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Abstract— This paper proposes a data-driven method for
powered prosthesis control that achieves stable walking without
the need for additional sensors on the human. The key idea is to
extract the nominal gait and the human interaction information
from motion capture data, and reconstruct the walking behavior
with a dynamic model of the human-prosthesis system. The
walking behavior of a human wearing a powered prosthesis is
obtained through motion capture, which yields the limb and
joint trajectories. Then a nominal trajectory is obtained by
solving a gait optimization problem designed to reconstruct
the walking behavior observed by motion capture. Moreover,
the interaction force profiles between the human and the
prosthesis are recovered by simulating the model following the
recorded gaits, which are then used to construct a force tube
that covers all the interaction force profiles. Finally, a robust
Control Lyapunov Function (CLF) Quadratic Programming
(QP) controller is designed to guarantee the convergence to the
nominal trajectory under all possible interaction forces within
the tube. Simulation results show this controller’s improved
tracking performance with a perturbed force profile compared
to other control methods with less model information.

I. INTRODUCTION

Commercially available prosthetic legs remain largely
limited to passive devices which increase an amputee’s
metabolic cost and their amputated side’s hip power and
torque [1]. Powered prostheses lend the benefit of providing
net power to the user and enabling a walking gait more
representative of a healthy biomechanical gait [2]. A large
subset of existing research on powered prostheses focuses
on the use of impedance control methods [3], [4], [5]. The
downsides of this method is that it requires extensive tuning
and is highly heuristic. To address this heuristic nature,
researchers have developed trajectory tracking methods for
prostheses inspired by bipedal robotics [5], [6], [7].

Powered prostheses present an interesting control problem
compared to walking robots in that the behavior of part
of the system is unknown: the human. To address this,
researchers have examined phase variables [5], [8] to prop-
erly modulate the prosthesis trajectory in response to the
human, but the trajectory tracking methods do not account
for the human dynamics. While feedback linearization and
CLFs can enforce the trajectories on walking robots [9],
[10], these methods cannot be applied to prostheses in the
same way because they require full model information. For
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Fig. 1: Powered prosthesis AMPRO3 attached to iWalk
adapter worn by human with Optitrack motion capture mark-
ers. (Right) Joint location determination based on markers.

example, in [11] a method was developed to apply CLF-QP
to a prosthesis, but in a model independent fashion. Model-
dependence is desired in a prosthesis controller to improve
tracking performance and robustness to perturbations. Recent
work [12] incorporated some model dependence into robust
prosthesis controllers but did not account for the interaction
force between the human and prosthesis.

Accounting for the interaction force in a model-dependent
prosthesis controller is crucial for the stance phase for two
reasons. One, during stance the human exerts a large force on
the prosthetic as the prosthetic supports the human’s weight
and motion, hence the force is a critical component of the
prosthesis dynamics. Two, the human relies on the prosthetic
for support and balance, making the stability of the prosthesis
vital for the human’s safety during this phase. Prosthesis
controllers were developed in [13] and [14] that incorporated
this interaction force in feedback linearization. While these
methods worked in simulation, they pose implementation
problems due to the drawbacks of a force sensor and lack of
robustness of feedback linearization. Force sensors for these
applications are expensive, noisy, and not robust to the multi-
directional force and torque impacts present in walking. This
motivates our goal to develop a model dependent prosthesis
control method without requiring a force sensor.

In order to characterize the reaction force between a
human and prosthesis without a force sensor, human walking
analysis is needed. Motion capture has often been used to
understand human walking behavior [15], [10]. The authors
in [16] and [17] used motion capture to develop a reference
trajectory for a powered prosthesis, yet the reference is taken
from normal human walking. In [18], the ground reaction
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force on a prosthesis was estimated with a nonlinear Kalman
filter methods, but the internal forces were not examined.
The internal force of a human tibia was analyzed with
a musculoskeletal model in [19], yet the model is only
applicable to a human body, not a human body in connection
with a prosthesis. This paper extends upon these works
by using motion capture to evaluate the interaction force
between a human user and prosthesis device, Fig. 1, and
develop a stable walking trajectory for the prosthesis.

The main contributions of this paper are
• developing a procedure that identifies the range of

interaction forces between a human and prosthesis from
motion capture without a force sensor

• constructing a robust CLF-QP controller that renders
the prosthesis stable, even with force disturbances, to a
walking trajectory similar to that in motion capture.

We obtain joint trajectory data using an Optitrack motion
capture system and calculate the interaction forces by simu-
lating the human-prosthesis system following the trajectories.
Through optimization we match the trajectories to obtain a
stable nominal walking gait that satisfies the dynamic equa-
tions to simulate continuous walking. For this we follow a
method similar to [10] but use asymmetric human-prosthesis
data with a human-prosthesis model instead of symmetric
human data. Then, to capture the nondeterministic nature the
of a human user, a force tube is constructed that covers all
interaction forces associated with the recorded steps. Finally,
we control the prosthesis in simulation with a robust CLF-
QP controller that guarantees convergence to the nominal gait
for any possible interaction force within the tube. Simulation
results show the improved tracking performance of this
model-dependent method with respect to perturbations.

The structure of this paper is depicted in the flow dia-
gram in Fig. 2 and outlined here. Section II explains the
method to obtain human-prosthesis walking data through
motion capture and process the data to obtain joint angle
trajectories. Section III describes the hybrid model for the
combined human-prosthesis system. Section IV covers the
construction of outputs for the human-prosthesis system and
how these are used in gait design to both develop a stable
walking trajectory that matches the motion capture data and
playback the data to obtain the interaction force profiles.
Further, this section covers the development of the tube of
interaction forces. Section V outlines the construction of our
robust CLF-QP controller and presents the simulation results
with this controller and our developed walking trajectory.
Finally Section VI concludes the paper and contains a brief
description of future work.

II. MOTION CAPTURE AND DATA PROCESSING
In the data collection phase, a human user wears the

custom-built powered transfemoral prosthesis, AMPRO3,
through the use of an iWalk adapter on her right leg, as shown
in Fig. 1. AMPRO3 has 2 DC brushless motors to actuate the
knee and ankle pitch and 2 encoders to read the positions and
velocities of both joints. The knee and ankle are controlled in
real-time by the most model-dependent prosthesis controller

Fig. 2: Flow diagram (with section numbers of paper)
depicting steps in method to go from motion capture data
to a model-dependent controller.
currently available, a robust-passive controller that tracks a
trajectory determined offline [12].

The behavior of the human with the prosthesis is captured
by an Optitrack motion capture system. It uses multiple
cameras (up to 40) to locate markers fixed on an object
and subsequently locate the object. Since we are tracking
a human wearing a prosthesis, not just a human subject, and
we only examine the motion in 2D space, it is not fitting or
necessary to use a standard human marker set, such as Helen
Hayes [20]. We place markers on each lower-limb segment
of the human user and the prosthesis, registering each set of
markers on the same segment as a rigid body in the tracking
system. Optitrack gives the position and rotation of the limbs.
While we do not use a standard marker set, we still apply
the basic principles of [20]: by modeling the human limb
segments as rigid bodies, the relative motion between these
segments gives us the trajectory of the center of rotation,
assumed to be the center of the joint.

A. Processing Motion Capture Data

Since the prosthesis only actuates in the sagittal plane,
we project the motion data to this plane, treating the data
as 2D walking data. For this section, let x, z denote the
longitudinal and vertical coordinates of the markers and θ
denote the pitch angle of the rigid bodies. Optitrack gives the
global coordinates of the markers along with the position and
orientation of the rigid bodies when it recognizes the rigid
bodies. From this we compute the lower-limb pitch angles,
joint angles, and joint positions for the human and prosthesis.
Compute Pitch Angles. When the system recognizes the
rigid body, it directly provides the pitch angle. When the
tracking is lost, we use two markers on the same limb to
compute the pitch angle as θ = arctan((x2−x1)/(z2−z1)),
where [xi, zi], i ∈ {1, 2} are the x and z coordinates of the
two markers. The difference between limb angles gives the
joint angle, providing the joint angle trajectories for walking.
Locate Joint Positions. Since markers are not on joint
rotation centers, we use a convex optimization approach to
determine the joint position relative to markers to obtain the
global joint positions from the marker positions. For each
joint, we find the two limbs connected to the joint, and select
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one marker on each joint, denoted as [x1, z1], [x2, z2], as
shown in the right portion of Fig. 1. We signify the joint
coordinate with [x0, z0] and the previously determined limb
pitch angles as θ1 and θ2. Let Λ1 and Λ2 denote the vectors
from the two markers to the joint, then the joint position can
be computed from two directions:

[x0, z0]ᵀ = [x1, z1]ᵀ+R(θ1)Λ1 = [x2, z2]ᵀ+R(θ2)Λ2, (1)

where R(θ) is the 2D rotation matrix.
The following optimization solves for Λ1 and Λ2 by

minimizing the discrepancy between the two equivalent
computations:

min
∆1,∆2∈R2

∑
t

∥∥∥∥ [x1(t), z1(t)]ᵀ +R(θ1(t))Λ1−
[x2(t), z2(t)]ᵀ −R(θ2(t))Λ2

∥∥∥∥
2

,

with which we compute the joint location by taking the
average of the two expressions in (1). The joint position
information is potentially useful for the computation of limb
lengths, identifying different phases of the walking data, and
computing outputs that depend on joint positions.

With the procedure presented in this section, we are able
to get the limb angle trajectories, joint position trajectories,
and joint angle trajectories from the motion capture data. In
total, 37 step cycles were collected and analyzed.

III. HUMAN-PROSTHESIS MODEL
To simulate the joint trajectories from motion capture data,

we develop a model of the human-prosthesis system.
Model. The human-prosthesis system is modeled as a 2D
bipedal robot by the methods of [21], where the human limbs
are modeled as rigid linkages connected by revolute joints. A
3 DOF fixed joint is added at the human-prosthesis interface
to model the rigid connection between these two bodies, for
a total of 12 DOF, shown in Fig. 3. We consider 6 actuators,
one at each leg joint. The human limb lengths, mass, and
COM are calculated with Plagenhoef’s table of percentages
[22] and the subject’s total height and mass. The inertia of
each limb is estimated with Erdmann’s table of radiuses of
gyration [23]. The human right thigh limb accounts for the
iWalk, human’s bent calf, and human’s foot. We measured
the iWalk’s mass and length and used these measurements to
calculate the moment of inertia assuming simple geometry.
The prosthesis parameters are obtained from a CAD model
of AMPRO3 [11], a powered transfemoral prosthesis, Fig. 1.
Generalized Coordinates. We define the generalized coor-
dinates for the model as q = (qᵀh, q

ᵀ
f , q

ᵀ
p )ᵀ. Here, the coor-

dinates of the human side are qh = (qᵀB , θlh, θlk, θla, θrh)ᵀ,
where the extended coordinates qB ∈ SE(2) represent
the position and rotation of the system’s base frame RB
with respect to the world frame RW , and the remaining
coordinates are the relative joint angles as defined in Fig 3.
The coordinates of the fixed joint qf ∈ R3 are the position
and rotation of the fixed joint reference frame Rf . The
prosthetic coordinates are given by qp = (θpk, θpa)ᵀ, for
the knee and ankle, respectively.
Human-Prosthesis Dynamics. Because human walking con-
tains both continuous and discrete dynamics, we model it as

Fig. 3: (Right) Robot model of human-prosthesis system
labeled with generalized coordinates. (Left) Model of robotic
prosthetic leg with external forcing Fs.

a multi-domain hybrid control system, formally defined as a
tuple [10]:

H C = (Γ, D, U , S, ∆, FG),

where Γ = (V, E) is a directed cycle, with vertices V =
{v1 = ps, v2 = pns} and edges E = {e1 = {ps →
pns}, e2 = {pns → ps}}. Here ps stands for prosthesis
stance and pns for prosthesis non-stance. These are modeled
as separate domains because of the asymmetry of the model.
(For the scope of this paper, we only consider these single
support phases since we are most interested in controlling
the prosthesis when it is the only support for the human. We
assume when the human has her own foot as support, she
can balance herself more independently.) Each domain Dv ,
in the set of admissible domains defined by D = {Dv}v∈V ,
contains two 3-DOF holonomic constraints, hv(q) ∈ R6,
one on the stance foot and the other on the fixed joint at
the human-prosthesis interface. The set of admissible inputs
is defined by U = {Uv}v∈V . The transitions between the
domains are a set of guards, S = {Se}e∈E , which in this
case is when the non-stance foot hits the ground. This event
causes an impact defined by ∆ = {∆e}e∈E . The set of
control systems FG = {(fv, gv)}v∈V with (fv, gv) defines
the continuous dynamics ẋ = fv(x) + gv(x)uv .

To obtain these continuous dynamics of the human-
prosthesis system with x = (qᵀ, q̇ᵀ)T , we use the classical
Euler-Lagrangian equation for robotic systems [21], [24]:

D(q)q̈ +H(q, q̇) = Bu+ JTv (q)Fv(q, q̇). (2)

Here D(q) ∈ R12×12 is the inertial matrix. H(q, q̇) =
C(q, q̇) + G(q) ∈ R12, a vector of centrifugal and Coriolis
forces and a vector containing gravity forces, respectively.
The actuation matrix B ∈ R12×6 contains the gear-reduction
ratio of the actuated joints and is multiplied by the control
inputs u ∈ R6. The wrenches Fv(q, q̇) ∈ R6 enforce the 6
holonomic constraints. The Jacobian matrix of the holonomic
constraints Jv(q) = ∂hv

∂q ∈ R6×12 enforces the holonomic
constraints by the following equation:

J̇v(q, q̇)q̇ + J(q)v q̈ = 0. (3)
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Solving (2) and (3) simultaneously yields the constrained
dynamics. These terms will now be referred to as
D, H, Jv, and Fv , respectively, for notational simplicity.

IV. SIMULATING MOTION CAPTURE DATA

In order to reconstruct the motion capture in simulation,
we track the joint trajectories obtained from motion capture
with the human-prosthesis model built in Section III. Since
the raw data does not satisfy the dynamics equations, we
construct a stable reference trajectory close to the data in
Section IV-A to simulate continuous walking for controller
testing. To estimate the range of interaction forces and
moments seen by the prosthesis from the human for use in a
controller, we simulate multiple continuous domains of the
data in Section IV-B.

A. Gait Design

To design a stable walking gait, state-based outputs are
defined to enable construction of a state-based controller for
improved robustness [25].

State-based Outputs for Control. To modulate the outputs,
a monotonic phase variable τ(q) is developed with the
linearized hip position relative to the ankle:

δphip(θsk, θsa) = (lst + lss)θsk + lssθsa,

where lss, lst are the length of the stance shin and stance
thigh, and θsk, θsa are the stance knee and stance ankle joint
angles. Previous research showed this value to approximately
linearly increase during a human step [26]. The phase
variable is defined as:

τ(q) =
δphip(θsk, θsa)− δp

hip

δphip − δphip
, (4)

where δp
hip

and δphip are the initial and final hip positions
in a step, respectively. To specify the walking behavior,
we define a set of outputs for each domain, parameterized
by parameters αv := {αv,k}k=1...ny,v , where αv,k is the
parameter set for the k-th output in Dv , ny,v is the number of
outputs for Dv . In particular, state-based control for walking
requires a velocity-modulating output y1,v(q, q̇) to progress
the trajectory forward:

y1,v(q, q̇) = ya1,v(q, q̇)− yd1,v(αv) ∈ R,

where ya1,v(q, q̇) = δ̇phip(q), the forward hip velocity,
and yd1,v(αv) ≡ vhip,v , a constant determined through
optimization to match the constant hip velocity observed
in experiment. To track the joint trajectories, we define 5
relative degree 2 outputs:

y2,v(q) = ya2,v(q)− yd2,v(τ(q), αv) ∈ R5.

Here ya2,v(q) are all of the individual joint angles except
the stance ankle. Therefore, ny,v = 6 for the single support
domains since y2,v ∈ R5 and y1,v ∈ R.

Fig. 4: The Bézier polynomials for yd2,ps(τ(q), αps (top) and
yd2,pns(τ(q), αpns): (black) motion capture data fit, (blue)
PHZD optimization result.
Joint Trajectories from Motion Capture Data. The pa-
rameterization of the outputs are via Bézier curves. A Bézier
curve is a parameterized polynomial of variable s ∈ [0, 1] as

B(s) =
∑m

i=0
αi

m!

(m− i)!i!
si(1− s)m−i,

where m is the degree of the Bézier curve and {αi} are
the Bézier coefficients. This provides a convenient way to
parameterize nonlinear curves because simple manipulations
of the Bézier coefficients can give the derivative, integral,
and square of the Bézier curve.

To divide the walking data into two phases, we exam-
ine δphip(θpk, θpa) which oscillates during walking. We
consider the portion when δphip(θpk, θpa) monotonically
increases as the prosthesis stance phase, and the portion when
δphip(θpk, θpa) monotonically decreases as the prosthesis
non-stance phase. Based on this division we find δp

hip
and

δphip from the data for each step, used in (4) to compute τ .
This gives us a sequence τ(1 : T ), where T is the number of
data time-steps for each walking step. For this range, the joint
trajectories from Section II-A are used to obtain the desired
outputs ydv,k , where the set {ydv,k}k=1...ny,v

= {yd1,v, yd2,v},
giving us a sequence ydv,k(1 : T ).

We perform the curve fitting with a regression procedure
since a Bézier curve is a linear combination of the nonlinear
basis functions Bi(s) = m!

(m−i)!i!s
i(1 − s)m−i. Given the

sequence of τ(1 : T ) and the corresponding sequence of
output ydv,k(1 : T ), let

H ∈ RT×(m+1), Hij = Bj−1(τ(i))

be the regressor, then αmcv,k = (HᵀH)−1(Hᵀydv,k(1 : T )),
where αmcv,k are the Bézier coefficients fit to the motion
capture data for Dv and output k. One special case is when
m = 0, in this case the Bezier regression is equivalent to
taking the average, which is the used for yd1,v . Note that we
do not require τ(1 : T ) to be unique or monotonic.
Stable Walking Trajectory. To use the regression to get
a state-based reference output from the data, the τ and
ydv,k sequences corresponding to multiple gaits are stacked
and a set of Bézier coefficients {αmcv,k} defining a single
Bézier curve is solved for each output for k = 1, . . . , ny,v
and v ∈ V . While we could track these outputs over the
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continuous domain, yielding invariant zero dynamics [27],
the zero dynamics may not remain invariant through impacts.
Hence, we develop desired trajectories ydv(τ(q), αv) similar
to those defined by αmcv that yield a stable walking gait,
where αmcv := {αmcv,k}k=1...ny,v

. Since the impact map causes
a jump of velocities, we do not enforce an impact invariance
condition on the velocity-modulating output, only the relative
degree 2 outputs, rendering partial zero dynamics:

PZαv = {(q, q̇) ∈ Dv : y2,v(q, αv) = 0, ẏ2,v(q, q̇, αv) = 0}.

We enforce partial hybrid zero dynamics (PHZD) constraints
[10] while minimizing the differences between the output
defined by αv and the motion capture outputs defined by
αmcv with the following optimization:

c?v = arg min
αv,δphip,v,δphip,v

Jv (PHZD Optimization)

s.t ∆ei(Sei ∩ PZαvi
) ⊆ PZαvi+1

, (PHZD)

where vi+1 is the next domain in the directed cycle and

Jv =
∑ny,v

k=1

∫ 1

0

wv,k(ydv,k(s, αv,k)− ydv,k(s, αmcv,k)− δαv,k)2ds

+wδ
(
(δpmchip,v − δpmchip,v)− (δphip,v − δphip,v)

)2
Jv can be represented as a simple quadratic function of
the Bézier coefficients and phase variable parameters. Here
δαv := {δαv,k}k=2...ny,v is a set of offsets the optimization can
select to minimize the differences of the relative degree 2 out-
puts, since a joint offset likely existed in the data collection
to determine αmcv . We selected weights wk,v to encourage the
optimization to give higher priority to outputs that were more
difficult to match. We also include the difference of phase
parameters to yield a trajectory with a similar step length,
where (δpmchip,v, δp

mc
hip,v

) are the average phase parameters
found for Dv in the motion capture data. The solution of the
optimization is the set c?v = {α?v, δα,?v , δp?hip,v, δp

?
hip,v
} for

each domain Dv , where α?v , which includes vhip, defines the
desired output functions to render stable human-prosthesis
walking similar to that seen in experiment. We solve this
optimization in a direct collocation based multi-domain
HZD gait optimization approach, called FROST, described
in [28]. Fig. 4 shows the comparison between the outputs
yd2,v(τ(q), α?v) and yd2,v(τ(q), αmcv ) + δαv .

B. Socket Force Estimation

Developing a model-based controller for the prosthesis
requires knowledge of the interaction forces and moments
between the human and prosthesis. This is at the socket for an
amputee and at the pin connection between the iWalk adapter
and top of prosthesis for our system. For simplicity, we refer
to these forces and moments as the socket force. This section
outlines a method to estimate these forces offline based on
motion capture data and the human-prosthesis model.
Socket Force Profiles from Data Playback. To estimate
the socket force present in the walking observed by motion
capture, we simulate the human-prosthesis model following
the joint trajectories from the data for each prosthesis stance

Fig. 5: Difference in socket force profile between nominal
trajectory and data playback (colored lines). Computed force
tube (green line).
phase. The trajectory of each joint is fit with a Bézier
polynomial with parameters {αpbv,i}, per the methods of
Section IV-A, for each data set i of prosthesis stance. This
process gives us 20 sets of joint trajectories to simulate. A
feedback linearizing controller [10] in simulation calculates
the necessary torque u at each joint to track these trajectories.
By solving (2) for q̈ and substituting into (3) along with this
u, we calculate the fixed joint constraint wrenches:

Fs = (JsD
−1JTs )−1(JsD

−1(H −Bu)− J̇sq̇), (5)
where Js is the Jacobian of the fixed joint holonomic
constraint. Note we dropped the v subscript since Js is
the same for Dps and Dpns. We consider Fs to be an
approximation of the socket force seen by the prosthesis in
the human-prosthesis walking experiment.
Socket Force Tube. By calculating this socket force profile
for 20 steps of walking data, we obtain a collection of 20
force profiles around which we define a tube. First we remove
the socket force segment at the beginning and end since
these sections correspond to a double support phase, which is
outside the scope of this paper. We use the x coordinate of the
markers on the human foot to determine whether the human
is on single support by the prosthesis or double support, and
remove the double support portion of the data. After this
removal, the single support portion starts at τ and ends at τ .
For the N gaits collected from motion capture, let F is denote
the socket force corresponding to the i-th gait computed. We
compare these socket force profiles to F ?s - the socket force
profile from the nominal trajectory obtained by the FROST
optimization. The difference between them is denoted as
∆Fs, which includes 3 elements: [∆Fs,x,∆Fs,z,∆Ms,y],
denoting the longitudinal, vertical force and the pitch mo-
ment. Then the following optimizations are used to find
the upper bound ∆Fs and lower bound ∆Fs of ∆Fs as a
function of τ , shown in Fig. 5.

max
∆Fs

∫ τ

τ

∆Fs(τ)dτ

s.t. ∀i = 1, ..., N,∀τ ≥ τ ≥ τ ,∆Fs(τ) ≤ F is(τ)− F ?s (τ)

min
∆Fs

∫ τ

τ

∆Fs(τ)dτ

s.t. ∀i = 1, ..., N,∀τ ≥ τ ≥ τ ,∆Fs(τ) ≥ F is(τ)− F ?s (τ).

The upper and lower bounds ∆Fs and ∆Fs are represented
as Bézier curves of τ , and the integration is computed as a
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linear function of the Bézier coefficients.
Remark 1. Since the tube is computed with a finite set
of measurements, the credibility of the force tube can be
analyzed with the theory of Random Convex Programs [29].
In general, using a high degree Bézier curve results in a
tighter tube, yet it hurts the credibility, i.e., there is a higher
chance that the tube is breached by additional measurements.
Remark 2. While this force estimation method uses a rudi-
mentary model for the human, we believe this suffices to
prove the capability and advantage of our proposed control
method, introduced and demonstrated in simulation in the
next section. Future work will implement this controller
on the prosthesis platform and good tracking and stability
could confirm this estimation technique captures this force
component of the prosthesis dynamics well enough. This
force estimation method’s accuracy could be improved with
a more sophisticated musculoskeletal model for the human.

V. ROBUST CLF-QP CONTROLLER

In this section we present the robust CLF-QP controller
for the prosthesis in stance and implement it in simulation.
Prosthesis Model and Dynamics. Since no sensing and
actuation is available on the human body we model the
prosthesis as an independent robotic leg, Fig. 3, per the
methods of [14], with 2 joints being the ankle and the
knee and 3 limbs being the foot, shin, and thigh. For this
subsystem, a floating base frame at the top of the prosthesis
is subject to external forcing of the socket force Fs present
in the full model. A holonomic constraint enforces the foot
to stay flat on the ground during prosthesis stance phase. The
dynamics are given by:

D̄(q̄)¨̄q + H̄(q̄, ˙̄q) = B̄ū+ J̄T (q̄)F̄ (q̄, ˙̄q) + J̄Ts (q̄)Fs,

˙̄J ˙̄q + J̄ ¨̄q = 0,

where q̄ = (q̄ᵀB , q
ᵀ
p )ᵀ and q̄B ∈ SE(2) represent the position

and rotation of the subsystem’s base frame R̄B with respect
to the world frame RW . Again qp = (θpk, θpa)ᵀ. Here J̄(q)
is the Jacobian of the foot’s holonomic constraint and J̄s is
the projection of Fs onto the base coordinates, see [14] for
details. Because of the holonomic constraint, the dynamics
are written as a 4 state system:

ẋp = fp(xp) + gmp (xp)up + gsp(xp)Fs,

where xp = (θpk, θpa, θ̇pk, θpa)ᵀ and up ∈ R2 denotes the
motor torque input at the prosthesis knee and ankle, and Fs
denotes the socket force.
Prosthesis Robust CLF-QP. The outputs for the prosthesis
are defined as a subset of the outputs for the full system:
ȳa1 (qp, q̇p) = δṗhip(θpk, θpa) and ȳa2 (qp) = θpk. With the
output defined, let

η1 = ȳa1 (qp, q̇p)− v?hip
.
= ȳ1(xp, v

?
hip)

η2 = ȳa2 (qp)− ȳd2(τ(qp), α
?
ps)

.
= ȳ2(xp, α

?
ps),

where v?hip is the nominal hip velocity and α?ps is the Bézier
coefficients corresponding to the nominal output trajectories,

both determined through optimization for the full system
Dps. The output dynamics are obtained with feedback lin-
earization (see [9] for detailed derivation):η̇1

η̇2

η̈2


︸ ︷︷ ︸
η

=

0 0 0
0 0 1
0 0 0


︸ ︷︷ ︸

A

η1

η2

η̇2

+

1 0
0 0
0 1


︸ ︷︷ ︸

B

ν(up, Fs), (6)

where:

ν(up, Fs) =

[
Lfp ȳ1

L2
fp
ȳ2

]
︸ ︷︷ ︸
L∗

fp
(xp)

+

[
Lgmp ȳ1

Lgmp Lfp ȳ2

]
︸ ︷︷ ︸
A∗

m(xp)

up +

[
Lgsp ȳ1

LgspLfp ȳ2

]
︸ ︷︷ ︸
A∗

s(xp)

Fs

(7)
Here Lfp , Lgmp , Lgsp , L

2
fp

denote the Lie derivatives [30].
With 0 < ε < 1, the following rapidly exponentially
stabilizing CLF [9] is defined:

Vε(η) = η

[
1
εI 0
0 I

]
P

[
1
εI 0
0 I

]
:= ηᵀPεη,

where P is obtained by solving a Riccati equation with
the linear output dynamics in (6) with Q and R matrices
representing the state and input costs:

AᵀP + PA− PBR−1BᵀP +Q = 0.

Defining a CLF-QP for the prosthesis would include
ν(up, Fs) from (7), requiring knowledge of the socket force
Fs. Since this is unknown, we instead use an estimate of the
range of Fs obtained from the analysis in Section IV-B:

F ?s (τ) + ∆Fs(τ) ≥ Fs(τ) ≥ F ?s (τ) + ∆Fs(τ),

where τ(qp) is the phase variable. Then the following robust
CLF-QP is formulated that enforces the CLF condition on
all possible Fs within the range:

u?p = arg min
up∈R2

uᵀpHup + bᵀup

s.t. ∀F ?s (τ) + ∆Fs(τ) ≥ Fs ≥ F ?s (τ) + ∆Fs(τ),

LBVε(η)ν(up, Fs) ≤ −
γ

ε
Vε − LAVε(η),

(8)

which is a QP w.r.t. up. Here up is a function of
xp, c

∗
v, F

∗
s , ∆Fs, and ∆Fs, γ > 0,

H = A∗m(xp)
ᵀA∗m(xp),

b = (L∗fpy(xp) +A∗s(xp)F ∗s )ᵀA∗m(xp),

LAVε(η) = ηT (PεA+ATPε)η, and

LBVε(η) = 2ηTPεB.

The CLF condition enforces η to converge exponentially
to the origin, thus driving the system to track the desired
trajectory [9]. When ∆Fs

(τ) is a hyperbox, (8) is easily
solved as a QP. Accounting for the interaction force allows
construction of this model-dependent prosthesis controller
within the class developed in [31], which guarantees stability
of the whole human-prosthesis system.

The formulation of this controller can yield a non-smooth
control input since it stabilizes for the worst-case scenario in
a point-wise optimal way, and the worst case changes at each
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Fig. 6: Prosthesis control inputs calculated with (8) (blue)
with no torque bounds and (9) (pink) with torque bounds
and CLF relaxation for smoothing.

point. To smooth the control input profile to be physically
feasible on the prosthesis platform, we modify the QP:

arg min
(up,ρ)∈R3

uᵀpHup + bᵀup + cρρ (9)

s.t. ∀F ?s (τ) + ∆Fs(τ) ≥ Fs ≥ F ?s (τ) + ∆Fs(τ),

LBVε(η)ν(up, Fs) ≤
γ

ε
(ρ− Vε)− LAVε(η),

−∆u ≤ (up − ūp) ≤ ∆u,

0 < ρ < ρmax,

where the bound ∆u is placed on the change between up and
the previous control input ūp to minimize the fluctuations in
up. To ensure the QP is always solvable with the torque
bounds, the relaxation term ρ is added to the Lyapunov
function Vε. With upper bound ρmax, this relaxation term
allows the QP to find a solution within a Lyapunov level set
less than ρ, which is penalized with the weight cρ.

Results. In simulation the human side tracked the nominal
trajectory yd2,v(τ(q), α?v) from Section IV-A with a feedback
linearizing controller. The prosthetic tracked this trajectory
with the robust CLF-QP controller in Dps and feedback
linearization in Dpns. In Dps, the controller presented in (8)
was used and the control input exhibited rapid chatter, as
shown in Fig. 6. Hence, the robust CLF-QP was modified
as (9) to reduce the change in up through the use of torque
bounds and a CLF relaxation. Fig. 6 shows this smoothed
torque profile. The phase portraits of 20 steps shown in Fig.
7 show this novel prosthesis controller (9) achieves stability
while accounting for a range of force disturbances. Fig. 7
also shows the phase portraits of the motion capture data
for individual steps. Its alignment with the simulation phase
portraits shows our nominal trajectory from optimization rep-
resents the walking observed by motion capture well. Note
that the jump that appears in the simulation portrait but not in
the motion capture data is a result of the rigid impact model
we use for the human-prosthesis system. A human has more
compliance that absorbs some impact yielding data that does
not show a large discrete jump in velocities. The alignment
between the portraits in combination with the stability shown
support the idea that our controller would achieve stability
in a similar human-prosthesis walking experiment.

To test this controller’s robustness to perturbations in the
nominal force profile, we simulated the human-prosthesis
system with the human joints following a different trajectory
than the nominal trajectory with feedback linearization and

Fig. 7: Phase portraits: prosthesis knee and ankle with robust
CLF-QP controller in Dps (green) and feedback linearization
in Dpns (pink), (multi-colored lines) motion capture data for
individual steps.

Fig. 8: Prosthesis knee joint angle trajectories from Dps
from simulations with 3 controllers with 3 perturbed human
trajectories, (light blue) desired trajectory.

gave the prosthesis an initial condition off of its nominal
trajectory. To enforce the nominal prosthesis trajectory, we
tested 3 different controllers on the prosthesis in Dps: our
robust CLF-QP (9), the robust-passive controller we used for
the motion capture experiments [12], and a PD controller.
The results for 3 different human gaits in Fig. 8 demonstrate
the benefit of model-dependent controllers since the robust
passive controller with some model dependence outperforms
the PD controller in tracking performance with the perturba-
tion. Further, our robust CLF-QP outperformed both of these
controllers with its consideration of the human-prosthesis
interaction forces. Also, while the robust-passive controller
required careful tuning of the ankle PD gains our robust
CLF-QP did not. These results also demonstrate the success
of our controller design: it stabilized trajectories with force
profiles different from the expected nominal force profile by
considering a set of forces and stabilizing for the worst case
scenario. This robustness is imperative for a prosthesis con-
nected to a human with varying behavior and where stability
is essential for the human’s safety. A video of the method and
results is shown at https://youtu.be/7cOjmk7bUcs.

VI. CONCLUSION AND FUTURE WORK

This paper presents a methodology that models the human
walking behavior while wearing a powered prosthesis and
uses the model information to design a model-dependent
controller for the prosthesis. The data obtained from motion
capture is processed and used in two ways. First, a cus-
tomized gait optimization procedure is proposed to extract
the nominal trajectory from the data, which emulates the
human walking recorded by motion capture, and satisfies
the dynamics of the human-prosthesis system. Second, a
“playback” procedure is designed to obtain the interaction
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force profiles from the multiple steps recorded, which are
then used to construct a force tube that contains all the force
profiles. With this information, a robust CLF-QP controller
is designed that guarantees convergence to the nominal
trajectory. Simulation results demonstrate the robustness of
this prosthesis controller compared to a model independent
controller as well prosthesis controllers with some model
dependence. This novel methodology of characterizing hu-
man interaction in prosthesis walking provides a means to
replace the need for an expensive force sensor with a single
set of motion capture experiments for a given user, preventing
the introduction of noise from the force sensor while also
increasing the robustness of a model-dependent CLF-QP.

For future work, this controller can be experimentally
realized on the prosthesis platform to assess its tracking per-
formance, energy efficiency, and robustness to disturbances
compared to the current PD controller and robust passive
controller used for trajectory tracking. The advantage of this
method can be tested across multiple subjects, including
amputees, by having each subject be part of one set of motion
capture experiments and then develop a specific trajectory
and force tube based on their model parameters and data.
The same user can test their specific controller in experiment.
Examining the results across multiple subjects could also
provide insight on the generalizability of force profiles across
users such that the force profile could be predicted for a
subject without motion capture. In the case a force sensor is
incorporated into the prosthesis platform to directly measure
the interaction force, the force profiles collected in this work
shall provide the statistics (mean and covariance) for the
design of the force sensor filter, e.g., a Kalman filter. This
methodology opens the door to model-dependent prosthesis
controllers that account for the human’s varying dynamic
behavior and establish stability in response.

REFERENCES

[1] D. Winter, The Biomechanics and Motor Control of Human Gait:
Normal, Elderly and Pathological. University of Waterloo Press,
1991.

[2] B. E. Lawson, A. Huff, and M. Goldfarb, “A preliminary investigation
of powered prostheses for improved walking biomechanics in bilateral
transfemoral amputees,” in 2012 Annual International Conference of
the IEEE Engineering in Medicine and Biology Society. IEEE, 2012,
pp. 4164–4167.

[3] S. Au, M. Berniker, and H. Herr, “Powered ankle-foot prosthesis to
assist level-ground and stair-descent gaits,” Neural Networks, vol. 21,
no. 4, pp. 654 – 666, 2008, robotics and Neuroscience.

[4] F. Sup, A. Bohara, and M. Goldfarb, “Design and control of a pow-
ered transfemoral prosthesis,” The International Journal of Robotics
Research, vol. 27, no. 2, pp. 263–273, 2008, pMID: 19898683.

[5] R. D. Gregg, T. Lenzi, L. J. Hargrove, and J. W. Sensinger, “Virtual
constraint control of a powered prosthetic leg: From simulation
to experiments with transfemoral amputees,” IEEE Transactions on
Robotics, vol. 30, no. 6, pp. 1455–1471, Dec 2014.

[6] J. L. Stein and W. C. Flowers, “Stance phase control of above-
knee prostheses: knee control versus sach foot design.” Journal of
biomechanics, vol. 20 1, pp. 19–28, 1987.

[7] M. A. Holgate, T. G. Sugar, and A. W. Bohler, “A novel control
algorithm for wearable robotics using phase plane invariants,” in 2009
IEEE International Conference on Robotics and Automation, May
2009, pp. 3845–3850.

[8] H. Zhao, J. Horn, J. Reher, V. Paredes, and A. D. Ames, “Multicontact
locomotion on transfemoral prostheses via hybrid system models

and optimization-based control,” IEEE Transactions on Automation
Science and Engineering, vol. 13, no. 2, pp. 502–513, April 2016.

[9] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly
exponentially stabilizing control Lyapunov functions and hybrid zero
dynamics,” IEEE Transactions on Automatic Control, vol. 59, no. 4,
pp. 876–891, 2014.

[10] A. D. Ames, “Human-inspired control of bipedal walking robots,”
IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1115–
1130, 2014.

[11] H. Zhao, E. Ambrose, and A. D. Ames, “Preliminary results on
energy efficient 3D prosthetic walking with a powered compliant
transfemoral prosthesis,” in Robotics and Automation (ICRA), 2017
IEEE International Conference on. IEEE, 2017, pp. 1140–1147.

[12] V. Azimi, T. Shu, H. Zhao, E. Ambrose, A. D. Ames, and D. Simon,
“Robust control of a powered transfemoral prosthesis device with
experimental verification,” in American Control Conference (ACC),
2017. IEEE, 2017, pp. 517–522.

[13] A. E. Martin and R. D. Gregg, “Hybrid invariance and stability of
a feedback linearizing controller for powered prostheses,” in 2015
American Control Conference (ACC), July 2015, pp. 4670–4676.

[14] R. Gehlhar, J. Reher, and A. D. Ames, “Control of separa-
ble subsystems with application to prostheses,” arXiv preprint
arXiv:1909.03102v1, 2019.

[15] A. Dasgupta and Y. Nakamura, “Making feasible walking motion of
humanoid robots from human motion capture data,” in Proceedings
1999 IEEE International Conference on Robotics and Automation,
vol. 2. IEEE, 1999, pp. 1044–1049.

[16] U.-J. Yang and J.-Y. Kim, “Mechanical design of powered prosthetic
leg and walking pattern generation based on motion capture data,”
Advanced Robotics, vol. 29, no. 16, pp. 1061–1079, 2015.

[17] H. Zhao, J. Horn, J. Reher, V. Paredes, and A. D. Ames, “First
steps toward translating robotic walking to prostheses: a nonlinear
optimization based control approach,” Autonomous Robots, vol. 41,
no. 3, pp. 725–742, 2017.

[18] S. Fakoorian, V. Azimi, M. Moosavi, H. Richter, and D. Simon,
“Ground Reaction Force Estimation in Prosthetic Legs With Nonlinear
Kalman Filtering Methods,” Journal of Dynamic Systems, Measure-
ment, and Control, vol. 139, no. 11, 07 2017, 111004.

[19] T. Wehner, L. Claes, and U. Simon, “Internal loads in the human tibia
during gait,” Clinical Biomechanics, vol. 24, no. 3, pp. 299–302, 2009.

[20] M. P. Kadaba, H. K. Ramakrishnan, and M. E. Wootten, “Measurement
of lower extremity kinematics during level walking,” Journal of
Orthopaedic Research, vol. 8, no. 3, pp. 383–392, 1990.

[21] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames,
“Models, feedback control, and open problems of 3d bipedal robotic
walking,” Automatica, vol. 50, no. 8, pp. 1955 – 1988, 2014.

[22] S. Plagenhoef, F. G. Evans, and T. Abdelnour, “Anatomical data for
analyzing human motion,” Research Quarterly for Exercise and Sport,
vol. 54, no. 2, pp. 169–178, 1983.

[23] W. Erdmann, “Geometry and inertia of the human body - review of
research,” vol. 1, no. 1, pp. 23–35, 1999.

[24] R. M. Murray, S. S. Sastry, and L. Zexiang, A Mathematical Introduc-
tion to Robotic Manipulation, 1st ed. Boca Raton, FL, USA: CRC
Press, Inc., 1994.

[25] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris, Feedback control of dynamic bipedal robot locomotion.
CRC press, 2018.

[26] S. Jiang, S. Partrick, H. Zhao, and A. D. Ames, “Outputs of human
walking for bipedal robotic controller design,” in American Control
Conference (ACC), 2012. IEEE, 2012, pp. 4843–4848.

[27] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE Transactions on Automatic
Control, vol. 48, no. 1, pp. 42–56, Jan 2003.

[28] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames, “3D
dynamic walking with underactuated humanoid robots: A direct col-
location framework for optimizing hybrid zero dynamics,” in Robotics
and Automation (ICRA), 2016 IEEE International Conference on.
IEEE, 2016, pp. 1447–1454.

[29] G. C. Calafiore, “Random convex programs,” SIAM Journal on Opti-
mization, vol. 20, no. 6, pp. 3427–3464, 2010.

[30] A. Isidori, Nonlinear Control Systems. Springer London, 1995.
[31] R. Gehlhar and A. D. Ames, “Separable control lyapunov functions

with application to prostheses,” To appear in IEEE Control Systems
Letters, vol. 5, no. 2, pp. 559–564, 2021.

4133


