
  

  

Abstract—Adaptive assistance of gait training robots has 

been determined to improve gait performance through motion 

assistance. An important control role during walking is to avoid 

tripping by controlling minimum toe clearance (MTC), which is 

an indicator of tripping risk, to avoid its decrease among gait 

cycles. No conventional gait training robots can adjust 

assistance timing based on MTC. In this paper, we propose a 

system that applies force intermittently based on the MTC 

prediction algorithm to encourage people to avoid lowering the 

MTC. This prediction algorithm is based on a radial basis 

function network, the input data of which include the angles, 

angular velocities, and angular accelerations of the hip, knee, 

and ankle joints in the sagittal and coronal planes at toe-off. The 

cable-driven system that can switch between assistance and 

non-assistance modes applies force when the predicted MTC is 

lower than the mean value. Nine participants were asked to walk 

on a treadmill, and we tested the effect of the system. The MTC 

data before, during, and after the assistance phase were 

analyzed for 120 s. The results showed that the minimum and 

first quartile values of MTC could be increased after the 

assistance phase. 

 

I. INTRODUCTION 

Robotics dealing with physical human–robot interaction 
techniques has been proposed to enhance an ability of walking. 
The instinctive somatosensory feeling of body motion 
provided through robotic guidance is beneficial because 
training with instinctive modification is more effective than 
that with conscious modification [1]. People can rely on 
robotic assistance, and thus reduce their own exertion when 
the robot moves human legs. Robot-aided training must be 
designed to encourage humans to move their bodies actively 
with an interaction only when the assistance is needed because 
the ability of movement decreases when people do not use 
their own ability actively [2]. 

Assistance-as-needed control strategy of the gait-training 
robots is actively being studied to adjust the assistance level or 
mechanical impedance modes based on human ability [3–7]. 
Control of the interaction force between a robot and human 
allows the user to walk in a different way from the desired 
predetermined trajectory using force-field control. As the 
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trajectory-based control is mainly targeted at severely affected 
patients, multiple degrees of freedom are used to recover 
motor function for joint-angular trajectory generation. 
Another adaptive approach of assistive technology is torque 
optimization using a cable-driven robot based on the 
estimation of metabolic cost for improving human’s energy 
efficiency while walking [8, 9]. The cable-driven mechanism 
is used mainly for people who can walk by themselves. The 
conventional algorithms are adaptive based on human ability 
by evaluating a human state after human action. Conversely, 
assistance-based methods that decide the robotic parameters 
by predicting the gait motion beforehand have not yet been 
established. 

Falling is one of the most serious problems that people 
must avoid during walking, and is mainly caused by tripping, 
which result from a toe hitting the ground or the person taking 
small steps [10, 11]. Therefore, the ability of controlling toe 
movement must be improved. The variability of minimum toe 
clearance (MTC) in the middle swing phase is a critical 
tripping parameter, and can be reduced by controlling MTC 
[12]. The possibility of tripping occurs if the toe approaches 
the ground at an arbitrary point among gait cycles. The robot 
based on an evaluation of a human motion after human action 
cannot modify the motion in real-time. Prediction of MTC is 
important for modifying the toe motion in real-time to 
encourage people to walk with more precise MTC control. 
Therefore, an assistance-as-needed approach based on MTC 
prediction is necessary.  

Our hypothesis is that robotic assistance along with the 
MTC prediction algorithm can modify human control to 
inhibit the reduction of MTC. We developed the MTC 
prediction algorithm based on the radial basis function 
network (RBFN) by using angles of lower limb joints [13].  

 
Fig. 1. The scheme of intermittent force application based on MTC 

prediction.  
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The results showed that the prediction error was lower than 
that obtained in previous studies on the estimation or 
prediction of MTC [14-17]. No research has yet investigated 
the effect of robotic assistance using MTC prediction on the 
modification of MTC control. We assumed that people could 
modify their MTC control through training, in which a robot 
detects the lower values of MTC distribution beforehand and 
increases it. 

In this work, we established robotic assistance based on 
MTC prediction to inhibit the reduction of MTC, as shown in 
Fig. 1. We implemented the MTC prediction algorithm on the 
cable-driven system that could switch between the assistance 
and non-assistance modes. Force application at a part of the 
lower leg around toe-off could increase MTC without 
decreasing range of joint motion [18]. We investigated 
whether the lower values of MTC distribution increased with 
robotic assistance using the proposed prediction algorithm. 
Moreover, we evaluated whether a person modifies his/her 
MTC distribution even after the assistance is withdrawn. The 
contribution is an implementation of the intermittent force 
application based on MTC prediction in gait training and 
investigation of the after-effects. 

II. MTC PREDICTION-BASED ASSISTANCE 

The proposed system applies the force to human 
intermittently for increasing MTC based on prediction result. 
The system consists of cable-driven system that we developed 
[18] and MTC prediction algorithm [13]. Intermittency of 
force application could be achieved based on control of the 
cable tension in gait phase. Fig. 2 shows the flowchart of the 
proposed system. 

The cable-driven system could switch between modes in 
which force is applied and not applied [18]. Force is applied to 
a part of the shank to apply knee flexion torque, and thus lift 
toe because knee flexion motion has the largest contribution to 
toe clearance. The motor (NX610MA-PS25; Oriental Motor 
Co., Tokyo, Japan) is connected with the frame the user wore 

 

through nylon cable and spring (E659; stiffness of 0.040 
N/mm). The loadcell (LUX-B-200N-ID; Kyowa Electronic 
Instruments Co., Tokyo, Japan) is attached between the frame 
and cable to obtain feedback information of the cable tension 
to apply force. The strength of the flexion torque to the knee is 
determined solely based on the tensile force because the 
moment arm is a constant, at 0.05 m. The constitution of the 
cable-driven system is indicted in Fig. 3. 

 
(a) Arrangement of robot 

 
(b) Photograph 

Fig. 3. Overview of cable-driven gait-training robot. 

 

Fig.2 Flowchart of the proposed system. The controller detects the start of the swing phase based on the gait phase detection algorithm with angular information 
of hip, knee, and ankle joints, and the system with the MTC prediction algorithm and a hardware for cable-driven assistance tries to increase lower values of 
MTC distribution. 
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The analog I/O board (ADA16-32/2(PCI)F, CONTEC, 
Osaka, Japan) is connected to the main controller (Windows) 
via the PCI Express bus. Electrical goniometers (SG110, 
SG150, Biometrics Ltd., Newport, UK), which can sense joint 
angles in sagittal and coronal planes, are attached to the leg 
under the frame with a tape for sensing the hip, knee, and 
ankle joints’ angles. The input values from the goniometer and 
the load cell are collected by the analog I/O boards and 
processed by the main controller.  

MTC prediction algorithm consists of phase detection and 
regression of MTC on variables related to the joint angles. The 
start of swing phase is detected by the gait phase detection 
method using the plane structure in a space consisting of the 
hip, knee, and ankle joints’ angles in sagittal plane based on 
[13], as shown in Fig. 4. The change of phases can be detected 
more clearly with angles using planes in the angular space, 
whereas the change detection according to angle readings is 
difficult because angle range was noisy and fluctuating. The 
controller detects the switching points from the stance phase to 
the swing phase in real-time by detecting a timing at which the 
measured angular point passes through the section plane of the 
angular trajectory, which is derived previously from 20 gait 
cycles. 

After detecting the start of the swing phase, the MTC 
prediction algorithm is performed [13]. MTC is predicted 
using the RBFN which is a machine learning algorithm with 
the Gaussian function, as shown in Fig. 5. The output of 
RBFN is an inner product of a weight vector and a vector of 
Gaussian functions which is calculated based on the Euclidean 
distance between the vector of the input data and the centroids 
of each Gaussian. The RBFN structure is defined as: 

, (1) 

where y denotes the output vector, wk is the weight vector, x is 
the input vector, ck is the centroid vector, N is the number of 
Gaussian functions, and σ is a variable related to the standard 
deviation of the Gaussian function. σ was derived as [19]: 

 
(2) 

where dmax denotes the maximum distance among the data and 
m is the dimension of the data. The parameters of the RBFN 
can be calculated rapidly (less than 1 s in this work). The 
centroids of the gaussian functions are derived through the 
K-means clustering algorithm, which classifies the input 
dataset into a predetermined number of groups (2 to 20 units) 
according to the Euclidean distance. The weight vectors are 
derived by solving the least squares problem of example 
input-output pairs (training dataset).  

In this study, the input data included 18 variables: angles, 
angular velocity, and angular acceleration of the hip, knee, and 
ankle joints in the sagittal and coronal planes. The angular 
velocity and angular acceleration of these joints were 
calculated by differentiating the angles with a pseudo 
differential. The angles were smoothed with a low pass filter 
(cutoff frequency was 6 Hz) because noise frequency was 
more than 6 Hz. All input values were normalized to reduce 
the effect of the range of values of each variable because the 
range of variance affects the output value of the RBFN. If one 
variable has a much larger range of values, the output value  

 
Fig. 4. Detection of start of swing phase. The system detects the angular point 

that is the closest to the section plane when the gait state changes from the 
stance phase to the swing phase. The section plane is derived in the calibration 

phase. 

 

 

Fig. 5. Structure of the radial basis function network (RBFN). Output was 
calculated by the sum of Gaussian functions, 

 

relies on this variable. First, the standard deviation of each 
variable in the training dataset was derived. Next, each 
measured input value was divided by each standard deviation, 
that is, measured input vector was divided by the vector of 
standard deviation. 

After detecting that the predicted MTC is lower than the 
mean value calculated when the RBFN is trained, the motor 
pulls the cable and applied force while the knee joint is flexing. 
Applying force to assist knee flexion around start of the swing 
phase can increase MTC [18]. A ratchet mechanism stopped 
the movement of the movable pulley when the motor rotated 
and pulled the cable. The rotational position of the motor was 
controlled for control of the pulled cable tension. However, 
the motor is not activated for a predicted MTC higher than the 
mean value. The force is not applied when the motor stops and 
the force is applied when the motor is activated [20], as shown 
in Fig. 6. 
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III. HUMAN WALKING EXPERIMENT 

Because it was reported that function of adapting to a new 
gait pattern in older people was same as younger people [21], 
we evaluated whether the proposed system could modify the 
lower values of MTC after training with young adults. Nine 
younger adults (five men and four women; mean age was 
approximately 25 years, standard deviation of age was 
approximately 5 years, mean weight was approximately 58 kg, 
standard deviation of weight was approximately 16 kg, mean 
height was approximately 1.65 m, standard deviation of height 
was approximately 0.09 m) with no neurological injuries or 
gait disorders participated in the study. Before the experiment, 
we provided the subjects with a detailed account of our study 
goal (we did not explain the objectives of this experiment), 
explained that they could withdraw from the experiment 
whenever they desired, and obtained their consent. We asked 

 

 

Fig. 6 Intermittent force application method. The force was not applied if the 
predicted MTC was higher than mean, while the force was applied in case 

where the predicted MTC was lower than mean. 

 

 
Fig. 7 Extraction of MTC from toe height data obtained by the motion capture 

system. 

 

them only to continue to walk during experiment. This 
experiment was approved by the institutional review board at 
Waseda University (No. 2017-085). 

The toe coordinates of the right foot were measured using 
a motion capture system (Raptor-E; Motion Analysis, Santa 
Rosa, CA, USA) that could measure a marker coordinates with 
an error of 0.1 mm or less. The marker for the measurement 
was attached to the first metatarsophalangeal joint of the foot. 
The participants wore the cable-driven system and the sensors 
on their right leg. To evaluate results of MTC prediction and 
after-effect caused by the robotic assistance, ground-truth 
MTC data were extracted by detecting the second smallest 
local minimum of the toe clearance in each gait cycle, as 
shown in Fig. 7.  

The experiment task consisted of mainly the measurement 
of gait data for training the RBFN and testing the robotic 
assistance by using the prediction algorithm. At first, the 
experimental participants were guided to continue walking on 
a treadmill for 5 min, where they decided their preferred 
walking speed (2.5 ± 0.27 km/h). Next, they walked for 400 s; 
this was considered the measurement phase. Approximately 
200 datasets were used for training and 100 datasets were used 
for check of the result of training. The measured toe height 
data obtained from the motion capture system and the 
measured angular data at toe-off obtained from the robotic 
system were used for the machine learning of the RBFN. After 
training of the parameters of the RBFN using 2-20 Gaussian 
functions, the participants were asked to walk on the treadmill 
for 270 s. After 30 s, the robot applied the force intermittently 
for 120 s. The timing of the force application was when the 
predicted MTC would be lower than the mean of MTCs 
obtained in the RBFN training phase. The duration of applying 
the tensile force was approximately 0.18 s, and the desired 
force value was 16 N based on a previous research [18]. The 
robot stopped the intermittent assistance for the last 120 s of 
walking. 

MTC prediction algorithm was evaluated using 100 
datasets after training of the RBFN parameters. The root mean 
square error (RMSE) between ground truth MTC data and 
predicted MTC data was calculated. Furthermore, the rate of 
detecting MTC negative values was calculated by dividing the 
number of negative values of the predicted MTC when the 
ground truth MTC was negative by the number of negative 
values of the ground truth MTC. 

We analyzed how the MTC changed according to the 
intermittent force application and whether the change of MTC 
remained after the assistance phase. Approximately 90 gait 
data during steady locomotion in each phase (before, during, 
and after assistance) were analyzed for each participant. The 
first quartile, mean, third quartile, and maximum values of the 
MTC were derived to analyze the change of the MTC 
distribution. These values of MTC were analyzed to evaluate 
whether the lower MTC values could be increased as the 
after-effect after robotic intermittent assistance. The first and 
third quartiles showed the values of the lowest and highest 
25% of the data, respectively. Significant test was performed 
to investigate whether the MTC parameters increased 
significantly after the assistance using the Wilcoxon rank sum 
test which is a non-parametric statistical hypothesis test 
comparing two related samples (a pair of MTC parameters 
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before and after assistance). Furthermore, the after-effect of 
the minimum and first quartile values of MTC was evaluated 
in case where the force was applied every gait cycle without 
the prediction algorithm to consider the effect of the prediction 
algorithm. Data were collected before this experiment from 
other nine people (eight men; aged 22.5 ± 2.9 years, body 
weight 61 ± 8 kg, height 1.67 ± 0.07 cm). 

IV. RESULTS AND DISCUSSION 

As shown in Table 1, the mean RMSE between ground 
truth and predicted MTC was 2.31 mm. Moreover, the mean 
rate of detecting MTC negative values was approximately 
80%. Input variables for this test of the algorithm were 
extracted in the start of the swing phase every gait cycle in 
real-time. Although the noise might increase comparing to the 
offline prediction method due to real-time processing 
(sampling frequency varied) and electrical signals emitted by 
the robotic system, we concluded that the prediction was 
accurate enough to affect lower values of MTC because the 
error was smaller than the range of lower values of MTC. 

The force application of the cable-driven robot used in this 
experiment increased the knee flexion angle [18]. Increase in 
ratio of the knee flexion angle to the hip flexion angle while 
people flex the hip joint and maintain the ankle joint angle 
leads to the increase in MTC. The system could switch the 
force strength based on the prediction result because the 
maximum force strength was 15.9 and -0.4 N when the 
predicted MTC was higher and lower than the mean MTC, 
respectively. Therefore, the cable-driven robot was controlled 
based on the prediction results. 

Fig. 8 shows that the minimum value before, during, and 
after intermittent-force application. Further, Figs. 9, 10, 11, 
and 12 show the first quartile, mean, third quartile, and 
maximum values of the MTC in each phase, respectively. The 
minimum and first-quartile values of the MTC tended to 
increase with the intermittent-force application as shown in 
Figs. 8 and 9. The minimum value of the MTC during the 
application of intermittent force was lower than the mean 
MTC before the force was applied intermittently. The original 
difference between the minimum and mean MTC values 
before the intermittent force application was approximately 
5.1 mm. The difference between minimum MTC during the 
application of intermittent force and the mean MTC before the 
application was approximately 3.5 mm. This implies that the 
system could inhibit the participants from producing the toe 
motion around the minimum value of the original MTC 
distribution. In the experiment, the proposed algorithm was 
able to predict MTC within an error of approximately 2.3 mm. 
As a result, approximately 84% of the MTC values during the 
force application were higher than the mean MTC before the 
intermittent force application. 

 

TABLE I.  MTC PREDICTION RESULTS 

 Mean Standard deviation 

RMSE mm 2.3 0.57 

Rate of detecting  

negative values of MTC % 
80 13 

 

 
Fig. 8 Minimum value of MTC. Value p indicates the result of Wilcoxon 
rank sum test. The change was significant if the p was lower than 0.05. 

 

 
Fig. 9 First quartile of MTC. Value p indicates the result of Wilcoxon rank 

sum test. The change was significant if the p was lower than 0.05. 
 

 
Fig. 10 Mean value of MTC.  The change was significant if the p was lower 

than 0.05. 
 

 

Fig. 11 Third quartile of MTC. Value p indicates the result of Wilcoxon rank 
sum test. The change was significant if the p was lower than 0.05. 
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Fig. 12 Maximum value of MTC. The change was significant if the p was 
lower than 0.05. 

 

 

 
Fig. 13 Minimum and First quartile values of MTC when the force was 

applied without prediction algorithm. 

 

The minimum and first quartile values of MTC increased 
significantly after the intermittent force application comparing 
to before the application as shown in Figs. 8 and 9. Fig. 13 
shows minimum and first quartile values of MTC after force 
application was not different significantly than before 
application in case where the force was applied without 
prediction algorithm. Consequently, the intermittent force 
application based on MTC prediction could encourage the 
participants to increase the lower values of MTC. 

We assumed that the reason why the motion modification 
was observed when avoiding relying on the robot to complete 
the task was that active motor behavior encouraged them to 
relearn the motion pattern. The after-effect is generally 
produced by the predictive adjustment, i.e., the feedforward 
altered motion pattern according to the cerebellum [22]. The 
first reaction of people is the reactive adjustment with lower 
level of central nervous system. The proprioceptive sense 
related to motion pattern is transmitted to the cerebellum 
through trial-and-error repetition, leading to predictive 
adjustment [23]. Therefore, people do not learn the new 
motion pattern if they are moved fully by the robot. The 
robotic assistance that inhibits MTC from decreasing provides 
proprioceptive sense to avoid the reduction. Although the 
participants did not know the objective of this experiment 
(increasing the lower values of MTC distribution), they 
automatically modified their motion to increase the lower 

values of MTC distribution. As this training system did not 
enhance the muscle strength, the altered factor of human body 
might be related to the central nervous system. We assume that 
the proposed intermittent force application based on prediction 
involved modification by encouraging the participants to try to 
avoid reducing MTC unconsciously thorough proprioceptive 
stimulation to avoid the reduction of MTC.  

The increased MTC at the gait cycle when the force was 
applied was higher than the original MTC. We observed that 
the higher the third-quartile or maximum values of MTC, the 
lesser was the increase in MTC after intermittent-force 
application (after-effect). Considering the interquartile change 
rate was approximately -47% (decrease) in male and 200% 
(increase) in female, the degree of the MTC change when the 
force was applied influenced the after-effect. In addition, the 
physical difference affects the degree of the movement change. 
The increase of interquartile range was related to the 
significant increase in the third quartile values of MTC from 
before to after the intermittent force application, which was 
our unexpected changes. The force strength was constant in 
this experiment because the effect of the difference in force 
strength was not the focus of this study. If the force strength is 
appropriate for individual, only lower values of MTC 
distribution might increase and be modified as the after-effect. 
As a future work, it would be beneficial to ensure the adaptive 
adjustment of force strength corresponding to the user’s 
physique. 

Although the participants modified their MTC control 
using the proposed robotic assistance, further investigation 
about long-term after-effects (MTC modification, change in 
spatiotemporal parameters of both legs, etc.) would be 
beneficial. There is a limitation that the system is affected 
easily by the shift of the angular sensors. The gait phase 
detection and MTC prediction algorithms rely on the angular 
information. We assume that the angular sensors might shift 
thorough the long-term use of the system. Therefore, ensuring 
the calibration method of angular information during walking 
would be needed. Moreover, we focused on only increasing 
the toe height to avoid tripping in this work. We assume that 
the proposed prediction-based assistance method will be used 
for other training systems to improve control ability. 

 

V. CONCLUSION 

We have presented an intermittent force application 
method of gait training robot based on MTC prediction. As 
results of the experiment of human subjects, the proposed 
system could increase lower values of MTC distribution and 
encouraged the participants to modify their MTC control to 
inhibit from reduction significantly.   

Force parameters of the robotic controller were constant in 
the experiment. The adjustment of force parameters 
corresponding to the user’s physique would be beneficial as a 
future work. Moreover, the long-term investigation of gait 
training effect with the proposed system would be also 
beneficial as a future work. We assume that the automatic 
calibration method of angular sensors would be required for 
long-term use in case where the sensors shift. 
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