed in Section II, our combined risk map is
generated as the combination of a GP-regulated risk map
as proposed in [1] and the Dynamic Risk Density from [2].
We fuse these maps into a single risk map, computed in
four different ways described in Section III and illustrated
in Figure 4. In Figure 4, we illustrate how the different
models of risk map combinations result in different risk
map representations for the unstructured environment. We
consider this environment “unstructured” since the pedes-
trians and bicycles move freely in any direction. For this
specific scenario, we considered all four models presented. In
our preliminary tests, we came up with several observations
about the different models being used.

For the maximum-safety model (rm(x, y)), it can be seen
that the risk areas around any obstacles are greatly inflated.
Large areas are perceived as too risky to move through,
causing the path planner to often fail in returning a viable
path. Also, we find that the Aggressive risk model (ra(x, y))
is not conservative enough in defining safe regions, and failed
to capture most of the obstacles. While this method may
be appropriate in systems with high rates of false detection,

Fig. 5: The evolution of ε-safe region percentage over time,
where ε is set to be 0.01. Visualizations of the environment
are shown in Figure 4. The Aggressive model fails to capture
most of the obstacles, thus resulting in a high fraction of safe
area in the environment. We found the Joint-Minimum model
to be the best-performing combination of risk models in our
environments.

for our system, we find that the dropped detection (false
negative) is the more common perception issue.

Overall, the Joint-Minimum model (rj(x, y)) showed a
good balance between allowing the path planner to generate
a feasible yet safe path and demarcating a risky zone around
both static and dynamic obstacles. This model avoid the
issues in both the maximum-safety model and the Aggressive
risk model, while avoiding additional steps to tune the θ
value as that in the Convex Combination model (rc(x, y)).

1) Comparison of ε-safe regions: We compare the evolu-
tion of the total ε-safe regions in the environment in Figure 5.
Here, we park the buggy in the crowded environment, and
record the fluctuations in total ε-safe area over 30 seconds.
Figure 5 plots the fraction of the ε-safe region over time.
As expected, the Maximum-Safety model is the most con-
servative, and the Aggressive model is the least conservative.
The Joint-Minimum model is the less conservative than the
Convex Combination model. We use the Joint-Minimum as
our hybrid risk model for the performance comparisons in
the following section.

2) Variation in Path Deviations: To quantify the perfor-
mance of our path planner, we compare the total path length
and the corresponding safety score in a simple benchmark
scenario. Here, a single pedestrian walks in front of the
buggy, forcing the buggy to plan around the obstacle. We
compare the individual models of risk, the GP risk and
Dynamic Risk Density, against our hybrid model. For these
tests, the Joint-Minimum model rj(x, y) defined in (12) is
our chosen hybrid risk model. Snapshots from the video of
these experiments is shown in Figure 2. We compare n = 20
trials for each risk model, and report the average path length,
standard deviation values and the safety score for both static
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Risk Map Hybrid
Risk

GP Risk Dynamic
Risk
Density

Avg (m) 19.7429 19.2716 19.3399
Std (m) 0.3 0.4357 0.2623
Safety score
(static)

2.6711 2.1319 2.6619

Safety score
(dynamic)

2.9249 2.8608 2.5215

TABLE I: Comparison of the ε-safe path to avoid a dynamic
obstacle (pedestrian) and a static obstacle (a tree) with
different risk maps. The hybrid risk map uses the “Joint-
Minimum” rj(·) from (12). Here, we compare the average
path length from n = 20 trials. Safety score (static) refers
to the path’s minimal distance to the static obstacle in the
environment, and Safety score (dynamic) refers to the path’s
minimal distance to the pedestrian.

and dynamic obstacles in Table I. Here, a safety score for
static obstacle is calculated as the re-planned path’s minimal
distance to the static obstacle, which is a tree, in the environ-
ment. The safety score for the dynamic obstacle is quantified
as the re-planned path’s minimal distance to the dynamic
obstacle, which is a pedestrian. A statistical significance test
shows a p-value less than 0.01 when compare the hybrid risk
resultant path’s length against the re-planned path’s length of
the other two risk models.

In Table I, we can see that the hybrid risk will make the re-
planned path, on average, a little longer than the other two
methods, which indicates that it is more conservative and
hence safer. We also compare the minimum distance from
a static obstacle (tree) and a dynamic obstacle (pedestrian)
from the trials. The GP risk keeps a higher distance from the
dynamic obstacle versus the static obstacle, which placed
the buggy within 2.13 meters. Since the buggy’s width is
1.4 meters. Compared to the GP model, the Dynamic Risk
Density is less conservative around the dynamic obstacle, but
more conservative around static obstacles. These results are
expected: the GP risk model excels at modeling well-known
dynamic obstacles, like pedestrians, while the Dynamic Risk
Density provides a safety net agnostic to obstacle type. By
taking the combination of these two models, we increase the
safety scores for both static and dynamic obstacles, yielding
a safer path.

3) Safe Path Planning through Unstructured Environment
with the Joint-Minimum Risk Model: For the comparison of
ε-safe regions in Figure 5 and path deviations in Table I,
we kept the autonomous buggy stationary to evaluate the
evolution of the risk map and corresponding safe path
planner. Here, we evaluate the buggy’s performance using
the multi-model risk map for its safe path planner when
the buggy moves the dynamic environment. We consider the
environment unstructured as pedestrians and bicycles move
freely in any direction. We choose the Joint-Minimum model
from (12) as the combined multi-model risk. Figure 6 shows

(a) t=6s

(b) t=9s

(c) t=10s

(d) t=12s

Fig. 6: Safe path planning with multi-modal risk map snap-
shots showcase. The ‘Joint-Minimum’ model is used to com-
bine the GP and DRD risk maps, and the ego autonomous
buggy will re-plan the safe path based on the combined
risk map. The re-planned path is visualized in green, and
the predefined reference path is plotted in yellow color for
comparison.

snapshots from the video as the buggy moves through the
environment.

V. CONCLUSIONS

This paper presents a method to combine multiple models
of risk assessment into a single planning pipeline. We choose
to combine a GP regulated risk map, which generates high
fidelity predictions of individually-tracked objects, with Dy-
namic Risk Density, a method of assigning risk based on the
occupancy density and velocity field in the environment. We
present four methods on how to combine risk metrics, based
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on the desired level of conservativeness when combining the
estimates. From the combined multi-model risk map, we find
the safe path through the environment following a grid-based
planning method. Experiments performed on our autonomous
buggy demonstrate how fusing the two risk maps provides
a more robust assessment of the environment than either
individual model.

In the future, we would like to expand the application
scenarios to more urban environments with the autonomous
vehicle testbed, to see how an efficient combination of multi-
model risk maps can help with a better safe path planner.
We would also like to embed more contextual information,
such as road curvatures, pedestrian intentions with crosswalk
information, into the safe path planner.
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