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Abstract— Multi-agent safe systems have become an increas-
ingly important area of study as we can now easily have multiple
AI-powered systems operating together. In such settings, we
need to ensure the safety of not only each individual agent,
but also the overall system. In this paper, we introduce a novel
multi-agent safe learning algorithm that enables decentralized
safe navigation when there are multiple different agents in the
environment. This algorithm makes mild assumptions about
other agents and is trained in a decentralized fashion, i.e.
with very little prior knowledge about other agents’ policies.
Experiments show our algorithm performs well with the robots
running other algorithms when optimizing various objectives.

I. INTRODUCTION

Safety in multi-agent systems is vital in collaborative tasks.
Even when the agents can observe each other and know the
dynamics of their environment, operating in a decentralized
manner without knowing each other’s policy makes it very
challenging to guarantee safety. While it is a difficult problem,
such safety-critical systems with multiple agents are com-
monly observed in autonomous driving [1], [2], collaborative
quadrotor control [3]–[5], multi-robot coordination [6]–[8].
Ensuring the safety in these environments is extremely critical
as the failures can cause damage not only to the agents
themselves, but also to the environment.

We specifically study tasks where state-action pairs of
the agents, and dynamics of the system are known, but
agents are decentralized, i.e. they do not know other agents’
policies. We decompose safety into two parts as individual
and joint safety. There are many real-world use cases that
fit into this framework. Consider a Mars exploration task
where multiple rovers explore a region together, as visualized
in Fig. 1, without explicit communication for increasing
energy efficiency and avoiding delays due to communication.
Individual safety could be each rover avoiding environment
obstacles or steep terrain, and joint safety might refer to
keeping the distance between rovers in a specific range to
avoid collisions. The setting also works for autonomous cars
that are trying to avoid collisions while optimizing each car’s
speed, and competitive robot teams where two teams are
competing in a game setting, e.g. soccer game, but do not
want to collide with one another to cause fatal damage.

While assuming a centralized controller enables us to
formulate the problem as a single-agent problem, it is not
realistic in practice, because such systems do not scale well
with the number of agents in the environment: both state and
action spaces grow exponentially with the number of agents.
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Fig. 1: Representative figure for three Mars rovers exploring a region on the
surface of Mars. Colors represent the normalized altitudes of the terrain such
that low altitude regions shown as red are unsafe for the rovers. It is also
unsafe if two rovers operate in the same region due to the risk of collisions.

On the other hand, as opposed to many prior works, most
real-world tasks require continuous state spaces. Therefore,
we would like to enable multiple decentralized agents to
operate in an environment with a continuous state space
without getting into individually or jointly unsafe states.

Such a problem would naturally fit into a relaxed subset of
decentralized partially observable Markov Decision Process
(Dec-POMDP) framework [9] where the relaxation is due to
full observability and independence of agents. However, not
knowing other agents’ policies makes the problem difficult.
We attempt to learn other agents’ policies, which eases the
objective of avoiding jointly unsafe situations. Specifically, we
use Gaussian Processes (GP) both for estimating other agents’
actions, which then enables us to increase the probability
joint safety, and for modeling the individual safety. We model
the risk using confidence bounds, again both for other agents’
possible actions, and for individual safety.

Our contributions in this paper are the following:
• We develop a novel decentralized multi-agent planning

algorithm on continuous state space to achieve overall
system safety more often than the existing algorithms.

• We show our algorithm has linear time complexity on the
actions space size and polynomial time complexity on the
number of visited states.

• Experiments show robots with our algorithm safely collab-
orate for exploration and exploitation with agents running
standard planning and reinforcement learning algorithms.

II. RELATED WORK

Safe Exploration. Single-agent safe exploration has been
extensively studied. Turchetta et al. [10] established the
SAFEMDP algorithm for deterministic Markov Decision
Processes (MDP) with discrete state spaces by assuming
the risk value of each state is under some regularity that
allows the use of GPs. Wachi et al. [11], again employing
GPs, extended the work to both exploration and exploitation.
Using a similar idea, Berkenkamp et al. [12] established a
parameter exploration algorithm under multiple constraints,
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that would safely tune robots’ parameters, as an extension to
earlier work [13]. More recently, Bıyık et al. [14] leveraged
continuity assumptions to deterministically guarantee safety
for efficient exploration in unknown environments. Bajcsy et
al. [15] and Fridovich-Keil et al. [16] developed reachability-
based frameworks for safe navigation, again in unknown
environments. While we employ many similar ideas, all of
these works focused only on single-agent settings, whereas
ensuring safety in decentralized multi-agent systems require
modeling the other agents in the environment.
Safe Reinforcement Learning. On the safe reinforcement
learning (RL), Basu et al. [17] developed a learning algorithm
to handle risk-sensitive cost. Geibel and Wysotzki [18]
formulated the risk as a second criterion based on cumulative
return. Moldovan and Abbeel [19] proposed an algorithm
that constrains the attention to the guaranteed safe policies.
Fisac et al. [20] proposed a framework using reachability
methods for guaranteeing safety during learning. Berkenkamp
et al. [21] developed a framework for model-based RL using
Lyapunov stability verification. However these works, too,
focused only on single-agent settings. We refer to [22] for a
comprehensive survey on safe RL.
Multi-Agent Reinforcement Learning. Many recent works
studied how to train multiple robots that will operate in a
decentralized manner [23]. They developed various techniques
and got successful results in several different tasks, such as
simulated navigation [24], video games [25], target tracking
[26], soccer [27], etc. However, these tasks are either not
safety-critical, or safety is hard-coded, which requires careful
analysis and design. Fisac et al. [28] proposed an extension of
Hamilton-Jacobi methods on reach-avoidance problem. While
their approach specifies conventions agents typically follow,
we make only very weak assumptions about other agents.
Intent Inference in Multi-Agent Settings. Predicting other
agents’ actions has been studied in the context of intent
inference (and theory of mind [29], [30]). Bai et al. [31]
demonstrated it is possible to autonomously drive in a crowd
by estimating the intentions of pedestrians. Sadigh et al. [32]
developed a method to enable the learning of other agents’
internal states by actively probing them. Both of these works
rely on the assumptions about the models of other agents’
policies. Recently, Song et al. [33] proposed a multi-agent
extension of generative adversarial imitation learning, which
can help learn other agents’ policies after observing a few
instances. However, this is mostly limited to offline settings
as it requires large computation powers to learn the policies.

III. PROBLEM DEFINITION

In this section, we formalize the multi-agent safe exploration
problem and our key assumptions. In our setting, multiple
robots interact with each other by simultaneously taking
actions that explore a shared environment. Each robot should
take only safe actions that not only satisfy the individual
safety constraints, but also avoid moving the overall system
to a jointly undesirable configuration.

The key challenge is that each robot needs to act simulta-
neously in a decentralized manner. Without prior knowledge

of other agents’ policies, they make decisions based on their
own policies after observing the previous states and actions
of all the agents. Our goal is to develop such a decentralized
strategy to safely navigate in the environment.

We model this system as a Markov Decision Process with
multiple agents (MDP-MA), where the agents share the same
environment but their transitions are factorized.

Definition III.1. (MDP-MA) An MDP-MA with N agents
is defined by a tuple (S,A, f, r). S is a continuous set of
states, where st = (s1

t , s
2
t , ..., s

N
t ) ∈ SN represents the state

of all N agents at time t. We note the state of each agent
sit lies in S. Similarly, A is the discrete set of actions, i.e.,
at = (a1

t , a
2
t , ..., a

N
t ) ∈ AN . f is a probability distribution

such that f(st+1|st, at) is the probability of reaching st+1

from st with action at. All agents act synchronously, so
st+1 ∼ f(·|st,at) = [f(·|s1

t , a
1
t ), . . . , f(·|sNt , aNt )]. Our

formulations can be generalized to the settings where the
action spaces are state- or agent-dependent. r : S → R is the
unknown reward function shared by all the agents. In terms
of rewards, agent i can only observe r(sit) +wit at time step
t, where wit ∼ N (0, ηi

2
).

The goal of each agent is to take actions that optimize its
own reward while safely planning in the environment. We
now formalize the notion of safety in this MDP-MA.

Definition III.2. (Safety) A state s is individually safe if and
only if r(s) ≥ h, for some safety threshold h. In addition to
individual safety, a set U ⊂ SN defines jointly unsafe states.

We want to note two important points. First, it is possible
to have (s1

t , . . . , s
N
t ) ∈ U , even though r(sit) ≥ h for all

i ∈ {1, . . . , N}. For example, a specific location might be
individually safe for drones, but having multiple drones in
that location might cause catastrophic collisions. Second, as
the reward is a function of individual states, jointly unsafe
states are not induced by the reward function.

Assumption III.1. (Observability Assumptions) Following
[10] and [11], we assume:
• All agents know the set U , the safety threshold h, the

initial state s0∈SN \U , and the dynamics f .
• At any time step t, all agents observe the states st and

the actions at.
Since f , the transition distribution, is known at all times to

all agents, any agent could estimate the next state st+1 based
on its information about the MDP-MA if it could predict the
actions of other agents accurately. However, the agents do
not have prior information about other agents’ policies.

Assumption III.2. (Reward Function Assumptions) With
no assumption on r, an agent cannot learn other agents’
policies without repeatedly observing all possible state
configurations. Therefore,
• We assume that S is endowed with a positive definite

kernel function kr(s, s′) and that r(s) has bounded norm in
the associated Reproducing Kernel Hilbert Space (RKHS).

• We also assume L-Lipschitz continuity of the reward
function r with respect to some metric d(·, ·) on S. This
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is guaranteed by many commonly used kernels with high
probability [34], [35].

Objective. Given the problem definition and assumptions,
our goal is to achieve a predefined objective, e.g. maximizing
the number of states explored or maximizing cumulative
reward, while avoiding individually and jointly unsafe states.

IV. MULTI-AGENT SAFEMDP ALGORITHM

We formalize individual and joint safety separately and use
confidence bounds to determine whether or not a constraint is
satisfied. Sec. IV-A introduces a method to find the states that
satisfy individual safety with high confidence and Sec. IV-B
explains our approach for modeling other agents’ policies to
achieve joint safety.

A. Iterative SafeMDP

Our algorithm finds the most desirable one-step reachable
state with high probability of being individually safe, as well
as being returnable to the previously found safe states within
one step.

We use a Gaussian Process (GP) to model the reward
function on the state space for the agent running our algorithm
[35]. Given Assumption III.2, we model the reward function
using a GP as

r ∼ GPr(µr, kr), (1)
where µr(s) is the mean function and kr(s, s

′) is the
covariance function. We assume the prior mean µr of all
states is 0. The variance σ2

r(s) = kr(s, s) encodes the noise
of the environment from observations and our uncertainty.
Our algorithm updates GPr after every reward observation
and utilizes it to estimate the reward of the next state. We
refer to [36] for GP posterior update with new observations.
We define the confidence bounds of GPr as Crt(s) =
[µrt(s)± βr(t)σrt(s)] for some βr(t) ≥ 0. We denote

rµt (s) = µrt(s),

rut (s) = µrt(s) + βr(t)σrt(s),

rlt(s) = µrt(s)− βr(t)σrt(s).
(2)

Given a state-action pair at time step t, the lower bound
on the expected reward of the next state is:

lrt(s, a) =

∫
S
rlt(ς)f(ς|s, a)dς. (3)

Definition IV.1. (Returnability) At any time step t, given an
initial safe state set S0 ⊇ {s0}, we define Sj = Sj−1 ∪ {s ∈
S | ∃a ∈ A,

∫
ς∈Sj−1

f(ς|s, a)dς ≥ τ ∧ lrt(s, a) ≥ h} and
S̄t = limj→∞ Sj , for some τ ∈ [0, 1]. And the returnability
of a state-action pair (s, a) is defined as

returnt(s, a) =

∫
S̄t

f(ς|s, a)dς. (4)

We emphasize that τ is a threshold on the returnability
property. Given the lower bound on the expected reward
and the Definition IV.1, we say a state-action pair (st, at)
can be safely realized if and only if lrt(st, at) ≥ h and
returnt(st, at) ≥ τ . We use this definition to restrict the
actions our agent can take.

B. Multi-agent Modeling
To avoid jointly unsafe states, our algorithm predicts other
agents’ actions. To do so, we make the following assumption
to account for both exploration and exploitation [37].

Assumption IV.1. (General Policy Assumptions) Agent i
(any other agent in the environment) follows a policy that is a
combination of commonly used exploration strategies, namely
Optimism in the face of Uncertainty (OFU) and Boltzmann
policy, which we describe in detail below. This is a mild
assumption, because combining these strategies leads to a
very general and inclusive class of policies.

We define a function gi, which given the combined policy,
computes the probability of taking an action that would
transition from sit to sit+1. We now describe the elements of
the combined policy.
Q-Function with GP. Before we derive OFU and Boltzmann,
we first introduce the Q-functions (action-value functions)
for each agent. Given the GP reward model, we leverage
Q-learning to find the mean of the Q-function:

Qµt (s, a) =

∫
S

(
rµt (ς) + γmax

a′
Qµt (ς, a′)

)
f(ς|s, a)dς (5)

where γ ∈ (0, 1) is a discount factor. We similarly define
Qu and Ql as the confidence bounds of the Q-function
by using ru and rl instead of rµ, respectively. We denote
CQt

(s, a) = [Qlt(s, a), Qut (s, a)]. These definitions rely on
an independence assumption for faster computation and
good results both empirically and theoretically (see Sec. V
and VI). In fact, the posterior distribution above assuming
independence is more conservative due to reward correlation
between states.

To learn a Q-function in a continuous domain, we adapt
temporal difference error (TD-error) learning. For Qµ, Qu and
Ql, which are parameterized by θµ, θu and θl, respectively,
θ ← arg min

θ
‖rµt (s′) + max

a′
Qθ−(s′, a′)−Qθ(st, at)‖ (6)

where s′ ∼ f(·|st, at), and θ− is the set of parameters that
are updated after every ∆ time steps by copying θ (as in
[38]). In this way, Q values can be approximated.
Optimism in the face of Uncertainty. OFU is a classic
exploration strategy that favors the actions with high upper
bound in potential return [39], [40]. Given a Q-function
distribution, OFU can be written as

πo(s, a) =
exp(Qu(s, a)/To)∑
a′ exp(Qu(s, a′)/To)

, (7)

which outputs the probability of taking action a at state s,
where To > 0 is the unknown temperature parameter. To
derive an upper bound of the probability that a state-action
pair is observed, we get the upper bound of πio as

πiuo (s, a) =
exp(Qiu(s, a)/T io)

exp(Qiu(s, a)/T io) +
∑
a′ 6=a exp(Qiµ(s, a′)/T io)

≥ πio(s, a) (8)
Boltzmann Policy. Similar to OFU, the Boltzmann explo-
ration strategy [41] is:

πb(s, a) =
exp(Qµ(s, a)/Tb)∑
a′ exp(Qµ(s, a′)/Tb)

(9)

where Tb > 0 is the unknown temperature parameter. The
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upper confidence bound is:

πiub (s, a) =
exp(Qiµ(s, a)/T ib )

exp(Qiµ(s, a)/T ib ) +
∑
a′ 6=a exp(Qil(s, a′)/T ib )

≥ πib(s, a). (10)
Exploitation is implicitly covered within the Boltzmann

policy formulation with a right choice of Tb.
Combining OFU and Boltzmann. The agent i will follow
OFU with probability εi, and Boltzmann with probability
1 − εi for some unknown 0 ≤ εi ≤ 1. When T io → ∞ and
T ib → 0, the policy reduces to a pure ε-greedy policy. This
combination completes the definition of gi, the transition
probability between states given estimated policies and εi

(see Assumption IV.1), and allows it to model all of OFU,
Boltzmann and ε-greedy strategies.
C. Inference of Joint Policy Parameters
Having described the strategies, we now explain how to
jointly estimate T io, T

i
b and εi. By assuming uniform prior

over P (εi, T ib , T
i
o|Qi), after a series of observations ξi, Bayes’

rule gives
P (εi, T ib , T

i
o|ξi, Qi) ∝ P (ξi|εi, T ib , T io, Qi). (11)

We find the maximum likelihood estimate of (εi∗, T i∗b , T
i∗
o ):

εi∗, T i∗b , T
i∗
o = arg max

εi,T i
b ,T

i
o

log(p(ξi|εi, T ib , T io, Qi)). (12)

Because the form of gi is known, we use
gi(εi∗, βir, T

i∗
b , T

i∗
o , π

iu
o , π

iu
b , s

i
t, s

i
t+1) as an upper confidence

bound estimate of gi(εi, βir, T
i
b , T

i
o, π

i
o, π

i
b, s

i
t, s

i
t+1).

We now have a full loop of inference and belief update.
In the inference stage, each agent running our algorithm
would keep a GP for r and a corresponding estimated Q-
function distribution. The agent would also keep track of
policy parameters for each of the other agents. Given the
expression above, the lower confidence bound of not entering
any jointly unsafe states for our agent is

lc(s1
t , a

1
t )=

∫
S

1−
∫

u∈U :u1=ς

N∏
i=2

gi(. . . )du

f(ς|s1
t ,a

1
t )dς,

(13)
where gi(. . . ) is short for gi(εi, βir, T

i
o, T

i
b , π

iu
o , π

iu
b , s

i
t, u

i).
D. Overall Algorithm
Algorithm 1 introduces the overall method. We compute the
expected lower bound reward according to Eq. (4), and then
select the set of individually safe actions Ahi-rew (lines 6-7).
We then compute the set of actions, Ajoint-safe, with low risk
of joint unsafety as defined in Definition III.2 of Sec. IV-
B (lines 8-9), and also compute the set of actions, Asafe
that satisfies both constraints (line 10). Finally the algorithm
selects the action with the lowest probability of joint unsafety
if the available action set is empty, or selects the action
that optimizes the agent’s objective Obj within the available
action set (line 11-13). We update the Q-function and the
parameters following Eq. (5) and Sec. IV-C (line 15-17).

V. THEORETICAL RESULTS

In this section, we discuss the theoretical results of our
algorithm. Mainly, we discuss the accuracy of our GP estimate
on the reward along with βr(t), on the value function and

Algorithm 1 Multi-agent Safe Q-Learning

1: Input: S,A, f, S0, c, h, τ, βr, Obj
2: Initialize Q.
3: Initialize GPr for reward estimate.
4: Initialize ε, Tb and To.
5: for t = 1, 2, ... do
6: Compute lr(sit, a) and return(sit, a) for ∀a ∈ A
7: Ahi-rew←{a|lr(sit, a)≥h ∧ return(sit, a)>τ}
8: Compute lc(sit, a),∀a ∈ A
9: Ajoint-safe ← {a|lc(sit, a) ≥ c}

10: Asafe ← Ahi-rew
⋂
Ajoint-safe

11: if Asafe = ∅ then
12: Asafe ← arg maxa lc(s

i
t, a)

13: ait ← arg maxa∈Asafe Obj(s
i
t, a)

14: sit+1 ∼ f(sit, a
i
t)

15: Update GPr using r(sit+1).
16: Update Q with GPr and f
17: Update ε, Tb and To

we discuss the computational complexity of our algorithm.
Reward Estimation Accuracy with Gaussian Processes.
The confidence interval of the GP for r depends on βir(t),
whose tuning has been well studied in [10] for the single-
agent SAFEMDP algorithm. Their result can be applied to
our setting by choosing

βir(t) = 2Bi + 300αit log3(t/δi), (14)
where Bi is the bound on the RKHS norm of the function
r(·), δi is the probability of agent i visiting individually
unsafe states, and αit is the maximum mutual information
that can be gained about r(·) from t noisy observations. The
information capacity αit has a sublinear dependency on t for
many commonly used kernels [35]. Assuming ||r||2k ≤ Bi

and the noise wt is zero-mean conditioned on the history as
well as uniformly bounded by η for all t > 0, if we choose
βit above, then for all s ∈ S and t > 0, with probability
at least 1 − δi that r(si) ∈ Crt(s

i), where Crt(si) is the
estimated confidence bounds of the reward function on state
si at time step t [10].
Value Function Estimation Accuracy. To be able to accu-
rately estimate the Boltzmann policy, the algorithm must
make accurate estimates of the value function. Based on the
reward functions’ estimation accuracy, we can derive the
following two theorems for the accuracy of value functions.

Theorem V.1. If 1) βir(t) follows Eq. (14), 2) the states
visited by agent i are also visited by the estimating agent,
and 3) Q is in the form of universal state representation, then
Q(s, a) ∈ CQt(s, a) with at least probability 1− δi.

Proof. [10] proved that with the choice of βir(t) above, there
is at least probability 1− δi, r(si) ∈ Crt(si),∀si ∈ S. The
Q-learning algorithm we define is by sampling potential
transitions (to s′) and perform

Qt(s
i, ai) = rt(s

′) + γmax
a′

Qt(s
′, a′) (15)

Hence at convergence with a universal representation of Q-
function, the Q-function can be written as
Qt(s

i, ai) = E[rt(s
′)]+γE[rt(s

′′)]+γ2E[rt(s
′′′)]+. . . (16)
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where we use s′, s′′, s′′′, . . . denote the future states in the
optimal trajectory of taking ai at si. Equation (16) holds
for each of Qµt , Q

l
t, and Qut respectively with rµt , r

l
t, and rut .

Since ∀s ∈ S, rt(s) ∈ Crt(s) with probability at least 1− δi;
we have E[rt(s

′)] ∈ [E[rlt(s
′)],E[rut (s′)]], with probability

at least 1 − δi for any state distribution. Therefore with
probability at least 1− δi,

Qt(s
i, ai) ∈[E[rlt(s

′)] + γE[rlt(s
′′)] + . . . ,

E[rut (s′)] + γE[rut (s′′)] + . . . ]

=[Qlt(s
i, ai), Qut (si, ai)].

(17)

Even without the prior knowledge on δi, CQt(s
i, ai) covers

at least βir(t) standard deviations from the mean value, where
the probability of Q(si, ai) being bounded by CQt(s

i) can
be directly found using a standard Z-score table.

However, from Eq. (5), we observe the variance of the
value function is monotonically increasing during the update.
Therefore, we need to bound the confidence intervals of the
value function. The next theorem establishes such a bound.

Theorem V.2. Qut (s, a)−Qlt(s, a) ≤ 2βr(t) maxs∈S σrt (s)

1−γ for
discounted infinite-horizon MDP, ∀s ∈ S, a ∈ A and any
given βr(t).

Proof. Using Eq. (16),
Qut (s, a)−Qlt(s, a)

= (E[ru(s′)] + γE[ru(s′′)] + γ2E[ru(s′′′)] + . . . )

− (E[rl(s′)] + γE[rl(s′′)] + γ2E[rl(s′′′)] + . . . )

= (E[ru(s′)− rl(s′)] + γE[ru(s′′)− rl(s′′)] + . . .

≤ 2βr(t)E[σrt(s
′)]) + 2γβr(t)E[σrt(s

′′)] + . . .

= 2βr(t)(E[σrt(s
′)] + γE[σrt(s

′′)] + . . .

≤ 2βr(t) maxs σrt(s)

1− γ
.

(18)

Computational Complexity. For the algorithm to have online
execution ability, it must be scalable and fast. With the prior
knowledge that GP updates are O(|Sv|3) where Sv is the set
of states that are visited by any agent [36], we conclude our
algorithm is linear in |A| and polynomial in |Sv|.

Theorem V.3. The Multi-agent Safe Q-Learning algorithm
has a time complexity of O(|Sv|3 + |A|+Nt) at time step t
in a MDP-MA with N agents using classic GPs. Using GP
kernel approximation methods described in [42], [43], the
time complexity reduces to O(|Sv|+ |A|+Nt). If we apply
sampling methods described in [44], we can further reduce
the time complexity to O(|A|+Nt).

Proof. With the prior knowledge that GP updates are O(|Sv|3)
[36], we can derive the time complexity bounds as follows.

There are four major components of this algorithm. GP
update for the reward function is on the state space and
for all agents, hence complexity O(|Sv|3). Choosing the
optimal action among the safe actions has a time complexity
of O(|A|). Q-function update with sampling takes O(1).
Optimization for ε and T ib is linear to the number of steps in
trajectory, hence complexity O(Nt).

Incorporating all complexity bounds above, the time
complexity bound of the algorithm is O(|Sv|3 + |A|+Nt).

With optimizations on GPs in [42], [43] to make linear
complexity and sampling in [44] to make constant complexity,
the algorithm complexity becomes O(|Sv|+ |A|+Nt) and
O(|A|+Nt) respectively.

VI. EXPERIMENTS

To assess the performance of our method, Multi Safe Q-
Agent, we performed several simulation experiments using
the following baselines:
• Single Safe MDP Agent: The algorithm in [10] with the

modifications discussed in Section IV-A
• Naı̈ve Q-Agent: Q-learning agent that assumes all other

agents apply uniformly random policies.
• Bayesian Q-Agent: Q-learning agent receives additional

negative reward for entering unsafe states and keeps a
Bayesian belief on others’ policies on discretized domain.

• Safe Q-Agent: Q-learning agent that takes all agents’
states as its state space and receives additional negative
reward for both individual unsafety and joint unsafety.
The GPs employed by the agents use an RBF Kernel with

a length scale of 10 and a prior standard deviation of 10 and
a White Noise Kernel with a prior standard deviation of 10.
The Q-functions are estimated using neural networks with
two hidden layers of size 50.
A. Mars Rover Experiment
We downloaded the Mars surface map from High Resolution
Imaging Science Experiment (HiRISE) [45], and selected
a square region with an area of 100 m2, starting at 30.6◦

latitude and 202.2◦ longitude. The agents have 4 possible
actions: up, down, left and right. Each action moves the
agent 1 m with some error that follows independent Gaussian
distributions in both axes with means 0 and variances 0.1.
When two rovers are too close to each other, they collide.
These define joint safety. If an agent takes an action towards
outside the boundary, it respawns at the other side of the
map so that an agent is always forced to move instead of
trying to stay at its original state to avoid collision. The
individual safety condition is the altitude: the rover may be
not recoverable when its altitude is too low.

We simulate two objectives: Exploitation and exploration.
In each, there exist 19 ε-greedy Q-learning agents with
randomly chosen ε values. They do not try to avoid unsafe
states. The experiment is set up in this way so that probability
of collisions in the environment is high without careful
navigation. We test how each agent performs in such hostile
environment with its own objective. Agents adopt h=−0.5,
τ=1, c=0.7 and collision distance threshold of 0.1 meters.

We run each experiment 10 times with random initial
states (constrained to individually and jointly safe states).
Each experiment is run with 20 episodes of 50 time steps.
We use Naı̈ve Q-Agent, Bayesian Q-Agent and Safe Q-Agent
as baselines for the exploitation setting because they optimize
episode reward without a specific goal of optimizing for
exploration. We use Single Safe MDP Agent as baseline for
exploration because it optimizes only for state exploration.
Exploitation. In this experiment, we use altitude as the agents’
reward. The results are shown in Fig. 2(top). Multi Safe
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Fig. 2: Experiment Results for Exploitation (top) and Exploration (bottom) with Mars Rovers (mean±s.e.)
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Fig. 3: Learned reward values by the Multi Safe Q-Agent when exploring, and the true reward map are shown.

Q-Agent significantly outperforms other candidates in both
safety and episode reward (we exclude the additional negative
reward for Bayesian Q-Agent and Safe Q-Agent for fairness).

Bayesian Q-Agent and Safe Q-Agent are safer than the
Naı̈ve Q-Agent, but since their rewards are corrupted by
the additional penalty, they did not properly learn how to
maximize reward. Naı̈ve Q-Agent’s episode reward is also low
due to the limit in the actions it can choose. Since it assumes
random policy for other agents, it unnecessarily eliminates
many trajectories that would possibly lead to higher episode
reward. On the other hand, Multi Safe Q-Agent outperforms
the baselines by getting higher and higher rewards after
learning from previous episodes.
Exploration. In this experiment, Multi Safe Q-Agent chooses
the actions to visit the most uncertain state (the state with
highest variance by the GP) that satisfies the safety constraints
in the algorithm. We compare its performance against Single
Safe MDP Agent, which is already designed for exploration.
We show our agent’s estimate of the altitude map in Fig. 3.
Quantitative results are in Fig. 2(bottom). Multi Safe Q-
Agent significantly outperforms in safety, but is marginally
worse in terms of the number of new states visited. This is
reasonable, because achieving higher safety usually means
a more constrained set of actions, which then harms the
exploration. Hence, we conclude it is much safer and performs
exploration comparably well.
B. Quadcopter Collaborative Experiment
In this experiment, we aim to evaluate agents’ capability of
safe collaboration1. Two quadcopters are initialized in the

1A video of the experiment is at http://youtu.be/l76glwgF67k.

domain to ship an item to the destination together. The item
would be lost if the quadcopters are too far apart from each
other. The setup is shown in Fig. 4.

Fig. 4: Quadcopter Experiment Setup

We discretize the action space of the quadcopters such that
each has 6 possible actions: up, down, forward, backward,
left and right, each of which would move the agent 0.1
unit. When the agents move, their actions have independent
Gaussian errors in all three axes with means 0 and variances
0.1. We discretize the time such that when an action is
chosen, a PID controller navigates the quadcopter to the
destination before the next time step. Quadcopters start at
(0.5, 0, 0) and (−0.5, 0, 0). The destination is at (2, 2, 2). The
maximum safe distance between the agents is 3. Reward is
the normalized negation of the Euclidean distance to the
destination. h = −8.0, τ = 1, c = 0.7. This task is extremely
challenging as the quadcopters are uncoordinated and do not
have any information about each other. We run 10 independent
experiments in this domain. Each experiment consists of 100
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Fig. 5: Quadcopter Experiment Results (mean±s.e. for the line plots). The
box plot shows the distribution of average number of safe steps across
10 experiment runs before termination due to unsafety. Each experiment’s
number of safe steps is averaged over 100 episodes.

episodes. Each episode terminates when any safety constraint
is violated or when the number of time steps reaches 100.
We compare our method with Safe Q-Agent, as it is the only
baseline that specifically accounts for both individual and
joint safeties. Each experiment is initialized with one of the
agents of interest, and an ε-greedy Q-learning agent with
ε = 0.1.

Figure 5 shows the total episode reward of the agents and
also the number of safe steps before the task is failed. While
both agents collect higher rewards by learning from previous
episodes, Multi Safe Q-Agent clearly outperforms the Safe
Q-Agent in both total reward and safety.

VII. DISCUSSION

Summary. In this paper, we presented a decentralized
planning algorithm that enables agents to avoid stepping
into individually or jointly unsafe states. We use a GP-based
approach to estimate safety and uncertainty. Our algorithm
assumes very little prior knowledge on other agents and
learns their policies through observations. We showed the
algorithm has polynomial time complexity in the number of
visited states, available actions, and agents. We also gave
a performance guarantee on the estimated Q-functions of
other agents. We empirically demonstrate our algorithm in
collaborative Mars rover and quadcopter experiments. Our
results suggest our algorithm outperforms all other baselines
in terms of safety and also has the best performance in the
exploitation setting. We would like to emphasize that although
there is extensive work in the area of decentralized planning
and control, most previous multi-agent safe learning work
focuses either on precomputed policies or is not decentralized
[46], [47]. Hence, a fair comparison would be only with
algorithms related to our problem such as SafeMDP [10].

We would also like to note that our work extends to human-
robot collaboration tasks where each human can be modeled
in the same decentralized way. For example, in underwater
robotics [48], robots assist scuba divers to complete the tasks
where they share the same reward and can use the diver’s
vital failure, e.g. running out of oxygen, as the joint unsafety.
Another example is that surgical robots can share the reward
with surgeons and use the patient’s condition to define joint
unsafety. This method also has the potential to go beyond
robotics and can be applicable in other multi-agent AI settings
such as the game of Dota and League of Legends, where a

team of agents would share a common reward and the joint
unsafety would be the home being attacked by the opponents.
Limitations and Future Work. There are a few limitations
that we plan to address as part of future work. The algorithm
only avoids immediate jointly unsafe states, but does not plan
on other agents’ potential trajectories. One can easily imagine
a scenario where the joint unsafe state is guaranteed to occur
multiple steps ahead. A potential opportunity here is to have
a multi-step trajectory roll out and select the safest option.
Another strong assumption we make is that reward function
is shared across agents. This assumption allows for adequate
online learning and quick reaction from our agent. However,
in some of the real-world collaborative tasks, this assumption
may not hold. Two potential solutions are to directly learn
other agents policies or rewards. Third, one could improve the
modeling of other agents’ policies by using different learning
algorithms rather than GPs. Finally, an empirical validation
of our algorithm on real-world experiments is required.
Conclusion. Despite these limitations, we are encouraged to
see our algorithm demonstrating safe behavior in collaboration
with other agents with very little prior knowledge of their
policies. We also look forward to exploring applications of
our algorithm beyond collaborative navigation to other multi-
agent partially observable settings such as in manipulation
or in human-robot interaction.
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