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Abstract— A control algorithm that allows a human model
to crawl using a pair of supernumerary robotic limbs
(SuperLimbs) is presented. The human model and SuperLimbs
are coupled by a compliant harness. This work is inspired
by the need for wearable robotic systems that can support
workers engaged in fatiguing tasks. The walking policy is
developed based on Lyapunov analysis. The volume of the
region of attraction (ROA) of the system is used to quantify
robustness and identify the optimal harness compliance.
Simulation experiments are used to verify the performance
of the algorithm. The presented formulation allows us to
guarantee stable locomotion under nominal conditions and
define robustness against modeling error and perturbations.
This study is also the first, that the authors are aware of, to
address cooperative crawling between a human and a wearable
robotic system with state feedback.

I. INTRODUCTION

Non-fatal construction industry injuries cost the US $7
billion per year [1]. Over-exertion accounts for over 23%
of the most disabling U.S. workplace injuries [2]. This
injury category includes injuries related to lifting, holding,
or carrying objects. Poor ergonomics while doing these tasks
can further exacerbate the problem. Welding jobs are an
example career that is susceptible to these injuries and costs.
Fig. 1 shows some of the poor postures that welders take
while working.

Because of the high costs, there is increasing interest in
wearable robots that augment the physical abilities of factory
workers. Humans and robots are physically coupled in these
systems, making dynamic interactions between each other.

In robotics and control literature, dynamics and control of
legged robot systems have been studied extensively. These
include both biped systems [3]–[6] and quadruped systems
[7]–[9]. Powered exoskeletons are also extensively studied.
These have actuators attached to the joints of the human
body to increase muscular strength [10], [11].

Fig. 1 shows a new type of wearable robot, called Super-
numerary Robotic Limbs, or SuperLimbs for short. The left
panel shows a human working on the floor being supported
by a pair of SuperLimbs attached to their back. Note that
the human can use both hands for their task while being
supported by the SuperLimbs. This removes strain from
their lower back. Research studying how to best support the
operator while working in place was done by [12].
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Fig. 1. SuperLimb supporting a human working on the floor (left) [12]
and welders in ergonomically poor postures while working (right) [13].

The wearable SuperLimbs, as illustrated in Fig.1, differ
from powered exoskeletons in that the robotic devices are not
attached along the human limbs, but can take arbitrary pos-
tures independent of the human posture. This independence
allows the SuperLimbs to create new functions and improved
performance over exo-skeletons, however their dynamics and
control problems are fundamentally different.

The SuperLimbs are also different from traditional
quadruped robots, where all four legs are controlled with
a centralized controller creating a coordinated gait pattern.
The four legs formed by the human and the SuperLimbs are
controlled by a mixture of two different controllers; human
and robot controllers.

This work presents a cooperative crawling policy for the
SuperLimbs. This extends the functionality of the platform
beyond the work done in [12] by allowing the operator to
complete bi-manual tasks while simultaneously crawling and
regulating their posture.

A dynamic coupler is inserted at the interface of the
human and SuperLimbs. Simulation experiments are used
to show that their is an optimal impedance for this coupler
that maximizes the robustness of the gait control system.

First we describe existing work and highlight how it
differs from the SuperLimb system. Then we describe a
SuperLimb policy that uses the full system’s state to crawl.
This formulation allows us to specify necessary conditions
for stable locomotion. We then demonstrate the policy’s
behavior with simulation experiments and comment on the
impact of interface compliance on its stability. We conclude
by sharing our plan for future work.

Standard linear quadratic regulators (LQR) are a major
component of the presented policy. We show how they can be
used in a novel way to coordinate the motion of the Human-
SuperLimb system and guarantee stable locomotion.
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II. PRIOR ART

The interface between a human and exo-skeleton is often
modeled as a mass-spring-damper system [10], [14] that
connects the human’s displacement to the exo-skeleton’s.
This compliance represents the compliance of the human tis-
sue and any external padding between the human’s skeleton
and the exo-skeleton’s force sensor. Controlling the interface
force with feedback is equivalent to controlling the interface
displacement.

It is widely known that this control problem leads to
instability at high gains [15], [16]. If we consider the simple
linear model studied in [17], we can gain some insight into
the cause of this shortcoming. [17] models a human arm
grabbing the force sensor attached to the endpoint of a
robotic limb, but this is analogous to studying the dynamics
of a human arm in an exo-skeleton.

We know from [17] that the system is conditionally stable
with respect to the gain of the exoskeleton’s force control law
due to the non-collocation of the actuation and sensing. In
general such system’s maximum bandwidth increases (for a
fixed phase margin) as the interface stiffness approaches the
stiffness of the exo-skeleton structure, and decreases beyond
this. This implies that exo-skeleton systems perform better
the higher the interface stiffness is. Because there is an upper
limit to the interface stiffness based on the compliance of
human flesh, there is a fundamental limit to the achievable
bandwidth of exo-skeleton systems. The dynamics of exo-
skeleton assisted walking are complex and not explicitly
discussed here, however it should be clear that bandwidth
limitations due to interface compliance will also degrade the
performance of this task as well.

Control schemes other than direct force control exist,
however they either lack an explicit stability analysis or were
found to be unstable when implemented [10], [11]. Direct
force control has been shown to yield stable operation at
constrained bandwidths [14], [18], [19].

Enforcing passivity has been shown to yield stable per-
formance between interacting systems. Furthermore, this
condition can be studied analytically [20]. Unfortunately, this
constraint may not apply to human limbs because they may
be active in nature. [21] proposes a framework for analyzing
the stability of human-robot interactions and designing con-
trol policies. This method has not, to our knowledge, been
extended to multi-degree of freedom robots such as lower
limb exo-skeletons though.

Interface compliance’s intrinsic limitation to control band-
width has not been addressed in lower-limb exoskeleton
systems, however the structure of the SuperLimbs allow us
to address this challenge as discussed in the proposed policy.

The authors have not found work describing active systems
for completing ground level tasks outside of the work of
[12] and [22]. These studies primarily address stationary
tasks, thus the results presented here address a different
issue. Passive systems are commercially available for helping
workers complete ground level work, such as [23]. These
systems improve worker ergonomics while allowing for

Fig. 2. System model with state and input vector shown

mobility, but they can not effectively adapt to different tasks.
The presented work does not discuss obstacle avoidance,
but it is feasible to imagine an updated policy with foot
placement constraints that allow the SuperLimbs to navigate
obstacles.

III. SYSTEM MODEL

We consider the system shown in Fig. 1 (Left), where the
SuperLimbs are supporting the upper body of the human.
We simplify the problem by modeling the sagittal plane
dynamics only. The human crawls forward or backward by
pushing towards the intended direction with their knees.
The SuperLimbs are to react by taking steps and actively
stabilizing the human during transit.

The human is a non-autonomous system with a reference
state and a biological control policy that tracks it. Complex
bio-mechanical modeling is beyond the scope of the current
work. Instead we assume a simple dynamical model relevant
to the operator’s crawling motion.

Fig. 2 shows a schematic of the system consisting of a
simple human model, a pair of SuperLimbs, and the dynamic
coupler connecting them. The human is modeled as a single
rigid body with a traction force Fhx at the knees. This
traction force is assumed to be governed by the policy,

xh,error = xh,desired − xh

ẋh,error = ẋh,desired − ẋh

Fhx = kp,cart · xh,error + kc,cart · ẋh,error. (1)

xh,desired is the desired position of the human’s Center of
Mass (CoM), ẋh,desired is their desired speed, and kp,cart
and kc,cart are PD gains. In this formulation the height of
the human’s CoM is not actively controlled.

The SuperLimbs are modeled as a pair of mass-less legs
attached to a rigid body. These legs make ground contact
with no impulsive forces, weight switches between feet
instantaneously so that the system is always in single support,
and we assume that the feet do not slip. Each leg has three
actuators driving the hip, knee and ankle joints. Actuator
saturation is neglected in this analysis. We consider crawling

3497



on flat ground only. The coupler consists of three pairs of
springs and dampers; two for translational displacements and
the third for rotational displacement.

The system’s state, X ∈ R10, consists of the x-position
of the human’s CoM xh, the orientation of the human body
θh, the x and z-position of the biped’s CoM xr and zr, the
orientation of the biped’s body θr, and their time derivatives.
The legs are not part of the state because they are massless.
The wheel generating the human traction force is assumed
to be in contact with the ground at all times, and we assume
that it does not slip. The system’s input vector, Utotal ∈ R3,
consists of the x and z-directed forces of the biped’s foot Frx
and Frz , and torque from its ankle τr. The state and input
vectors are illustrated in Fig. 2. Frame “O” is the inertial
reference frame, and frames “A” and “B” are body frames
fixed to each body’s CoM. rft,x is the x-component of the
vector to the biped’s ground contact point.

The coupler generates the wrench,

Fcoup =

Fc,xFc,z
τc

 = ORA · (K ·∆r +D ·∆ṙ). (2)

K =

kx 0 0
0 kz 0
0 0 kθ


D =

dx 0 0
0 dz 0
0 0 dθ



∆ṙ =


A

∆Ẋ
A

∆Ż

∆θ̇


∆r =

A∆X − A∆Xnaturallength
A∆Z − A∆Znaturallength
A∆θ − A∆θnaturallength


K, D, ∆r and ∆ṙ are the stiffness, damping, relative

displacement and relative velocity of the bodies. Fc,x, Fc,z ,
and τc are the x and y-directed coupling forces with respect
to the inertial frame, as well as the coupling moment. The
total system is control-affine of the form,

Ẋ = f(X) + g(X) · U. (3)

f(X) and g(X) are nonlinear functions that depend on the
parameters of the system such as rft,x.

IV. FORMULATION OF FULL STATE POLICY

We assume that the SuperLimbs have a measurement
of the full state and knowledge of the human’s reference
position and velocity. This allows us to treat the system as
autonomous and develop a robust crawling policy.

A closed form solution for equilibrium posture Xeq and in-
put Ueq of the system is found such that Ẋ = 0. The system
has five unknown states and three independent inputs. There
are five non-trivial equations of motion, so a combination of

three of the states and inputs must be specified to yield a
unique equilibrium. We choose to solve,

0 = f(Xeq) + g(Xeq) · Ueq, (4)

for Xeq and Ueq such that θh,eq = θr,eq = τr = 0. This
means that the human has a straight back and the ankle is
applying no torque.

Next, we linearize the dynamics around this unique equi-
librium. Alin and Blin are the linearized dynamic equations.

∆X = X −Xeq

∆U = U − Ueq

Alin =

[
∂f(X)

∂X
+
∂g(X)

∂X
· U
]∣∣∣∣∣
Xeq,Ueq

Blin = g(X)

∣∣∣∣
Xeq

Ẋ ≈ Alin ·∆X +Blin ·∆U (5)

We design a Linear Quadratic Regulator (LQR) to stabilize
the system around the equilibrium. A standard cost function
is used,

C =

∫ ∞
0

∆X ′ ·Q ·∆X + ∆U ′ ·R ·∆Udt. (6)

Weighting matrices Q ≥ 0 and R > 0. The algebraic
Riccati equation is solved to yield a control policy of the
form,

∆U = −G ·∆X. (7)

G = R−1 ·B′lin · S (8)

S is the positive definite solution of the Continuous
Algebraic Ricotti Equation. We combine Eqs 5 and 7 to
confirm asymptotic stability of the linearized system. This
implies local asymptotic stability (LAS) of the non-linear
system.

The equilibrium specified by Eqn 4 only satisfies the state
and input conditions. This equilibrium does not imply that
xh,error = 0. In order to control the biped’s gait, and thereby
xh,error, we propose to use successive linear controllers to
stabilize the system while steps are commanded.

The Human+SuperLimb system with an LQR controller
is LAS stable when steps are not being taken. Footstep
timing and location paired with a re-computation of the
LQR controller make the system into a switched, hybrid
system. We propose a way to constrain the switching by
using Lyapunov functions to guarantee that the system is
stable in the sense of Lyapunov during crawling.

Stability is maintained by commanding steps that keep
the system’s state in the region of attraction (RoA) of the
successive linear controllers. We ensure this by solving for a
local Lyapunov [24] function V (X) and then commanding
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Fig. 3. Schematic illustrating how SuperLimb steps (rrx,i) and the re-computation of the LQR policy is synonymous with the system’s state moving
between adjacent regions of attraction in state space. The top image shows a 2-dimensional phase portrait to allow for easy visualization of the below
image’s state trajectory. The states x1 and x2 of the top image are conceptual aids that allow us to draw the level-set of the closed loop system in 2D.
EPS represents the intermediate equilibrium and region of attraction for each step during the crawl. The dotted line illustrates the level-set of the system,
the solid line represents the motion of the state, the star illustrates each equilibrium, and the orange dot represents the location of the state when a step is
commanded. Fhx is the force applied by the operator’s knee during the crawl.

steps that keep the system’s state in the region where V (X)
is positive definite (PD) and V̇ (X) is negative definite (ND).
We use the optimal cost-to-go (OCTG) of the LQR policy
“J(X)” as the Lyapunov function because it is by definition
PD. Furthermore, to satisfy the Hamilton-Jacobi-Bellman
equation J(X) must also satisfy,

d

dt
(J(X)) = −(∆XT ·Q ·∆X + ∆UT ·Q ·∆U) (9)

Thus, we know that J̇(X) is ND. This means that J(X)
is a valid local Lyapunov function for the non-linear system.

V (X) = J(X) = ∆XT · S ·∆X (10)

A. POSITION CONTROL

A summary of the algorythm is shown in Fig. 3. Steps are
commanded so that the state remains in the RoA of adjacent,
intermediate equilibrium until it reaches the final equilib-
rium, which corresponds to xh,desired = xh,equilibrium. This
describes a position controller, because in this formulation
ẋh,desired = 0. We now explain the policy in more detail.

The SuperLimbs compute a linear controller about the
system’s first intermediate equilibrium using Eqn 4, and pulls
the state towards it. As the system reaches the intermediate
equilibrium the Lyapunov decrease monotonically to zero.
This equilibrium is not guaranteed to have xh,desired =
xh,equilibrium, however. This position error is undesirable,
so the crawling policy commands steps to move the state
between equilibrium until xh,error = 0.

First we compute the final position of the foot rft,x,final,
which makes xh,error = 0. We then solve for the value
of V (X) immediately after a candidate step is taken from
rft,x,t− to rft,x,t+ . This value is denoted by Vt+(X), and is

a function of rft,x,t+ because the foot position is one of the
parameters of Eqn 3.

Because steps are modeled as being impact free the state
remains continuous, although not smooth. This means that
Vt+(X) is,

Vt+(X) = ∆XT
t+ · St+ ·∆Xt+ . (11)

∆Xt+ = X −Xeq,t+ .

St+ is the post-step solution to the CARE equation.
Vt+,max is the critical level set that defines the boundary of

Vt+(X). This means that Vt+(X) < Vt+,max is a sufficient
condition on switching to guarantee stability of the post-step
initial conditions. Vt+,max can be computed in closed form
or computed numerically, as discussed in section V.

We choose the largest step that constrains Vt+(X) <
Vt+,max and rft,x,t+ ≤ rft,x,final, and then take repeated
steps while keeping this satisfied until rft,x,t+ = rft,x,final.

The scalar guard function φ(X) triggers a new step when
V (X) is close to zero.

φ(X) = V (X)− ε1. (12)

ε1 is a threshold that is chosen heuristically to be 0 <
ε1 << Vt+,max. This allows us to take a step that changes
V (X) by,

∆V (X) = Vt+(X)− Vt−(X) ≈ Vt+,max. (13)

This is the largest possible guaranteed stable step, since
the step size is proportional to ∆V (X). Fig. 9 shows a plot
of V during a crawling simulation.

It is advantageous to take large steps because we assume
that impulsive forces are negligible, but in practice they may
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not be. Minimizing the number of steps also minimizes the
number of opportunities for the system to depart from the
modeled behavior.

B. FULL STATE CRAWLING POLICY APPLIED TO EX-
AMPLE PROBLEM

We explain the full state policy using a single axis toy
problem to ensure that its operation is clear. See Fig. 4 for
a schematic of the toy problem.

Fig. 4. This is a toy system used to illustrate the functionality of the full
state crawling policy.

Here, Fh and Fr represent the force applied by the human
and SuperLimbs respectively. kc, dc, mh, and mr represent
the interface compliance and inertial properties of the system.
xh,Equili are the intermediate equilibrium that we choose for
the human’s position between his initial state and his desired
state, xh,desired. xr,Equili is the intermediate equilibrium for
the SuperLimb’s state. The system is assumed to have n
intermediate equilibrium until it reaches the desired state.

The human applies the smooth force profile shown in Eqn
14 to move towards xh,desired.

Fh = kp ∗ (xh,desired − xh). (14)

kp is the gain on the force controller. The equations of
motion for this simple system are linear and of the form,

Ẋ = A ·X +B · Fr. (15)

Fr = KLQRi
·∆Xi + Fr,equili (16)

∆Xi = (X −
[
xh,equili
xr,equili

]
) (17)

The exact form of A and B are unimportant. KLQRi
is the

gain computed using a linear quadratic regulator on the state
error ∆Xi. KLQRi is a function of the system parameters,
A and B, by virtue of the LQR formulation. Fr,equili is
the equilibrium force applied by the SuperLimbs at each
intermediate equilibrium [xh,equili , xr,equili ].

This simple closed loop system is globally asymptotically
stable, so the intermediate equilibrium xh,equili can be
chosen arbitrarily. xh,equili is then used to solve Eqn 15 for
xr,equili and Fr,equili .

Finally, the progress of the state between intermediate
equilibrium is tracked using the Lyapunov function,

V (X) = ∆XT
i · Si ·∆Xi. (18)

Fig. 5. Translations of the bodies during crawling while using the full
state control policy for high (Top) and low (Bottom) gain trials. The
maximum step size is limited to .1m to represent the fixed workspace of
the SuperLimbs. This constraint is only active during the high gain trial.

Si is the cost-to-go (CTG) matrix from the LQR policy,
and Eqn 18 is the CTG of the system. The CTG satisfies
the requirements of a Lyapunov function for each i in i =
1, .., .n.

The SuperLimb in Fig. 4 moves the human forward by:

1) Choose a set of intermediate equilibrium xh,equili , for
i = 1, ..., n. Where, xh,equil n = xh,desired.

2) Compute xr,equili , Fr,equili and KLQR,i for i =
1, ..., n by using Eqn 15 and standard unconstrained
LQR. This implies that the SuperLimb has an accurate
estimate of xh,desired and kp so that it can compute
the A in Eqn 15.

3) Compute Fr for i = 1 based on Eqn 16, and apply
this force to the system.

4) Wait until V (X) ≈ 0, then increment i. Repeat step 3
with i = i+ 1 until i = n+ 1.

This process is essentially the same process used for
locomotion of the full system in Fig. 2. The first difference
is that the full system is non-linear, so the intermediate
equilibrium can not be chosen arbitrarily. Instead we choose
them using a Lyapunov function. The second difference is
that the full system increments i by taking a step. When a
step is taken we change the equations of motion. This is
equivalent to changing A when i is incremented.
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Fig. 6. Intermediate equilibrium of the full state gait policy becoming
infeasible due to a reference position that changes too aggressively.

Fig. 7. Log-log plot of the volume of the system’s region of attraction
as a function of the interface stiffness. The trace is not smooth because
Vt+,max is estimated numerically.

V. SIMULATION RESULTS

A. VALIDATION OF FULL STATE GAIT POLICY

We simulated the full state policy using the parameters
given in Appendix VIII-A. Fig. 5 shows the evolution of the
statefor different gains and Fig. 9 shows the Lyapunov func-
tion during the low gain trial. Each increase in V coincides
with the SuperLimbs taking a step. Because Vt+ < Vt+,max,
V (t)→ 0 as t→ 0. This coincides with the state converging
to the intermediate equilibrium and thus the human moving
closer to their desired position.

Fig. 5 shows that with this policy the SuperLimbs take a
nearly constant step size, for a given trial, as they approach
the desired position. This is because the step size is deter-
mined by the maximum allowable value of the Lyapunov
function, and this threshold is roughly constant. Additionally,
the settling time of the transients following each step in a
trial remain nearly constant.

The settling time is determined by the parameters of the
LQR policy. The LQR policy is generated with constant Q
and R matrices around the computed system equilibrium.
For the trials shown these equilibrium are adjacent to one
another, so the policies are also similar. If the penalty on
state velocities is increased then we see that the transients
are reduced, as we expect. (Fig. 5) As the transient times
are reduced the SuperLimbs converge on intermediate equi-
librium faster and thus the crawling speed is increased.

As the penalty on the SuperLimb’s and operator’s rotation
rates and orientations are increased the settling time is also
rapidly reduced. This is because the system non-linearity
comes from the bodies’ rotation, so the linear Lyapunov
function described in Eqn 10 is only valid “near” equilibrium.
As the penalty on rotation is increased the bodies rotate less,

Fig. 8. Semi-log plot of the normalized volume of the system’s region
of attraction as a function of the percent error in the model’s parameter
accuracy. Each trace is normalized to the simulation experiment with the
correct parameter estimate. See Table II from Appendix VIII-A for the
parameters used in this simulation study. The trace is not smooth because
Vt+,max is estimated numerically.

Fig. 9. Plot of the evaluated Lyapunov function versus time for the low gain
trial aligned with a plot of the human’s reference error. PositionError =
|xhd − xh|. The dashed lines indicate when a step is taken. This is why
they coincide with discontinuities in V .

and the system model becomes more linear, in a sense. This
allows the linear control policy that stabilizes intermediate
equilibrium to be more effective, thus reducing the settling
time. It also allows the linear Lyapunov function that we
define to more effectively represent the system, increasing
the threshold value of Vt+(X). A larger Vt+(X) means that
the footsteps are larger, Section IV-A, which is equivalent to
saying that the intermediate equilibrium can start farther from
the current state and still be guaranteed to converge. The
impact of increasing the LQR policy’s gain is demonstrated
in Fig. 10.

The practical upper limit to the speed of the system comes
from actuator saturation and the ground’s friction cone. This
is very different from exo-skeleton systems that have a
limited speed/bandwidth based on the interface compliance.
We explore other limitations of the full state policy in
Sections V-B and V-C.
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Fig. 10. Plot of the horizontal velocity of the operator’s center of mass
for low and high LQR policy gain. Each pair of dots is plotted at the time
a step is commanded. Their distance from the velocity trace illustrates how
much error in that element of the state can be stabilized. This plot shows
that the high LQR gain simulation reaches the reference position after two
steps, but that the low gain simulation requires five. This also shows that
the high gain system reaches the reference in nearly half the time.

B. FAILURE CRITERIA OF FULL STATE GAIT POLICY

The first failure condition occurs when the human refer-
ence changes too fast for the SuperLimbs to reach the set-
points. This causes the system’s intermediate equilibrium to
be too far from its present state. In this situation the com-
puted equilibrium becomes invalid either because it violates
geometric constraints, requiring the system to intersect with
the ground or exceed reasonable joint limits, or because the
equilibrium is mathematically infeasible. Mathematical in-
feasibility manifests itself as an imaginary solution to the
system’s equilibrium equations. See Fig. 6 for an illustration
of these failure modes.

The second notable failure occurs if the SuperLimb’s
estimate of the system’s parameters, such as the human’s
desired position, is wrong. In this case the Lyapunov function
is an estimate since the control policy would have been
based on an incorrectly computed equilibrium. This estimate
may not decrease monotonically to zero. Because steps are
triggered based on the proximity of Vt−(X) to zero, it is
possible for the system to fail to trigger steps as the Lyapunov
estimate could fail to decrease enough.

The first concern can be mitigated by training the operator
on the system so that they do not attempt to crawl faster
than the SuperLimbs can accommodate. The second concern
is more worrying because in reality the model of the system
will have some error in it, thus the failure mode suggests a
strong practical limitation to implementing the policy. This
failure mode can be mitigated by using a guard function
based on V̇ instead of V , and a heuristic step size . This
is because the Lyapunov estimate monotonically decays to a
constant.

C. IMPACT OF COUPLING COMPLIANCE ON FULL
STATE POLICY’S ROBUSTNESS

Interface compliance impacts system stability differently
for SuperLimb systems than exo-skeleton systems. This is

because the SuperLimbs are coupled to the operator in
a fundamentally different way than an exoskeleton, and
because it acts independently from their kinematics. We use
simulation to explore these trends.

We quantify the impact of interface compliance on the
robustness of the full state policy by computing the volume
of the system’s RoA as we change K and D. If the volume
increases this means that the controller is more robust, since
we can guarantee that more states are asymptotically stable.

Fig. 7 shows that there is an optimal interface stiffness
that maximizes the stability of the system. One reason this
is useful is because we assume that ground impacts are
negligible, but if in reality they are not and the state velocities
are discontinuous after contact then the added robustness of
the policy guarantees that the system can recover from the
error. We are investigating the physical principle behind the
presence of an optimal interface stiffness.

We analyze the algorithm’s robustness under parameter
error by designing the LQR controller of Eqn 8 based
on inaccurate parameter estimates, and then computing the
volume of the region of attraction when this erroneous policy
is applied to the real system. The result of this analysis is
shown in Fig. 8 for the harness compliance parameters. Here
we see that the volume of the ROA is far more sensitive to
parameter estimation error in Ky than in Kx and Kθ. This
implies that LQR formulation makes the control algorithm
robust to some errors and sensitive to others.

We have shown a way of modeling the impact of interface
compliance on the robustness of the system. One benefit of
using LQR to generate the policy is that the system model,
including the interface compliance, is used to generate an
optimal policy. In this way we account for the compliance to
yield an optimal system. The system is therefore optimal for
each set of interface parameters, even if these parameters are
not the most robust set. This feature is absent from standard
exo-skeleton control policies.

VI. CONTRIBUTIONS

We describe a full state crawling policy that guarantees
stable locomotion of the Human+SuperLimb system. We also
show how the design of the passive coupler can be used to
improve the stability of the algorithm.

Many common biped locomotion policies require accurate
models of the system dynamics in order to achieve stable
locomotion [10], [11]. By formulating the crawling algorithm
as described, we are able to design a robust policy that is
insensitive to some parameter errors.

The policy architecture is demonstrated on a simple model,
but the robust results suggest that a similar method can be
used to stabilize more complex dynamic systems. This is the
direction of future research.

VII. FUTURE WORK

We have developed a cooperative crawling policy that
provides stable locomotion when the state of the human
and the dynamics of their crawling controller (Eqn 1) are
not available. We will share these results next. We are also
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building a reduced scale mock-up of the system in Fig. 2 to
validate our contact dynamics assumptions and demonstrate
the practicality of the policies. We will also modify the
policy to stabilize locomotion for a cart that has intermediate
contact with the ground. This will better represent the hybrid
dynamics that are seen in crawling. Finally, we expect that
un-modeled dynamics such as actuator saturation and friction
constraints will result in experimental performance that is
somewhat different from our simulated results. This different
will likely be due to our use of unconstrained LQR, and
our assumption that the system does not violate things such
as actuator limits. We will account for this discrepancy by
formulating a controller that uses real-time constrained LQR.

VIII. APPENDIX

A.

TABLE I
PARAMETERS FOR THE SIMULATION OF THE FULL STATE CRAWLING

POLICY WITH A HIGH CONTROLLER GAIN (TOP) AND LOW CONTROLLER

GAIN. (BOTTOM)

KP,Cart = 9 KD,Cart = 0 xh,des = .2 ẋh,des = 0
dy = 5.8 mh = 1.4 mr = 5.4 Ih = 43
kx = 1 ky = 100 kθ = 10 dθ = 5.7
dx = 1 Ir = 6

KP,Cart = 9 KD,Cart = 0 xh,des = .2 ẋh,des = 0
dy = 1 mh = 1 mr = 1 Ih = 1
kx = 10 ky = 10 kθ = 10 dθ = 5.7
dx = 2 Ir = 1

TABLE II
PARAMETERS FOR SIMULATING THE EFFECT OF PARAMETER ERROR ON

THE VOLUME OF THE CONTROLLER’S REGION OF ATTRACTION

Kx Study Ky Study Kθ Study
Nominal Kx 100 10 10
Nominal Ky 100 10 100
Nominal Kθ 10 10 10
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