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Abstract— This paper addresses reactive generation of step
time and location of biped robots for balance recovery against
a severe push. Key idea is to reformulate the balance recovery
problem into a tracking problem for “hybrid” inverted pen-
dulum model of the biped, where taking a new step implicitly
yields a discrete jump of the tracking error. This interpretation
offers a Lyapunov-based approach to reactive step generation,
which is possibly more intuitive and easier to analyze than
large-scaled or nonlinear optimization-based approaches. With
the continuous error dynamics for the divergent component of
motion (DCM), our strategy for step generation is to decrease
the “post-step” Lyapunov level for DCM error at each walking
cycle, until it eventually becomes smaller than a threshold so
that no more footstep needs to be adjusted. We show that imple-
mentation of this idea while obeying physical constraints can be
done by employing a hybrid tracking controller (together with
a reference model) as our reactive step generator, consisting of
a simple DCM-based continuous controller and a small-sized
quadratic programming-based discrete controller. The validity
of the proposed scheme is verified by simulation results.

I. INTRODUCTION

We have witnessed a vast of advances in the field of
biped robots over past decades, especially on their abilities to
operate stably against uncertain environments. In particular,
a tremendous amount of attentions have been paid to recover
the biped’s balance against external push by generating
appropriate step time and location on-line, studied under the
name of “reactive step generation”.

Initial research efforts have focused on adjusting the step
location, with the step duration fixed a priori. Interpreting
dynamical motion of center of mass (CoM) via an inverted
pendulum model (IPM), the authors of [1] proposed the so-
called “capture point” (or its equivalent definition “divergent
component of motion (DCM)” presented later in [3]) as a
key concept of the balance recovery in a spatial sense, which
can be viewed as an ideal location of next footstep to stop.
The advance in computational power in turn has led to the
emergence of optimization-based approaches to online step
generation, mainly in two directions. One distinctive stream
of research has employed the model predictive control (MPC)
as a step generator [4]–[6], where the step location is set as
a control input and then the best among possible candidates
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is derived in the sense of cost minimization. On the other
hand, while the conventional MPC framework embeds the
stacked system dynamics into an optimization problem,
another approach has been proposed in [7], [8] by putting
the analytic solution of the DCM into the formulation of an
optimization problem instead of its dynamics. More recently,
these two philosophies have been extended to a more general
problem where the step time remains not pre-determined,
encouraged by a rule-of-thumb that step time adjustment
would significantly improve robustness of the biped [9], [10].
Yet as introducing step time as an additional variable to be
chosen results in complexity of the optimization problem,
these optimization-based approaches often suffer from heavy
computational loads or cannot guarantee the feasibility.

At this point, two important questions arise: (a) in urgent
situations (e.g., in the presence of a strong push), is it really
important to compute the “optimal” step time and location
at the expense of heavy computation?; moreover, (b) how
can we make sure whether no more footstep is needed for
regaining the balance, especially in a closed-loop point of
view? As yet another attempt to answer these questions, in
this paper we present a Lyapunov-based approach to reactive
step generation for balance recovery. Our key idea is to recast
the balance recovery problem as a tracking problem for the
“hybrid” IPM in the hybrid systems framework [11], where
taking a step implicitly yields a discrete jump of the tracking
error between the IPM and its nominal counterpart. This
allows us to represent a condition of where and when to step
for balance recovery as a Lyapunov stability criterion for the
DCM tracking error: that is, the balance recovery is achieved
by regulating a Lyapunov function of the error dynamics to
zero. As an illustration of the idea, we propose a reactive step
generator (RSG) that consists of three components. The first
is a hybrid reference model that mimics the nominal behavior
of the hybrid IPM. Then a DCM-based tracking controller is
constructed to stabilize the continuous DCM error dynamics
in the sense of Lyapunov (where the zero-moment point and
the rate-of-change of angular momentum are used as con-
tinuous control inputs). Finally, we employ the solution of a
small-sized quadratic programming (QP) as a discrete control
input, which finds the best step location for minimizing the
“post-footstep” level of the Lyapunov function and runs only
when increased amount of the Lyapunov function during
the current walking cycle reaches a threshold (by which the
step time is directly determined). We believe that, compared
with nonlinear or large-scaled optimization approaches, our
Lyapunov-based approach could relax computational burdens
as well as bring a clear way of understanding the underlying
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Fig. 1. Graphical interpretation of balance recovery problem. Detailed
explanations on each phase in the figure are: (A) Before the robot is pushed,
the actual CoM cH(t) (blue solid) is kept close to the nominal one c?H(t)
(orange dashed); (B) In the transient period caused by a push, cH(t) is
forced to move far away from its nominal trajectory; (C) After recovering
the balance, the robot’s CoM cH(t) tracks c?H(t− δT) + δH again.

rationale behind DCM-based balance recovery. The present
work is an extension of the authors’ previous works [12], [13]
in which a conceptual sketch of the basic idea was drawn in
the sagittal plane. We here extend the core into general 2D
walking scenarios, for which the Lyapunov-based argument
and QP formalism are brought together into the picture.

II. FORMULATION OF BALANCE RECOVERY PROBLEM

Consider a linear inverted pendulum model (LIPM) with
a constant height cz of the center of mass (CoM) and the
rate-of-change of angular momentum around the CoM:

c̈H =
g

cz
(cH − pH) +

1

mcz

[
0 −1
1 0

]
ḣH +

1

m
fH (1)

where cH and pH are the CoM and the zero-moment point
(ZMP), respectively, and ḣH is the rate-of-change of angular
momentum.1 Total mass of the robot and the gravitational
constant are denoted by m and g, respectively. The pushing
force fH is assumed to be an impulsive signal with an
impulse iH such that fH(t) = 0 for all t /∈ [tf , tf + ∆f ] and∫ tf+∆f

tf
fH(s)ds = iH in which tf and ∆f ≥ 0 denote time

moment and (possibly small) duration of push, respectively.
In planning phase we assume that the biped has massless
legs and finite-sized feet.

For future use some notations are introduced below. One
walking cycle is composed of a double support phase (DSP)
and a single support phase (SSP), with nominal time periods
T ?DSP and T ?SSP for each. Also let T ? := T ?DSP + T ?SSP. The
j-th “step time” sj represents the time moment at which
the j-th walking cycle begins. On the other hand, the “step
location” oH(t) is a right-continuous and piece-wise constant
function that indicates the horizontal position of the ankle of
the current stance foot.

In view of the LIPM (1), balance recovery is an ability
to make the robot’s CoM cH and footsteps oH track their
(disturbance-free) nominal counterparts c?H and o?H after a
severe push is applied, without significant loss of balance in
transient. In other words, it is expected that, with a small
ε > 0,∥∥cH(t)−

(
c?H(t− δT) + δH

)∥∥ < ε, (2a)

1Hereinafter, the subscript H is used for a two-dimensional vector in the
horizontal plane that is denoted by, for instance, cH = (cx, cy).

oH(t) = o?H(t− δT) + δH (2b)

holds for each SSP t ∈ [sj + T ?DSP, sj+1), j ≥ N , with
sufficiently large N and time and space shifts δT and δH.
(See also Fig. 1(b) for a graphical interpretation of (2).) The
nominal trajectory (c?H,o

?
H) under consideration is assumed

to be generated by a nominal LIPM

c̈?H =
g

cz
(c?H − o?H) (3)

with nominal values of stride length L?x, foot width L?y , and
step duration T ? = T ?DSP + T ?SSP.

In this work we are interested in simultaneous reactive
generation of step information (sj ,oH) as well as (pH, ḣH),
to recover the balance of the robot in the sense of achieving
(2). (Throughout this paper, a generating dynamics of such
(sj ,oH,pH, ḣH) is called a “reactive step generator (RSG)”.)
The main difficulties in resolving this problem are: (a) there
is no priori knowledge on (δT, δH) (so that it is not possible
to directly utilize c?H(t− δT) + δH as a reference for cH(t));
and (b) how the balance recovery is possibly done by taking a
footstep remains unclear in (2). We will see below that these
issues can be efficiently dealt with as the hybrid systems
framework comes into the picture.

III. INTRODUCTION TO HYBRID LIPM
This section is devoted to represent the LIPM (1) in

the hybrid systems framework [11]. A hybrid system is a
dynamical system that admits continuous flow and discrete
jump of state variable [11], having a general expression2

Flow dynamics: χ̇ = F
(
χ,uc, t

)
, ∀(χ,η) /∈ D, (4a)

Jump dynamics: χ+ = G(χ,ud, t), ∀(χ,η) ∈ D (4b)

where χ is the state, uc and ud are continuous and discrete
inputs, η ∈ Rν is an external signal (or a controller state),
F and G are flow and jump maps, and D is a jump set.

Underlying reason behind the conversion of the LIPM is
to merge the step time sj and location oH “implicitly” into
a system model, as some components of (4). This actually
can be done by focusing more on the relative distance
between the CoM and the footstep at each step time t = sj .
Indeed, by continuity of cH(t) on t, the difference cH − oH

experiences an instantaneous jump as cH(sj) − oH(sj) =
cH(s−j )−oH(s−j )−

(
oH(sj)−oH(s−j )

)
. More precisely, the

hybrid systems framework offers a compact expression of
this phenomenon, in a natural coordinate for (cH, ċH)

ξ =
(
ξ1, ξ2

)
:=
(
cH − oH, ċH

)
, (5)

as follows: ξ+
1 = ξ1 − ud, ∀(χ,η) ∈ D where the discrete

input ud is defined as

ud(t) := oH(t)− oH(sj−1), ∀t ∈ [sj , sj+1)

while the step time sj is automatically determined as the time
when (χ,η) encounters D. A similar computation brings a

2Although the solution of a hybrid system (4) is formally expressed as
χ(t, j) to emphasize continuous and discrete time segments, for brevity we
use χ(t) instead of χ(t, j) with no multiple jump at every t guaranteed by
the proposed algorithm.

3505



Fig. 2. Concept of moving window W(rH) (gray rectangle) for a DSP
lying on the support region (dashed area) with respect to two feet (green
and orange rectangles)

hybrid system expression of the LIPM (1) (called hybrid
LIPM), which will be presented in Subsection III-B.

A. Simplified ZMP Constraint with Moving Window

As a prerequisite for introducing the hybrid LIPM, we
adopt the concept of “moving window” for the ZMP pH

(similarly in the related works such as [14]) to simplify the
ZMP constraint. The moving window is a convex region on
the ground in which the ZMP is desired to remain, defined
with an auxiliary point rH(t) asW(rH), where for xH ∈ R2,

W(xH) := {xH ∈ R2 : wm
H � xH − xH � wM

H }, (6)

the symbol a � b indicates component-wise inequalities,
and wm

H � wM
H are selected such that W(oH) is included

in the foothold. (We here let wy := wM
y = −wm

y > 0, for
y-directional symmetry of the foot.) As is seen in Fig. 2,
the representative rH(t) of the moving window lies on the
line between sequential footsteps oH(sj−1) and oH(sj), and
moves ahead and stays on oH(sj) during the SSP.

With rH, one can represent the ZMP as

pH = oH + p̃H + r̃H (7)

where p̃H := pH − rH and r̃H := rH − oH (among
which the latter is vanished in the SSP by definition,
and its explicit form will be presented shortly). A suffi-
cient condition for pH to remain in the supporting region
conv{W(oH(sj−1),W(oH(sj))} is then given by

wm
H � p̃H � wM

H , (8)

which is regarded as a simplified ZMP constraint.

B. Hybrid LIPM with State and Input Constraints

The hybrid LIPM has the form (4) with the state

χ := (ξ, σ) ∈ R4 × R1 (9)

where the variable σ : R→ {−1, 1} indicates which foot is
the stance foot: σ = −1 if the right foot is the stance foot,
while σ = 1 otherwise. By letting the continuous input and
an additional perturbation term as

uc :=
(
p̃H, ḣH

)
, ∆c :=

(
r̃H, fH

)
, (10)

respectively, and by applying (7) to (1), we obtain

F :=

[
Aξ + Buc + E∆c

0

]
, G :=

[
ξ + Fud

−σ

]
(11)

Fig. 3. Overall configuration of the proposed RSG (dashed block): The
numbers indicate those of the equations in the main text.

and (hereinafter, 0 and I represent the zero and identity
matrices with appropriate dimensions, respectively)

A :=

[
0 I
− g
cz

I 0

]
, B :=

[
0 0
− g
cz

I 1
mcz

H

]
, H :=

[
0 −1
1 0

]
E :=

[
0 0
− g
cz

I 1
mI

]
, F :=

[
−I 0
0 0

]
while selection of the jump set D is still upon the designer.

To keep the robot from losing the whole-body balance
in the presence of physical limits of components, additional
requirements should be dealt with in the step generation,
including: (a) the (simplified) ZMP constraint (8) necessarily
holds; (b) ḣH and ud = o+

H − oH need to be bounded; (c)
overlapping two sequential footholds should be avoided; and
(d) the y-directional position of cH remains between those
of two end points of two feet. In our approach, all these are
imposed as state and input constraints on (4) of the form

um
c � uc � uM

c , um
d � ud � uM

d , (12a)[
0 σ

]
ud + 2wy ≤ 0,

[
0 −σ

]
ξ1 − wy ≤ 0 (12b)

where um
c , uM

c , um
d , and uM

d are lower and upper bounds for
the input variables, chosen in regards of robot’s specification.

IV. INTERPRETATION OF BALANCE RECOVERY AS
HYBRID TRACKING PROBLEM

As highlighted at the end of Section II, closeness of two
solutions (cH,oH) and (c?H,o

?
H) is the essential in achieving

the balance recovery while this is not straightforward since a
lack of knowledge on the shifts (δT, δH) in time and space.
As a remedy for tackling this issue, we will recast the balance
recovery problem as a “(δT, δH)-free” tracking problem for
the hybrid LIPM (4). A particular emphasis here is placed
on the time shift δT, noting that a naively-selected reference
ξ?1 := c?H−o?H jumps at a pre-determined step time, whereas
the actual state ξ1 will not so long as the step time needs to
be adjusted. This motivates us to propose a “synchronized”
reference model for ξ, sharing the common condition for
jump with the hybrid LIPM (4) (i.e., (χ,η) ∈ D).

For ease of explanation, it is noted in advance that the
state η of the proposed RSG will take the form of η :=
(ξ
?
,ν) where ξ

?
and ν stand for the state variables of
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(a) Transient period (b) Steady-state period

Fig. 4. Phase portrait of hybrid LIPM (4) and synchronized reference
model (13) in the ξy-plane: (a) In transient caused by a push, the reference
ξ?y(t) (purple solid) jump at the same moment as ξ(t) (blue solid), while
lying on the projection Ey (purple dashed) of E into ξy-plane; (b) After
the balance is recovered, the reference ξ?(t) behaves like the (time-shifted)
ideal one ξ?(t− δT), and does not jump until it encounters DS.

the synchronized reference model (Subsection IV-A) and the
hybrid tracking controller (Section V), respectively. Overall
configuration of the proposed RSG is depicted in Fig. 3.

A. Synchronized Reference Model

The synchronized reference model of our interest is ex-
pected to preserve key properties of ξ? = (c?H − o?H, ċ

?
H)

generated by the nominal LIPM (3), with its flow and jump
conditions replaced by the same ones of (4) for synchroniza-
tion. With this kept in mind, we design the synchronized
reference model as a hybrid model

ξ̇
?

= Aξ
?
, ∀(χ,η) /∈ D, (13a)

ξ
?+

= ξ
?

+ Fu?d, ∀(χ,η) ∈ D (13b)

with the nominal discrete input u?d(ξ
?
) := 2ξ

?

1, where the
flow and jump dynamics are exactly the same as the hybrid
systems expression of the ξ?-dynamics. For future use, the
jump set D is decomposed into

D = DT∪DS (14)

where DS :=
{

(χ,η) : sign(ξ
?

2,y)ξ
?

1,y ≥ L?y/2
}

aims to,
roughly speaking, mimicking the jump condition of ξ?, and
DT is used to adjust the step time during a transient caused
by the external push. In addition, ξ

?
(0) is chosen such that

the “orbital energy” of (13) is conserved as the same amount
as the nominal LIPM (3): that is, E(ξ

?

x(t)) = E(ξ?x(t)) =
E?x and E(ξ

?

y(t)) = E(ξ?y(t)) = E?y , ∀t ≥ 0, in which
E(w, ẇ) := (1/2)ẇ2−g/(2cz)w2 denotes the orbital energy
and E?x and E?y are nominal levels in x- and y-directions.

B. From Balance Recovery to Tracking Problem

It is pointed out that introduction of the synchronized
reference model (13) allows to represent the balance recovery
problem in a simpler form. To sketch the idea, for now we
assume that (χ(tS),η(tS)) ∈ E and

(χ(t),η(t)) /∈ DT, ∀t ≥ tS (15)

for some tS and E :=
{

(χ,η) : E(ξ
?

x) = E?x, and E(ξ
?

y) =
E?y
}

. Noting that the orbital energy of the ξ?-dynamics is
the same as that of the ξ

?
-dynamics, one finds a certain δT

such that ξ
?
(t) = ξ?(t−δT) for all t ≥ tS. (See also Fig. 4.)

Using the above equality and (2b) we have cH(t)−
(
c?H(t−

δT) + δH

)
= ξ1(t)− ξ?1(t− δT) = ξ1(t)− ξ

?

1(t). From this,
it can be concluded (with additional computations) that the
key equations (2) for the balance recovery are equivalent to
“(δT, δH)-free” statements

‖ξ1(t)− ξ
?

1(t)‖ < ε, ∀t ≥ tS, ud = u?d(ξ
?

1) = 2ξ
?

1. (16)

(For the page limit, the detailed derivation of (16) is omitted.)
With the equivalence of (2) and (16) in mind, in the next
section we will construct a hybrid tracking controller

ν̇ = Fν(χ,η), ∀(χ,η) /∈ D, (17a)
ν+ = Gν(χ,η), ∀(χ,η) ∈ D, (17b)

(uc,ud) = Hν(χ,η) (17c)

(as well as DT and r̃H), by which the tracking error e :=
ξ − ξ

?
is regulated in the sense of Lyapunov as well as the

constraints (12) and the steady-state requirements (15) and
(16) are satisfied at the same time.

V. REACTIVE STEP GENERATION FOR BALANCE
RECOVERY VIA HYBRID TRACKING CONTROL OF DCM

A. Main Idea

We begin by noting that the jump dynamics of ξ is uncon-
trollable with respect to ud, which makes it fundamentally
impossible to regulate e only by stepping (i.e., by ud). From
a control-theoretic perspective, an alternative way would be
to regulate the “unstable” part of e, defined by

eu = ξu − ξ?u :=
(
ξ1 +

√
(cz/g)ξ2

)
−
(
ξ
?

1 +
√

(cz/g)ξ
?

2

)
,

(18)
under the belief that regulation of eu leads to the overall
stability in the end. From the terminology used in [3], we
name eu in (18) “divergent component of motion (DCM)
error”. Along the hybrid LIPM (4), one can easily derive the
DCM error dynamics as

ėu = Aueu + Buuc + Eu∆c, ∀(χ,η) /∈ D (19a)

e+
u = eu − ud + 2ξ

?

1, ∀(χ,η) ∈ D (19b)

where Au :=
√
g/czI, Bu := [−

√
g/czI,

√
cz/gH], and

Eu := [−
√
g/czI, (1/m)

√
g/czI]. It is clear that unlike (4),

both flow and jump dynamics of the DCM error system (19)
are now controllable, which makes it possible to achieve the
balance recovery via the DCM error regulation.

In our approach, a Lyapunov function, say Vu(eu), for
the DCM error serves as the core of the hybrid DCM error
regulation. A natural candidate for Vu could be derived from
the (controllable) continuous DCM error dynamics (19a) as

Vu(eu) = e>u Pueu (20)

with a gain matrix Ku and a positive definite and symmetric
matrix Pu such that (Au+BuKu)>Pu+Pu(Au+BuKu) <
0 holds. For future use we choose a small γv > 0 such that

Vu(eu) ≤ γv ⇒ um
c � Kueu � uM

c , (21)

which will be used as a threshold for Vu.
With Vu selected above, we introduce a Lyapunov-based

criterion to determine when and where to step, which will
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Fig. 5. Conceptual view of DCM error regulation via the ideal strategy
presented in Subsection V-A: In Case (a), the Lyapunov level Vu(eu(t))
of the DCM error is possibly increased during the walking cycle, which is
then compensated in the next footstep derived from the best among possible
solutions of the QP (pink shadow); In Case (b), once Vu(eu) reaches the
push-free region {Vu : Vu ≤ γv} (blue shadow), it never escapes the region
until another push is applied.

be realized by design of (17) in the next subsection. For
simplicity of explanation, assume for now that the DSP
is instantaneous (i.e., T ?DSP = 0 and thus r̃H ≡ 0), and
the continuous input uc takes the form of the DCM-based
feedback control law

uc = s̄(Kueu) =: u?c (22)

with a component-wise saturation function s̄ : R4 → R4

whose saturation levels are set by um
c and uM

c , respectively.
(We note in advance that, in the next subsection, the control
law (22) will be slightly modified to take nonzero perturba-
tion r̃H and continuity of uc on time into account.) Then
after a push is applied, the continuous DCM error dynamics
(19a) under the assumptions turns out to be an ideal form

ėu = Aueu + Bus̄
(
Kueu

)
, ∀(χ,η) /∈ D (23)

while the DCM error eu possibly moves away from the origin
due to a strong push. For the ideal DCM dynamics (23)
and (19b), our Lyapunov-based strategy for generating step
time and location (or equivalently, selecting ud and DT) is
presented below, with a particular emphasis on the threshold
γv (whose graphical explanation can be found in Fig. 5).
• Case (a) (if Vu(eu) ≥ γv): Since uc is limited,
Vu(eu(t)) gets possibly increased during a walking
cycle, which means that the DCM error regulation
cannot be done without stepping properly. The key idea
for selecting ud = o+

H−oH in this case is to compensate
for the increased amount of the “post-step” Lyapunov
level Vu(eu(s+

j )) during the previous walking cycle as

Vu

(
eu(s+

j )
)
− Vu

(
eu(s+

j−1)
)
≤ −γv, (24)

by which the Lyapunov level Vu(eu) becomes eventu-
ally smaller than γv after finite number of footsteps. To
derive the inequality (24), take ud satisfying that

Vu(eu(sj))− Vu(eu(s−j )) (25)

= Vu

(
eu(s−j )− ud + 2ξ

?

1

)
− Vu(eu(s−j )) ≤ −µ1

for a small positive constant µ1, and choose the step
time sj as the moment when

Vu(eu(s−j ))− Vu(eu(sj−1)) = −γv + µ1 (26)

0.25 

。

-0.25

- - - - - - - - - - - - - - -1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - :- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - -:- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - - -,-

。 1 2

(a) CoM cH (blue solid), step location oH (black circle), ZMP
pH (orange solid), and footholds (squares) in top view: The green
square indicates the CoM position when a push is applied.

(b) The time s̃(t) = t− sj�1 spent from the previous step

(c) Phase portrait of eu for t ∈ [0, tf,1) (left), t ∈
[tf,1, tf,2) (middle), and t ∈ [tf,2, 10) (right): The
green ellipsoid indicates {eu : Vu(eu) = γv}.

Fig. 6. Simulation results with the proposed RSG in the presence of two
sequential pushes

holds (so that (25) and (26) directly implies (24)).
• Case (b) (if Vu(eu) < γv): In this case V̇u < 0 by (21)

and thus Vu(eu(t)) < γv during the current walking
cycle. Thus for the Lyapunov stability of eu it is enough
to ensure e+

u = eu so that Vu(e+
u ) = Vu(eu). This is

in fact simply done by taking ud to satisfy the steady-
state constraint (16), and by setting the step time sj
when (χ(sj),η(sj)) ∈ DS and thus (15) holds.

We point out that when ud is chosen in Case (a), the
constraints on ud and ξ in (12) (in addition to (25)) also need
to be satisfied. This encourages us to consider the following
constrained optimization problem with respect to ud:

minimize
ud∈R2

Vu

(
e+

u

)
(27a)

subject to
[
0 σ+

]
ud + 2wy ≤ −µ2, (27b)[

0 −σ+
]
ξ+

1 − wy ≤ −µ3, (27c)

um
d � ud � uM

d (27d)

where σ+ = −σ, e+
u and ξ+ are given in (19b) and (4),

respectively, and µ2 > 0 and µ3 > 0 are some margins for
the original constraints. One can readily see that (27) in fact
takes the form of the quadratic programming (QP) with a
relatively small size compared with other optimization-based
frameworks. The solution of (27) is denoted by uQP

d (χ,η),
which will be used as the discrete input ud for Case (a).
Note that once the DCM level ‖eu‖ is bounded, the QP (27)
is always feasible with sufficiently small µ2 and µ3.
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B. Hybrid Tracking Controller as a RSG

This subsection is devoted to presenting the detailed struc-
ture of (17), which realizes our stepping strategy presented
above. Here some modifications on uc in (22) are made to
ensure the continuity of uc on time (via low-pass filtering)
and also to compensate the effect of the known perturbation
r̃H (that is non-zero in the DSP) on the DCM error dynamics.
(It is noted that such a modification is not problematic so
long as the time constant of the low-pass filter is sufficiently
small, supported by the singular perturbation theory.)

Let the state of the hybrid tracking controller (17) be
ν :=

(
ζ,oH, r

†
H, s̃, V

†
u

)
∈ R10 where ζ ∈ R4 is the state

of the low-pass filter for uc, r†H ∈ R2 and V †u ∈ R indicate
rH(s−j ) and Vu(sj), respectively, and s̃ ∈ R is the time
spent from the previous step time. The flow and jump maps
are given by Fν :=

(
− (1/θ)ζ + (1/θ)û?c ,0,0, 1, 0

)
and

Gν :=
(
ζ,oH + ud, rH, 0, Vu

(
eu−ud + 2ξ

?

1

))
, θ > 0 is the

time constant of the low-pass filter, and û?c = s̄
(
Kueu +(

0,mgH−1r̃H

))
is a modified version of (22) in which

the term mgH−1r̃H is added to generate additional rate-
of-change of angular momentum for compensating for the
effect of r̃H on the DCM error and thus for enhancing the
DCM tracking performance. In addition, the output map Hν

of (17) is taken such that Hν = (ζ,uQP
d

(
χ,η

)
), if Vu(eu) ≥

γv, and Hν = (ζ, 2ξ
?

1) otherwise. while we choose the
explicit form of r̃H as r̃H := −(oH − r†H)

(
(T ?DSP −

s̃)/T ?DSP

)
,∀ s̃ ∈ [0, T ?DSP] and r̃H = 0 otherwise. The

jump set D is selected as in (14), with DS below (14)
and DT = {(χ,η) : s̃ ≥ T ?DSP + TSP} ∩ (DT,1 ∪ DT,2

)
where TSP denotes the time required for landing of the swing
foot, DT,1 :=

{
(χ,η) : Vu(eu) ≥ γv and Vu(eu) − V †u ≥

−γv + µ1

}
and DT,2 :=

{
(χ,η) :

[
0 −σ

]
ξ1 − wy ≥ 0

}
.

VI. SIMULATION RESULTS

To verify the validity of the proposed scheme, we per-
form computer simulations on the biped robot “MAHRU-
R” developed by KIST in Korea. Details on its specification
and features can be found in previous works [12], [13] of
the authors, which is omitted here due to the page limit.
Simulations to be presented are done in the Scilab/Xcos
environment [15], which is known as a free alternative for
MATLAB/Simulink. We consider the x-directional walking
scenario with the nominal values L?x = 0.2 m, L?y = 0.2 m,
T ?DSP = 0.1 s, and T ?SSP = 0.7 s. The LQR scheme is
adopted in selection of Pu and Ku (with the associated cost
function properly taken), while other design parameters are
chosen as θ = 0.05, γv = 0.0015, µ1 = 0.003, µ2 = 0.05,
µ3 = 0.0001, and TSP = 0.2 s.

Fig. 6 shows simulation results for the case when two
impulsive pushes are applied sequentially at tf,1 = 3.8 s and
tf,2 = 6.8 s, with (iH,∆f) set as (iH,1,∆f,1) = ((8,−6), 0.1)
and (iH,2,∆f,2) = ((−6, 8), 0.2). It is seen from the top
view in Fig. 6(a) that the biped robot with the proposed
algorithm recovers its balance against the pushes, for which
the step time and location are adjusted appropriately by the
proposed RSG (Figs. 6(a) and 6(b)). The behavior of the

overall system can also be explained with the contour of
the DCM error and its Lyapunov function, in Fig. 6(c). The
first push enforces the DCM error eu to leave the Lyapunov
level set in a transient, and in turn the error becomes smaller
enough again by the proposed RSG. It is important to point
out that the proposed RSG does not modify the stepping plan
for the second push, as the Lyapunov level Vu for the DCM
error remains smaller than γv even after the push.

VII. CONCLUSION

In this paper, we presented a promising Lyapunov-based
approach to reactive step generation for balance recovery
against a severe push. The hybrid systems framework played
the key role in reformulating the balance recovery as the
regulation problem of the DCM error. In this point of view,
we proposed a hybrid tracking controller as a RSG that
generates step time and location, composed of a DCM-based
continuous controller and a QP-based discrete controller.
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