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Abstract— To allow wheelchair (electronic or manual) users
to practice driving in different safe, repeatable and controlled
scenarios, the use of simulator as a training tool is considered
here. In this context, the capabilities of providing high fidelity
motions for users of the simulator is highlighted as one of the
most important aspects for the effectiveness of the tool. For this
purpose, the motion cueing algorithm (MCA) is studied in our
work to regenerate wheelchair motion cues by transforming
motions of the real or simulated wheelchair into the simulator
motion. The studied algorithm is developed based on Model
Predictive Control (MPC) approach to efficiently optimize the
motions of the platform. The overall problem is formulated
using mixed-integer quadratic programming (MIQP) which
involves not only the vestibular model, strict constraints of the
platform but also the perception threshold in the optimization
cost function. In the end, the performance assessment of the
system using different control techniques is analyzed, showing
the effectiveness of the proposed approach in the simulation
environment.

I. INTRODUCTION

Training in the laboratory is an effective and necessary
step of enabling people after an accident to practice and
familiarize themselves with the relevant skills before re-
turning to work and social life in a controlled and safe
environment, and learning to use the wheelchair is one of
them. In fact, operating a wheelchair may not be an easy
task since it requires a good combination of different skills,
such as vision, strength, endurance, orientation and percep-
tion of the surrounding space [1]. For this reason, people
forced on a wheelchair after an accident often experience
difficulties when using it, which may lead to the practice
of wrong behaviors, unsafety for oneself and others, and in
the medium/long term could also lead to isolation and low
quality of life [1]. Within this context, it is suggested to
have a period of intense training in laboratory environment
for wheelchair users employing an immersive wheelchair
simulator as a possible training tool which provides the users
with different sensory stimuli (visual, auditory, haptic and
vestibular) in a controlled way; detailed discussion on the
role of different sensory stimuli in the context can be found
in [2]. Among them, the capability of emulating the physical
behavior of the wheelchair by generating proper vestibular
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feedback to the patient is crucial and is the focus of this
paper. Relating to this aspect, a so called Motion Cueing
Algorithm (MCA) is being realized to move the patient in
such a way that reproduces the motions and the physical
interaction with the physical world considering the limitation
of admissible motions of the platform.

Various approaches for MCA have been investigated
widely. Among them, Model Predictive Control (MPC)
stands out as a particularly useful methodology with ca-
pabilities of considering the information about the platform
workspace, human vestibular system model as well as their
constraints in the design of MCA. Thanks to the rapid
development of computational power, the application of this
technique is not limited in the process industry where slow
dynamics is dominant but is also adopted by a fast dynamics
system. In fact, in recent years the application of MPC
technique in MCA has been flourishing such as in [3],
[4]. However, similar works for wheelchair simulator are
still poorly investigated, despite the fact that some typical
movements of wheelchairs have a different characteristic
compared to the other vehicles. In particular, the possibility
to execute rotations with a very small radius of curvature
about the vertical axis is one of them.

In these works, and also in many others of the same
context, the perception threshold concept is widely discussed,
however there is still a lack of a tool to explicitly involve
these factors in the cost function terms of MPC designed for
MCA which hinders the controller to exploit these flexibili-
ties effectively. In fact, it is not necessary to track exactly the
references of felt forces and felt rotation rates; staying inside
an acceptance level around them (denoted as comfort band)
is enough for having good motion cueing. A few works in-
cluding Augusto et al. presented the perception thresholds of
roll and pitch rates as hard constraints, which are then used to
simulate lateral and longitudinal accelerations, respectively.
This consideration aligns with the work in [5] which claims
that the rate of tilt (i.e. roll and pitch rates) must be below
the perception thresholds. However, Berger et al. discussed
that the rate of tilt can be above the threshold without
significantly affecting the driver’s performance, provided
the visual acceleration correlates with the effective body
acceleration [6]. This controversy raises an idea that it would
be convenient to let the system violate the comfort bands at
a cost (no cost imposed if staying inside the band), in the
interest of the entire system. Then, how hard the constraints
of the comfort bands will be decided easily by modifying
the weights associated to the stay-outside-band cost.

To this point, the innovative contribution is the exploitation
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of the aforementioned thresholds directly in the control
design as a way to improve the performance of MCA and
allow the system to exploit the potential of staying outside
the comfort bands. In this paper, the application of MPC
approach for MCA is also adopted; in particular, to this aim,
the approach described in [7] and [8] to employ the mixed
logical dynamic framework is utilized to treat continuous and
discrete variables (i.e., if-else conditions) introduced by the
presentation of the perception thresholds; which then turns
the formulated optimization problem into a Mixed-Integer
Quadratic Programming (MIQP) one. To the best of our
knowledge, no other work has made these considerations in
the context of MCA before.

The rest of the paper is organized as follows. The system
settings, brief control architecture and general view on MCA
are introduced in Section II, then Section III discusses on
the description and modelling of the vestibular model, MPC
cost function terms and constraints. After that, the simulation
results are presented and discussed in Section IV, before
closing the paper with several concluding remarks reported
in Section V.

II. SYSTEM DESCRIPTION

This section is devoted to the wheelchair simulator system
description together with its control architecture; A brief dis-
cussion on MCA based on MPC approach is also presented
in this section.

A. The system setting

The wheelchair simulator and its coordinate system are
depicted in Fig. 1. It is composed of two main parts: a
mechatronic platform and a virtual reality system (VR)
equipped with a physics engine. The mechatronic platform
is moved in space by a parallel Gough-Stewart platform.
The users can interact with the VR and move within it
in two ways: either through a joystick, for an electronic
wheelchair, or through a pair of haptic wheels sensorized
and actuated by a torque motor, in order to emulate the
behavior of a manual wheelchair. The training content in the
VR simulates movements of the users in both indoor and
outdoor environments.

Fig. 1. The system settings and its coordinate system

Focusing only on the control architecture of the platform,
a two-level control scheme is realized namely high (HL)
and low-level (LL) controller. HL is responsible for posing

setpoints calculation to render a realistic motion considering
the PKM DOF physical limits. The LL control is responsible
for the motion control of the mechatronic platform and
wheels, and ensures that the system correctly reproduces the
trajectory defined by the HL. However, in the scope of this
paper, only the works related to HL is discussed. For the
sake of simplicity, LL is assumed to work perfectly in this
paper.

More in details about the development of MCA based on
MPC approach (i.e., high level controller - HL) is shown in
Fig. 2. In summary, the following four main steps in order
are performed:

• HL receives as inputs the reference rotation rates and
translational accelerations.

• The human’s vestibular model transforms the received
signals to the felt rotation rates and felt specific forces
which then will be used as setpoints for the MPC block.

• MPC block generates position and rotation angles of the
platform in such a way that helps the user experience
the same feeling as in a real wheelchair; or technically
speaking, to track correctly the MPC setpoints.

• Commanding the generated position and rotation angles
to the LL.

Notice that through this document, the terms ”the refer-
ences” or ”the references of felt forces and felt rotation rate”
or ”the MPC setpoints” imply the same thing. Interested
readers may refer to [3], [4], [7] and references therein for
the development of MPC.

Fig. 2. Scheme of Motion Cueing Algorithm based on MPC approach

III. MPC SYSTEM MODEL AND OPTIMIZATION
PROBLEM

This section starts with the detailed development of the
vestibular model with and without the presence of perception
thresholds. Then, relating to formulating the MPC optimiza-
tion problem, this section focuses on the construction of
different objectives as well as the constraints spanning over
all the time instants inside the prediction(Hp) and control
(Hc) horizons (Hc ≤ Hp) . In the end, the optimization
problem is formulated as a MIQP one which can be solved
by using ILOG’s CPLEX 12.8 (an efficient solver based on
branch-and-cut algorithm).

A. Nomenclature

The main parameters and decision variables used in this
section are described in Table I:
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TABLE I
MAIN NOMENCLATURE

k Discrete time step based on the sampling time
i Mutually perpendicular coordinate axes (x, y or z)
ωi, ω̂i Rotation rate and felt rotation rate along i-axis
φ, θ,Φ Platform: Roll angle (x-axis), pitch angle (y-axis),

yaw angle (z-axis)

φ̇, θ̇, Φ̇ Roll rate, pitch rate and yaw rate
ˆ̇
φ,

ˆ̇
θ, ˆ̇Φ Felt roll rate, felt pitch rate, felt yaw rate

fi, f̂i specific force and felt specific force, along i-axis
ai Translational acceleration along i-axis of the platform
g Standard gravity
γS,i Perception thresholds for rotation rate along i-axis
γO,i Perception thresholds for specific force along i-axis
pi, vi Platform position and velocity along i-axis
rφ̇, rθ̇, rΦ̇ References for felt roll, pitch and yaw rates

rfx , rfy , rfz References for felt specific forces

B. Vestibular system description and modeling

Located in the inner ear, the vestibular system is
composed of semicircular canals and otoliths which are
sensitive to angular accelerations, and to linear accelerations
and gravity, i.e. specific force, respectively. The construction
of the vestibular system models with and without the
perception thresholds are presented in the following:

1) Vestibular model without perception thresholds: In this
section, the description of the vestibular model is based on
the work of [3]. For semicircular channel, the following
transfer function from rotation rate to felt rotation rate is
considered as

HS,i =
ω̂i
ωi

=
TS,l,iTS,a,is

2

(TS,l,is+ 1)(TS,s,is+ 1)(TS,a,is+ 1)
(1)

Similarly, the otoliths transfer function that relates the felt
specific force to the specific force stimulus along i-axis is

HO,i =
f̂i
fi

=
K(TO,a,is+ 1)

(TO,l,is+ 1)(TO,s,is+ 1)
(2)

Referring to [3], the following coefficients of the Semicircu-
lar and Otoliths channels model are chosen and presented in
Table II.

TABLE II
THE COEFFICIENTS OF THE SEMICIRCULAR AND OTOLITHS CHANNELS

TS,l,i TS,s,i TS,a,i TO,l,i TO,s,i TO,a,i K

x 6.1 0.1 30 5.33 0.66 13.2 0.4
y 5.3 0.1 30 5.33 0.66 13.2 0.4
z 10.2 0.1 30 5.33 0.66 13.2 0.4

To avoid pushing the platform to its limitation due to the
sustained components of the acceleration, tilt coordination
is used to simulate the specific forces by tilting the motion

platform. Based on [3], which considers the use of small
angles approximation, the relation between specific force and
acceleration is presented asfxfy

fz

 =

 ax + gsin(θ)
ay − gcos(θ)sin(Φ)
az − gcos(θ)cos(Φ)

 ≈
ax + gθ
ay − gΦ
az − g

 (3)

To impose properly the constraints in the MPC, it
is convenient to present the positions and velocities
of the platform in the output of system model. This
can be done by using simple “integral system” of
inputs

[
ax, ay, az

]T
(i.e., translational accelerations

of the platform along x, y and z axis) to generate
outputs

[
px, vx, py, vy, pz, vz

]T
(i.e., position and

velocities of platform).

Due to space limitation, the transformation from these
formulations to the presentation in the form of state-space
model will be left out; interested readers are referred to [3]
for more detailed description. In the end, the final form of
the model is presented as∑

V

= {AV , BV , CV , DV } (4)

where input and output vectors are:
uV (k) =

[
ax(k) ay(k) az(k) φ̇(k) θ̇(k) Φ̇(k)

]T ∈
R6

yV (k + 1) =
[
yTr(k + 1)T yC(k + 1)T

]T ∈ R15

(yTr =
[

ˆ̇
φ

ˆ̇
θ ˆ̇Φ f̂x f̂y f̂z

]T
)

(yC =
[
φ θ Φ px vx py vy pz vz

]T
)

2) Vestibular model with perception thresholds: Depending
on the measuring methods, the experimental setup and the
experimental conduction, various thresholds can be found
in the literature; in this paper, we will select a set of the
perception threshold from the works with the presence of
visualization in the simulator setting. The values of the
perceived threshold are listed in Table III:

TABLE III
THE CONSIDERED PERCEPTION THRESHOLDS

x y z

γS,i[deg/s] 6.3 (in [9]) 3.6 (in [5]) 9 (in [10])

γO,i[m/s
2] 0.17 (in [5]) 0.17 (in [5]) 0.28 (in [5])

Let
r(k) =

[
rφ̇(k) rθ̇(k) rΦ̇(k) rfx(k) rfy (k) rfz (k)

]T
be the vector of reference trajectories for corresponding
outputs yTr(k)

yTr(k) =
[

ˆ̇
φ(k)

ˆ̇
θ(k) ˆ̇Φ(k) f̂x(k) f̂y(k) f̂z(k)

]T
and
γ(k) =

[
γS,x γS,y γS,z γO,x γO,y γO,z

]T
the con-

stant vector of the perception thresholds independently to the
time instant k; rn(k), γn(k), yn(k) are the n-th elements of
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r(k), γ(k), y(k) respectively. Then if we denote Cen(k) as
error (or effective error) in tracking the reference rn(k) of
the related term, the following statements hold:
Cen =

yn(k)− rn(k) if yn(k)− rn(k) ≥ γn(k)

0 if γn(k) > |yn(k)− rn(k)|
−(yn(k)− rn(k)) if yn(k)− rn(k) ≤ −γn(k)

(5)

The presentation can be rewritten as:

Ckn = δn(k) (yn(k)− rn(k)) (6)

with 
δn(k) = 1 if yTn (k)− rn(k) ≥ γn(k)

δn(k) = 0 if γn(k) > |yTn (k)− rn(k)|
δn(k) = −1 if yTn (k)− rn(k) ≤ −γn(k)

(7)

In order to formulate our optimization problem into an MIQP
one, here we employ the same technique discussed in [7], [8]
to convert a logical statement of a given form into linear
mixed-integer constraints. As an example, given a function
h(k), it states that the statement h(k) >= 0 ⇐⇒ δstd = 1
is true if and only if{

−mstd δstd ≤ h(k)−mstd

−(Mstd + ε) δstd ≤ −h(k)− ε
(8)

In [7], [8], it also states that the product between logical
and continuous variables ystd = δstd h(k) is equivalent to a
set of inequalities as follows:

ystd ≤Mstd δstd

ystd ≥ mstd δstd

ystd ≤ h(k)−mstd (1− δstd)
ystd ≥ h(k)−Mstd (1− δstd)

(9)

where h is a function upper and lower bounded by Mstd and
mstd, respectively, δstd is a logical variable, ystd is a real
variable and ε is a small tolerance to transform a constraint
of the form s < 0 into s ≤ 0 which is suitable for the
functionality of the common MIQP solver to solve. In order
to bring our problem into the standard formulation described
above, the integer variable δn(k) can be decomposed into the
sum of two binaries variables δ1,n(k) and δ2,n(k). Then (7)
becomes:

δ1,n(k) = 1 ⇐⇒ yn(k)− rn(k) ≥ −γn(k)

δ2,n(k) = 1 ⇐⇒ yn(k)− rn(k) ≥ γn(k)

δn(k) = δ1,n(k) + δ2,n(k)− 1

δ1,n, δ2,n = {0, 1}

(10)

Denoting z1,n(k) = δ1,n(k) yTr,n(k) and z2,n(k) =
δ2,n(k) yTr,n(k), the statement is equivalent to a set of
constraints (according to the standard statement) relating to

zq,n(k) and δq,n(k) with q = {1, 2}

−(mn − rn(k) + γn) δq,n(k) ≤ yTr,n(k)−mn

−(Mn − rn(k) + γn + ε) δq,n(k) ≤
−yTr,n(k) + rn(k)− γn − ε
zq,n(k) ≤Mn δq, n(k)

zq,n(k) ≥ mn δq, n(k)

zq,n(k) ≤ yTr,n(k)−mn (1− δq,n(k))

zq,n(k) ≥ yTr,n(k)−Mn (1− δq,n(k))

(11)

where mn and Mn are the minimum and maximum values
of yTr,n(k). The effective error Cen(k) in (6) is rewritten as

Cen(k) =

(δ1,n(k)+δ2,n(k)−1)(yTr,n(k)−rn(k)) = z1,n(k)+z2,n(k)

− yTr,n(k)− δ1,n(k) rn(k)− δ2,n(k) rn(k) + rn(k) (12)

Repeating the above procedure for each of output of yTr,n,
the compact form of these inequalities is:

EB1,n(k)uBn (k) ≤ EB2,nyTr,n(k) + EB3,n(k) (13)

where uBn =
[
z1,n(k) z2,n(k) δ1,n(k) δ2,n(k)

]T ∈ R2

× {0, 1}2, and EB1,n(k), EB2,n, EB3,n(k) are suitable matrices
derived from the corresponding inequalities in (11); the
matrices EB1,n(k) and EB3,n(k) are generally time-varying
due to the time varying references rn(k).
By combining these constraints for all the outputs, the final
form can be written as

EB1 (k) uB(k) ≤ EB2 yTr(k) + EB3 (k) (14)

where
uB(k) =

[
uB1 (k)T uB2 (k)T ... uB6 (k)T

]T
;

EB1 (k) =diag{EBq,n(k)}, q = 1, 2, ..., 6;
EB2 =

[
(EB2,1)T (EB2,2)T ... (EB2,6)T

]T
;

EB3 (k) =
[
(EB3,1)T (EB3,2)T ... (EB3,6)T

]T
;

and diag{} refers to the block diagonal matrix.
Finally, the new system model to be used in MPC
formulation is constructed by adding uB(k) (i.e., set of
auxiliary variables z1,n(k), z2,n(k) and logical variables
δ1,n(k), δ2,n(k)) into the original system model in (4) as
follows: ∑

V̄

= {AV̄ , BV̄ , CV̄ , DV̄ } (15)

where
AV̄ = AV , BV̄ =

[
BV | 0

]
,

CV̄ = CV , DV̄ =
[
DV | 0

]
,

uV̄ (k) =
[
uV (k)T uB(k + 1)T

]T ∈ R6+12 × {0, 1}12,
yV̄ (k + 1) = yV (k + 1) ∈ R15

C. MPC cost function terms

The MPC cost function includes several terms, which
address different objectives.
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• wT , JT are the weights and cost terms that account for
tracking the desired perception trajectory of ˆ̇

φ, ˆ̇
θ, ˆ̇Φ, f̂x

f̂y and f̂z (i.e., yTr in (4)).
• wR, JR are the weights and cost terms to move

the platform back to the neutral position, which are
equivalent to tracking zero positions and velocities for
φ, θ,Φ, px, vx, py, vy, pz, vz , (i.e., yC in (4)).

• wS , JS are the weights and cost terms for the smooth-
ness of decision variables which is preferred for the
operation of the platform’s actuators. These terms are
applied for only physical decision variables: ax, ay , az ,
φ̇, θ̇, Φ̇ (i.e., uV in (4))

In the end, these considered terms are constructed spanning
the whole prediction horizon and should be expressed, as a
function of the decision variables ( DuV̄ as in (15)) in the
form of:

argminuV̄
J = uTV̄ AuV̄ +B uV̄ +C, subject to: DuV̄ ≤ b

(16)
Detailed description of the mentioned terms is explained as
follows:
1) Reference tracking performances: This cost function term
focuses on minimizing the effective error in tracking prob-
lems of felt rotations and felt specific forces. The formulation
of the effective error are presented in (6), (12). Notice that
Cen(k) is a mixed-integer linear function which is composed
of both continuous, integer decision variables therein. The
minimization of the error between the sensation signals in
the platform and in the wheelchair is the utmost goal of this
work. The cost function term together with their weights are
formulated as

JT =

Hp∑
j=1

6∑
n=1

wT,n C
e
n(k + j|k) (17)

Notice that, at time instant k, the actual references at time
k + j (j = 1, 2, ...,Hp) are not available but need to be
predicted. The prediction of these references are denoted as
r̂n(k + j|k) which, in the perfect prediction case, equal to
the actual ones (i.e., r̂n(k + j|k) = rn(k + j)).
2) Return-to-zero cost function term: As staying in the neutral
position gives the platform a possibility to move freely in
any direction, it is suggested to bring them to this position
whenever possible. Tracking of these variables is performed
to ensure the washout of the motion platform as usually
mentioned in the related field articles.

JR =

Hp∑
j=1

9∑
n=1

wR,n (yC,n(k + j|k)− 0)2 (18)

3) Smoothness of decision variables: Abrupt changes in the
decision variables may damage the actuators and adversely
affect the platform motion. A soft constraints is here included
in the cost function to smooth the profile of decision vari-
ables. This consideration is applied only for the decision
variables uV in (4) which directly associate with the physical
terms in our system, while the extended ones in uB due to the

introduction of the perception thresholds are not necessarily
smoothed.

JS =

Hc−1∑
j=0

6∑
n=1

wS,n (∆uV,n(k + j|k))2 (19)

where ∆uV,n(k+ j|k) = uV,n(k+ j|k) −uV,n(k+ j− 1|k)

D. MPC constraints

To ensure the computed commands produce the feasible
movements for the platform, the following constraints are
considered in the optimization problem:

1) Constraints on decision variables and their variations:
Except for the auxiliary decision variable, the rest of the
control inputs are bounded, according to the catalogue, as
presented in Table. IV.

TABLE IV
CONSTRAINTS ON DECISION VARIABLES AND THEIR VARIATIONS

ax ay az φ̇ θ̇ Φ̇

u ±5.9 ±5.9 -4.9: 6.9 ±30 ±30 ±40

∆u ±3 ±3 ±3 ±15 ±15 ±20

Unit m/s2 m/s2 m/s2 deg/s deg/s deg/s

2) Constraints for platform movements: In this category,
the constraints related to Euler angles and translation move-
ment are considered as in Table. V.

TABLE V
CONSTRAINTS ON PLATFORM MOVEMENTS

φ[deg] θ[deg] Φ[deg] px[m] vx[m/s]

±19.6 ±19 ±23.3 ±0.24 ±0.51

py [m] vy [m/s] pz [m] vz [m/s]

±0.23 ±0.51 ±0.19 ±0.30

3) Constraints from the introduction of auxiliary vari-
ables: Besides the constraints mentioned above, due to the
presentation of auxiliary decision variables, the designed
MPC optimization problem also includes a set of additive
constraints presented in (14) for time instant k and their
spanning at other time instants inside the prediction horizon;
the presentation of these constraints are as follows:

EB1 (k)uB(k + j|k) ≤ EB2 yTr(k + j|k) + EB3 (k + j|k)

∀j = 1, 2, ....Hp (20)

From the cost functions discussed in (18), (19), (20) and
the constraints in this sub-section, it is clear to see the
possibility to reformulate them into a generic Quadratic
Programming problem as in (16) since the all outputs, the
constraints and the cost function terms are either quadratic or
linear functions of the decision variables or their variations.
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IV. SIMULATION RESULTS
This section is dedicated to investigate the performances

of designed MPC for MCA in simulation environment. The
prediction horizon and control horizon are set to 15 steps
which account for 3-second ahead prediction considering
the sampling time of high-level control is 0.2 seconds. A
simulation period of 15 seconds is adopted. The weights are
selected following the one in [3] together with the trial-
and-error approach considering the fact that tracking the
references is the utmost goal of the work. The following
weights are adopted in this paper:

TABLE VI
WEIGHTS ON TRACKING THE REFERENCES, RETURN-TO-ZERO AND

SMOOTHING THE DECISION VARIABLES TERMS

ˆ̇
φ

ˆ̇
θ ˆ̇Φ f̂x f̂y f̂z

Weights wT,1 wT,2 wT,3 wT,4 wT,5 wT,6
Value 20 20 20 20 20 80

φ θ Φ px vx py
Weights wR,1 wR,2 wR,3 wR,4 wR,5 wR,6
Value 1 1 1 10 15 10

vy pz vz
Weights wR,7 wR,8 wR,9
Value 15 5 9

ax ay az φ̇ θ̇ Φ̇
Weights wS,1 wS,2 wS,3 wS,4 wS,5 wS,6
Value 10 10 10 0.5 0.5 0.1

Two simulations are realized as follows:
• Simulation-S1. Performance in tracking the desired per-

ception trajectories;
• Simulation-S2. Impact of the references’ prediction

error in the tracking performance;
Two cases of the actual wheelchair motion profiles are

adopted (named C1, C2). While C1 represents the case that
the user accelerates then decelerates the wheelchair along the
longitudinal axis in a straight, flat road; C2 simulates the case
when the user executes an 80-degree rotation in 3 seconds
around the vertical axis then accelerates the wheelchair along
the longitudinal axis. Their trajectories are shown in Fig. 3.
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Fig. 3. The considered actual wheelchair motion profiles

To evaluate the simulation results, two measured criteria
are considered. The first criterion is MAE [%] (Mean Ab-
solute Error Percentage). As suggested by name, the mean

value of distances between the felt motions with respect to
the comfort bands is firstly calculated. The computed value
is then divided by the maximum value of the considered
term to obtain the percentage value. The maximum values
of ax, ay , az , φ̇, θ̇, Φ̇ are 4 [m/s2], 4 [m/s2], 4 [m/s2], 30
[deg/s], 30 [deg/s] and 45 [deg/s], respectively. The second
criterion is RC [%] (Rate of Confliction) which measures
the percentage of time when the felt motions are outside
of the comfort bands. On the other hand, Root Mean Square
Error percentage (RMSE[%]), which is based on the standard
criterion RMSE, is used to measure the reference prediction
errors in S2.

A. Reference tracking performances in C1 and C2 (Simula-
tion - S1)

The objective of Simulation-S1 is to test the performances
of our above designed control system (denoted as HL1) in
C1, C2. The same test is performed using a benchmark
controller based also on the MPC approach (denoted as
HL2). In all the simulations in Simulation-S1, it is assumed
that the prediction of the references is perfect. To simplify
the process of developing the benchmark controller, HL2
is designed the same as HL1 with some modifications as
follows:

• HL2 set very high weights for the felt tilt rate tracking
(i.e., wT,1 and wT,2) with respect to all the other weights
so that the comfort bands for these two terms are
numerically equivalent to the hard constraints, while the
weights related to tracking the references of the felt yaw
rate and the felt specific forces are set to zero so that
no comfort bands for these factors are considered.

• Adding into the cost function of HL2 the standard
quadratic cost function terms which penalize the track-
ing errors of the felt yaw rate and the felt specific forces
with respect to their references. Hence, HL2 tries to
track exactly the references of these terms instead of
only staying inside the comfort bands.

A certain outcome of the first modification is that the
quality for tracking tilt rate references of HL2 is always at
least equal or better than HL1 as HL2 treats the tilt rate as the
hard constraints so that the felt tilt rate always stays inside
the comfort bands, but it is not the case for HL1. Indeed,
observing Fig. 4, Fig. 5 and Table. VII, HL2 provides slightly
better tracking performance for roll rate in C1 (MAE and RC
of 1.5 [%] and 13.3[%] with HL1 and MAE and RC of 0
[%] and 0[%] with HL2), but by sacrificing the performance
of this term, HL1 outperforms HL2 significantly for felt
force tracking performance (MAE and RC of 0.8 [%] and
8[%] with HL1 and MAE and RC of 4.9 [%] and 46.7[%]
with HL2). On the other hand, HL1 outperforms HL2 in all
aspects in C2.

B. Impact of prediction error of references in the tracking
performance (Simulation - S2)

This simulation aims to test the impact of the prediction
error in the overall performance of our system, with only
HL1 being used in this case. For the sake of simplicity, the
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Fig. 4. The tracking performance of perceived simulation signals - C1 case
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Fig. 5. The tracking performance of perceived simulation signals - C2 case

TABLE VII
TRACKING PERFORMANCE IN C1 AND C2

MAE [%] RC [%]
Roll Yaw Force Roll Yaw Force

C1 HL1 1.5 0 0.8 13.3 0 8
HL2 0 0 4.9 0.0 0.0 46.7

C2 HL1 0 0.7 0 0 2.7 0
HL2 0 4.3 0.1 0 14.7 13.3

development of a reference profile prediction is not included
in this paper. However, in the simulation environment, some
levels of prediction errors are emulated by artificially adding
a white Gaussian noise to the actual reference profiles. The
SNR (i.e., signal-noise ratio) of the additive noise is set
equal to 7, 15 in order to model, on average, the 20%, 8%,
respectively, based on RMSE [%].

In the end, we can observe from the obtained results
reported in Table VIII and Table VII, that the quality of
references prediction has a high impact on performances
of tracking felt yaw rate and specific force. However, the
same behavior is not realized for the felt roll rate with small
differences in all cases. On average, the lower prediction
error of the references leads to a higher performance for our
system.

TABLE VIII
IMPACT OF THE REFERENCE PREDICTION ERRORS

MAE [%] RC [%]
Roll Yaw Force Roll Yaw Force

C1
SNR = 7 2.1 0 1.0 17.3 0 22.7
SNR = 15 1.8 0 0.9 16.0 0 13.3

C2
SNR = 7 0.1 3.4 0.2 1.3 29.3 14.7
SNR = 15 0.1 1.3 0.0 1.1 10.7 4

V. CONCLUSIONS

This paper proposes an innovative approach on mod-
elling and optimization for Motion Cueing Algorithm of an
immersive wheelchair simulator. The vestibular model, the
perception thresholds, the platform’s constraints and various
tracking problems are merged together into an optimization
problem of MPC. In particular, an efficient tool to model and
formulate the mixed continuous and discrete behaviors of the
perception thresholds is introduced using MIQP, opening a
way to fully exploit the potential of this factor. Simulation
results validated the efficiency of the designed approach; the
studied context is, but not strictly limited to, the wheelchair
simulator. In the end, investigation related to the quality
of the references prediction is studied, showing a strong
impact of the prediction quality on the tracking reference
performances of our system. Hence, a clear direction for
future research is towards the development of the references
prediction. Moreover, the study of adapting the control
system to the driving style or the level of impairment of
patients would be another interesting topic for future work
together with the study of fast MPC techniques to make our
controller easily develop in practice.
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[4] A. Beghi, M. Bruschetta and F. Maran, ”A real time implementation
of MPC based Motion Cueing strategy for driving simulators”, 51st
IEEE Conference on Decision and Control, 2012, Maui, Hawaii, USA

[5] L. Reid and M. A. Nahon, ”Flight simulation motion-base drive
algorithms: part 1,” Developing and testing equations. Tech. rep.
University of Toronto, 1985

[6] D.R.Berger, J. Schulte-Pelkum, and H. H. Bülthoff, “Simulating be-
lievable forward accelerations on a Stewart motion platform”, Max
Planck Institute for Biological Cybernetics Technical Report, 2007

[7] A. Parisio, E. Rikos and L. Glielmo, ”A Model Predictive Control
Approach to Microgrid Operation Optimization”, IEEE Transactions
on Control System Technology, Vol. 22, NO. 5, September 2014

[8] L. A. Dao, A. Dehghani-Pilehvarani, A. Markou and L. Ferrarini,
”A hierarchical distributed predictive control approach for microgrids
energy management”, Elsevier, vol. 48, 2019.

[9] A. Nesti, C. Masone, M. Barnett-Cowan, P. R. Giorano, H. H. Bülthoff,
and P. Pretto, “Roll rate thresholds and perceived realism in driving
simulation”. In: Proceedings of the Driving Simulation Conference,
Driving Simulation Association (Sept. 2012). Paris, France.

[10] A. Gundry, “Thresholds to roll motion in a flight simulator,” Journal
of Aircraft 14.7 (1977). DOI: 10.2514/3.58832.

4167


