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Abstract— This paper shows how CasADi’s state-of-the-art
implementation of algorithmic differentiation can be leveraged
to formulate and efficiently solve gait optimization problems,
enabling rapid gait design for high-dimensional biped robots.
Comparative studies on a 7-DOF planar biped show that
CasADi generates optimal gaits 4 times faster than another
existing advanced optimization package. The framework is
also applied to simultaneously generate a gait and a feedback
controller for 2 spatial bipeds: a 12-DOF model and a 20-
DOF model. Results suggest that CasADi’s unprecedented
efficiency could provide a practical path toward real-time gait
optimization for high-dimensional biped robots.

I. INTRODUCTION

Dynamic biped walking research began with planar mod-
els [1], but has been extended to 3D [2], where the
control challenges are substantially more complex. Still,
much research continues to limit biped locomotion to the
plane because the easier analysis leads to faster simula-
tions and optimizations. Indeed, the curse of dimensionality
makes real-time gait optimization nearly impossible for high-
dimensional bipeds, and reduced-order template models are
often used instead to map simplified walking patterns onto
the full dynamics [3], [4], [5]. While reduced-order models
simplify motion planning, they unavoidably neglect impor-
tant physical constraints, which may yield impractical gaits.

The open-source toolbox Drake provides an efficient C++
platform for rapid trajectory optimization of complex robotic
systems such as bipeds [6]. Similarly, FROST [7] is an open-
source MATLAB toolkit for modeling trajectory optimiza-
tion of hybrid dynamical systems, including bipeds. More
generally, the open-source CasADi [8] software allows for
efficient modeling of optimal control problems [9], [10], [11],
[12] and has been used to optimize stand-up and sit-down
humanoid trajectories [13] and back-flip trajectories for the
Mini Cheetah quadruped [14]. For optimization problems
involving high-dimensional systems, CasADi’s state-of-the-
art implementation of algorithmic differentiation (AD) for
computing and storing derivative information offers compu-
tational advantages. The symbolic expressions in CasADi are
represented by directed graphs of symbolic primitives, rather
than as tree structures like in conventional computer algebra
systems. Further, the sparsity patterns that arise naturally in
trajectory optimization problems can be generated efficiently
and automatically by CasADi to accelerate optimization.
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Fig. 1: TRajectory OPtimization In CasADi is available at:
https://github.com/fevrem/TROPIC

This paper introduces TROPIC (Fig. 1), an open-source
CasADi-based optimization package that enables systematic
gait design for high-dimensional biped robots in MATLAB.
Analogous to FROST [7], TROPIC uses the hybrid zero
dynamics (HZD) framework [15] to simultaneously generate
gaits and feedback controllers via optimization of virtual
constraints on the robot’s configuration. This approach does
not result in an optimal open-loop gait, but rather a closed-
loop system that minimizes a given cost function along
the periodic orbit. Formulating efficiently-solvable nonlin-
ear programs (NLP) is critical in gait design for complex
bipeds, and TROPIC employs the direct collocation method
to leverage CasADi’s unprecedented efficiency in generating
large, but sparse NLP formulations.

Figure 2 depicts TROPIC’s optimization process. Biped
models are expressed as kinematic trees subject to contact
classes (e.g., point, planar or spatial, with or without friction).
The user can define constraints that are either physical or vir-
tual. The friction cone (or pyramid) is an example of physical
constraint automatically derived from the contact model. Vir-
tual constraints used to synthesize feedback controllers as the
output of HZD-based optimization can be omitted when gen-
erating open-loop gaits, but this does not guarantee existence
of a stabilizing controller [15]. TROPIC uses MATLAB’s
interpreted language to enable seamless implementation of
the biped model and user-defined constraints, and CasADi
allows for efficient (in both time and memory) derivation and
evaluation of the necessary symbolic expressions. While NLP
solvers often require in-depth knowledge of optimization
methods, CasADi provides a common interface to most off-
the-shelf solvers.

In what follows, Section II describes the general form
of biped models and gait design via optimization of vir-
tual constraints in TROPIC. The optimization problem is
automatically transcribed using direct collocation and the
framework described in Section III. Section IV compares
TROPIC’s performance to FROST for examples of a 7-
DOF planar biped and 12-DOF and 20-DOF spatial bipeds.
Section V provides conclusions.
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Fig. 2: Overview of gait optimization process in TROPIC

II. DYNAMIC MODEL OF WALKING

While TROPIC facilitates trajectory optimization of sys-
tems with or without impacts, this paper focuses on optimiz-
ing gaits for underactuated bipeds with hybrid dynamics and
point contacts. The model in Fig. 2 is an example exhibiting
alternating phases of single support and infinitesimally short
ground impacts. Represented by a tree of rigid links, the
model is left-right symmetric, so periodic gaits are sought
by analyzing only a single step. With the legs terminating in
point feet, there is no actuation at the end of the stance leg.

A. Continuous Single Support

Single support is modeled using continuous second-order
ordinary differential equations,

H(q)q̈ + C(q, q̇) = Bu+ Jc(q)
TFc, (1)

where q ∈ Rnd represents the nd generalized coordinates,
H(q) ∈ Rnd×nd is the inertia matrix, C(q, q̇) ∈ Rnd is a
vector containing Coriolis and gravity terms, B ∈ Rnd×na

is a selector matrix mapping na actuator torques to joint
torques, u ∈ Rna is a vector of independent control inputs,
Jc(q) ∈ R3×nd denotes the contact Jacobian, and Fc ∈ R3

represents the ground reaction forces. In single support, the
stance foot is assumed not to slip. This physical contact with
the ground introduces a holonomic constraint on the stance
foot’s Cartesian position in the inertial frame: 0pe is constant.
The associated kinematic constraint is 0ve = Jc(q)q̇ = 0, and
the second derivative of the holonomic constraint

Jc(q)q̈ + J̇c(q)q̇ = 0 (2)

must be enforced and evaluated alongside Eq. (1) to deter-
mine the constrained continuous dynamics of single support.

B. Discrete Impact

Impacts (assumed purely inelastic) occur when the swing
foot touches down with nonzero velocity. The hypersurface

S =
{

(q, q̇) ∈ Rnd | 0pe(q) = 0, 0ve(q, q̇) < 0
}

(3)

defines the limit of the continuous dynamics. While con-
figuration is invariant through impact, the relabeling map
q+ = R(q−) swaps the right and left legs at each step, where
q− and q+ represent the pre- and post-impact configuration
states. The generalized velocities undergo a jump due to the
instantaneous change in generalized momentum,

q̇+ = ∆q(q−) q̇−, (4)

where ∆q(·) is obtained by integrating Eqs. (1) and (2) over
the duration of impact. The complete system with impulse
effects may be rewritten in state-space form using coupled
first-order differential equations,

Σ :

{
ẋ = f(x) + g(x)u, x /∈ S,
x+ = ∆x(x−), x ∈ S,

(5)

where x := (q ; q̇) ∈ R2nd .

C. Rigid Body Algorithms

TROPIC users build biped models from three rigid body
and two joint types. The slender-rod represents most
rigid links, whereas the reaction-wheel can be added
to exert external torques through internal changes in angular
momentum [16]. The base specifies the kinematic tree’s
base, and joints are either prismatic or revolute.
The equations of motion are derived using spatial vector
arithmetic with the Recursive-Newton-Euler Algorithm used
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Fig. 3: CPU time spent to obtain H(q) and C(q, q̇) for an
N-link pendulum using the same rigid body algorithms.

to compute C(q, q̇) and the Composite-Rigid-Body Algo-
rithm used to obtain the inertia matrix H(q) [17]. CasADi
features a sparse matrix representation of symbolic variables
for which each symbolic expression is stored as a directed
graph of primitive operations. Figure 3 compares CPU times
to derive the equations of motion using CasADi symbolics
and MATLAB’s Symbolic Toolbox for a pendulum with
increasing number of links on a Desktop computer with
an Intel Core i7-3770 processor (3.4 GHz) and 16 GB of
RAM. For 13 links, MATLAB required approximately 1.5
hours, whereas CasADi completed the task in 0.4 seconds.
CasADi’s derivation time increased to just 0.7 seconds for
the 20-link case, showing no apparent limitations of the
computer algebra system.

D. Virtual Constraints

Analogous to FROST, TROPIC employs HZD-based op-
timization to generate dynamic walking gaits using virtual
constraints. While conventional optimization yields an opti-
mal open-loop gait (state-control pair realization of Eq. (5)),
HZD-based optimization generates a closed-loop system
whose feedback controller minimizes a cost function along
the periodic orbit. Virtual constraints are a special class of
holonomic constraints enforced through feedback instead of
physical connections. The controller outputs are the tracking
errors between the actual ya(·) and desired yd(·) trajectories.

y(q, α) = ya(q)− yd(α, τ), (6)

where τ is a monotonically increasing phase variable and
α is a set of scalar-valued parameters encoding the robot’s
desired configuration.

Feedback linearization is applied to obtain an input/output
linear system.1 The virtual constraints have relative degree 2,
so the output must be differentiated twice before u appears
explicitly. The feedback controller takes the common form

u = (LgLfy)−1(v − L2
fy), (7)

1The three biped models used in Section IV are underactuated and not
full-state feedback linearizable since rank(B) < nd.

where Lf (·) and Lg(·) represent the Lie derivative of (·)
with respect to the drift and input vector fields, respectively.
The control law

v = −ε2y(q, α)− 2εẏ(q, q̇, α), (8)

yields the linear output dynamics

ÿ(q, q̇, q̈, α) = −ε2y(q, α)− 2εẏ(q, q̇, α), (9)

where ε > 0 is chosen to drive y(q, α) to 0 exponentially and
restricts the system dynamics to evolve on the zero dynamics
manifold Z during single support phases [18].

Z =
{

(q, q̇) ∈ Rnd | y(q, α) = 0, ẏ(q, q̇, α) = 0} (10)

Invariance of the zero dynamics through impact is further
enforced by requiring that at the beginning of the step,

y(q, α) = 0, (11a)
ẏ(q, q̇, α) = 0. (11b)

TROPIC expresses virtual constraints as Bézier polynomials.

yd(α, τ) =

M∑
m=0

αmM !

m!(M −m)!
τm(1− τ)M−m, (12)

where M is the user-selected order of the polynomial. This
choice of virtual constraint offers both analytical and com-
putational advantages since the hybrid invariance conditions
in Eq. (11) can be derived, and therefore enforced, in closed-
form (see [18], Corollary 6.1 for complete derivation).

III. GAIT OPTIMIZATION

A. Direct Collocation

Gait optimization problems are typically solved via di-
rect shooting or collocation methods [19]. While generally
simpler to model, shooting methods integrate the dynam-
ics by shooting trajectories from starting points, so they
require good initialization and often suffer from poor con-
ditioning in complex systems. Conditioning becomes less
of an issue in optimization problems with short horizons
and fewer variables, which makes shooting methods well
suited for model predictive control [20]. TROPIC employs
direct collocation in which the trajectory is parameterized
using discrete way-points that include the states and control
inputs [21]. The main difference between the states and
control inputs is that the states are differentiated variables in
the dynamics equations, whereas the control variables only
appear algebraically in the dynamics equations, resulting in a
system of differential algebraic equations (DAE), which are
distinct from ordinary differential equations (ODE) in that
the Jacobian matrix of a DAE system is singular since its
derivative with respect to some variables will be zero (i.e.,
some equations are algebraic). The equations of motion must
only be satisfied at the collocation points, resulting in a large
but sparse Jacobian matrix that can be efficiently handled by
large-scale NLP solvers.

TROPIC supports both trapezoidal and Hermite-Simpson
collocation methods [21]. While the latter leads to more
accurate solutions by approximating the system dynamics
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using piecewise quadratic functions, the trapezoidal method
is simpler and introduced herein for brevity. First, the con-
tinuous state variables x(t), control inputs u(t), and contact
forces Fc(t) are discretized using Nc collocation points.

t→ [t0, ..., tk, ..., tN ],

x→ [x0, ..., xk, ..., xN ], (13)

u→ [u0, ..., uk, ..., uN ],

Fc → [F 0
c , ..., F

k
c , ..., F

N
c ],

where k is the discretization index and N =Nc−1 for the
trapezoidal method. The system dynamics are then approxi-
mated between every pair of collocation points.

xk+1 = xk +
1

2
lk(ẋk+1 + ẋk), (14)

where lk = tk+1−tk, and a new vector of decision variables
is added at every collocation point,

zk = (qk; q̇k; q̈k;uk;F k). (15)

Obtaining an explicit representation of ẋk in Eq. (14)
typically requires inverting the inertia matrix, so it is not
desirable. To avoid computing f(x) and g(x) symbolically
in closed-form, TROPIC takes the approach of implicitly
enforcing Eqs. (1)-(2) by introducing ẋk := (q̇k; q̈k) as a
defect variable at each collocation point [22] and enforcing

H(qk)q̈k + C(qk, q̇k)−Buk − Jc(qk)TF k
c = 0, (16)

Jc(q
k)q̈k + J̇c(q

k)q̇k = 0. (17)

The feedback law is also computationally expensive to
enforce explicitly. On the zero dynamics manifold, however,
the control u is uniquely determined by Eq. (7), so enforcing

ÿ(qk, q̇k, q̈k, α) + ε2y(qk, α) + 2εẏ(qk, q̇k, α) = 0, (18)

at each collocation point calculates the feedback term accord-
ingly. The invariance condition for the hybrid zero dynamics
is particularly easy to enforce using collocation methods.

y(qk, α) = 0, (19a)
ẏ(q0, q̇0, α) = 0. (19b)

The dynamic equations assume no slip of the stance foot,
so the contact forces must lie inside the friction cone.√

(fkx )2 + (fky )2 − µsf
k
z < 0, (20)

where Fc := (fx; fy; fz) and µs denotes the coefficient of
static friction. TROPIC gives the user freedom to replace
Eq. (20) with the more conservative linear friction pyramid

|fkx | <
µs√

2
fkz , |fky | <

µs√
2
fkz . (21)

To prevent flight phases, the normal component of the contact
force must remain positive.

Foot touchdown is constrained to occur at the end of the
discretized trajectory (i.e., step), so the guard conditions of
Eq. (4) must be enforced at the last collocation point,

0pe(q
N ) = 0, (22)

0ve(q
N , q̇N ) < 0. (23)

Upon impact, continuity of the position states is enforced
using the relabeling map

q0 −R(qN ) = 0. (24)

The impact map for the velocities is added at the last
collocation point to enforce periodicity.

H(q0)(q̇0 −R(q̇N ))− Jc(q0)T F̂c = 0, (25)

Jc(q
0)q̇0 = 0, (26)

where F̂ represents the integrated impulsive forces in units
of N·s. A non-penetration holonomic constraint of the form

pe(q
k)− pde(τk) ≥ 0 (27)

requires the distance to contact to be positive, ensuring
sufficient swing foot ground clearance throughout the step.

B. NLP Formulation

Upon transcription of the gait optimization problem, the
NLP has the general form

min J (z)
z

subject to z ≤ z ≤ z,
w(z) ≤ 0,

h(z) = 0,

(28)

where z is the set of decision variables bounded by [z, z],
J (·) is the cost function to be minimized, and h(·) and w(·)
represent the equality and inequality constraints, respectively.
The Lagrangian corresponding to the constrained NLP is

L(z, µ, λ) = J (z) + µTw(z) + λTh(z), (29)

where µ and λ are the Lagrange (or KKT) multipliers
[23]. Obtaining symbolic expressions for the Jacobian and
Hessian of Eq. (29) may prove critical to solve such problems
efficiently. To derive the derivatives, TROPIC uses CasADi’s
implementation of AD. While conventional symbolic differ-
entiation becomes intractable when computing the partial
derivatives of a function with respect to many variables,
AD uses the chain rule to break down the computation of
the Jacobian into a sequence of atomic sub-operations. The
Hessian is obtained by applying AD recursively.

The two most distinct features of CasADi’s AD are a
hybrid scheme of forward and reverse modes of AD and
graph coloring. After breaking down the computation of
the Jacobian, forward and reverse modes of AD provide
two ways to compute the directional derivatives, and hybrid
techniques often result in fewer sub-operations. The main
idea behind graph coloring is to reconstruct the complete
Jacobian using a minimal set of directional derivatives [24].
Trajectory optimization via direct collocation typically re-
sults in a large but sparse NLP, so CasADi’s ability to
recognize and store large sparsity patterns is critical for
scaling to higher-dimensional bipeds.
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IV. RESULTS

A. Planar 7-DOF Biped Comparative Studies

TROPIC was used to optimize a 10-gait library with
walking speeds from 0.15 to 1.05 m/s for RABBIT, a
planar 5-link biped model with 7 DOF defined in [15].
RABBIT has 4 actuators, one for each hip and knee, so 4
time-dependent virtual constraints modulate their respective
trajectories. Walking was parameterized using 25 collocation
points and a uniform discretization grid, so tk = k T

N , where
T is the step period. The cost function is the integral of the
squared torques over the step.

J =

N∑
k=0

4∑
i=1

lk

2

[
(uki )2 + (uk+1

i )2
]

(30)

when approximated using trapezoidal quadrature. This quan-
tifies energetic efficiency, a critical aspect of bipedal gait
design, because the input power of the motors in electrically
actuated systems is proportional to the square of the armature
current, which is itself linearly proportional to the torque
output. The cost function penalizes large torques and tends
to produce smooth solutions well-suited for walking robots.

TROPIC was compared to FROST first using FROST’s
formulation implemented in CasADi and then using
TROPIC’s formulation. The main difference is that FROST
defines a new copy of the virtual constraint parameters αk at
each collocation point and enforces consistency throughout
the trajectory by adding the constraint αk = αk+1. This
results in a computationally efficient band structure in the
Jacobian matrix of the constraints. In TROPIC, however,
CasADi’s graph coloring technique reconstructs the Jacobian
using directed graphs of primitive variables and a minimal
set of directional derivatives, which results in an efficient
NLP without redundant variables.

The initial guess, variable bounds, path constraints, and
convergence tolerances were identical and selected to match
FROST’s default options. IPOPT was used to solve the
resulting problems with the linear solver ma57 on the same
processor used in Section II-C. This linear solver is well-
suited for large optimization problems, but ma57 does not
permit redistribution, so separate installation is required [25].
For each walking speed, FROST, CasADi’s implementation
of the FROST formulation, and TROPIC all converged to
nearly identical gaits, with less than 0.5% difference in the
optimal solutions. On average, FROST (which outperformed
Drake while optimizing gaits for the ATLAS humanoid in
less than 5 minutes [7]) generated gaits in 6.9 seconds,
CasADi’s implementation of it converged in 2.2 seconds, and
TROPIC did so in 1.5 seconds, as summarized in Table I.

Figure 4 separates the duration of computation into time
in IPOPT, which is primarily spent solving the KKT system
at each iteration to determine the Newton step, and time
evaluating the NLP functions, which includes the Jacobian
and Hessian of the Lagrangian. The difference between
“CasADi-F” and “TROPIC” in Fig. 4a highlights a major
advantage provided by CasADi – it generates an efficient
representation of the optimization problem regardless of how

TABLE I: Average times for gait library optimization of
planar 7-DOF biped model.

FROST CasADi-F TROPIC

Variables 1355 1355 709
Constraints 1638 1638 891
Total CPU time (s) 6.9 2.2 1.5

the user scatters variables and constraints. This stands in
contrast with FROST in which they are set such that the
Jacobian possesses a diagonal band structure.

As solving the KKT system requires comparable times for
all three cases (within 1 second), the computational differ-
ence is mainly due to faster evaluation of the NLP functions
in CasADi. Figure 4b shows that CasADi’s performance in
evaluating the NLP functions was unaffected when nearly
doubling the number of variables and constraints. After
transcription of the NLP, CasADi automatically encapsulates
graph representations of the Jacobian and Hessian in function
objects that are evaluated at run time using CasADi’s virtual
machines (VM) designed for high-speed and low overhead.
Both FROST and TROPIC can ultimately achieve faster
function evaluations by generating C code of the symbolic
expressions, which is significantly faster than FROST’s MAT-
LAB functions and CasADi’s VM. This approach is used
in C-FROST [26], and the authors aim to add the same
functionality in TROPIC.
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Fig. 4: Timings for gait optimization of planar 7-DOF
biped model. “CasADi-F” denotes FROST formulation im-
plemented in CasADi. Error bars indicate standard deviation
for 10 optimizations run at each speed.
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TABLE II: Optimization constraints & parameters.

Constraint description Value

Actuator torques (N·m) |ui| ≤ 50, i ∈ {1, ..., 6}
Friction cone µ = 0.6

Step length (m) [0.05, 0.35]
Step period (s) [0.20, 1.00]
Mid-step foot clearance (m) pe ≥ 0.05
Timing variable, τ (rad) τ̇ > 0

Control gain ε = 10

B. Spatial 12-DOF Biped Implementation

TROPIC was employed to generate 0.50 m/s walking gaits
for the 12-DOF spatial five-link biped model shown in Fig. 5.
Each hip has two independently actuated DOFs, while each
knee has just one. State-based virtual constraints on the
actuated DOFs are posed as 5th-order Bézier polynomials
in τ , the angle between the ground and the line passing
through the hip and stance foot in the sagittal plane. This
mechanical phase variable has to increase monotonically over
a step, so τ̇ > 0 was added as a constraint. Table II lists
the implemented constraints, including a coefficient of static
friction of 0.6. Actuator limits of 50 N·m were selected
based on the actual five-link biped robot ERNIE [27]. Joint
limits on position and velocity were also enforced to generate
realistic gaits. The cost function was again the integral of
squared torques over the step. To test TROPIC’s ability
to solve larger gait optimization problems, the number of
collocation points was increased from 25 to 50 and 100.

Without an initial guess, TROPIC automatically computes
a naive seed by linearly interpolating between user-provided
guesses of the robot’s initial and final configurations [21].
The initial guess for the Bézier coefficients α’s is system-
atically obtained using unconstrained least-squares fitting on
the virtual constraints, and the control input is obtained from
Eq. (7). Using this naive-seed approach and 25 collocation
points, TROPIC required 6.1 seconds on average to converge
to an optimal solution. Refining the discretization grid to
50 and 100 collocation points increased computational times
to 18.5 seconds and 40.3 seconds, respectively, though the
gaits were visually similar. The results are summarized in
Table III, and a two-step snapshot of the resulting gait
obtained with 100 collocation points is shown in Fig. 5.

TABLE III: Timings for optimization of 0.50-m/s walking
gait for spatial 12-DOF biped model using different dis-
cretization mesh (CP = collocation points).

Process step 25 CP 50 CP 100 CP

Variables 1997 3947 7847
Constraints 2110 4185 8335
NLP transcription 0.8 s 1.4 s 2.3 s
IPOPT internal 3.3 s 10.2 s 28.8 s
NLP evaluation 2.8 s 8.3 s 11.5 s

Fig. 5: Two-step snapshot of optimized 12-DOF biped gait.
The model parameters are given in Table IV.

C. 20-DOF Biped Implementation

In this example, TROPIC was used to optimize a gait
for a 20-DOF point-foot biped model with 14 actuators.
This model is similar to the one shown in Fig. 5, with the
addition of a head and upper limbs. In bipedal locomotion,
arm motion can be used to improve balance and energy
efficiency [28].

The friction and step constraints were kept identical from
the previous section (Table II), and the cost function was
the integral of squared torques over the step. This time,
the Hermite-Simpson collocation method was employed to
discretize the step with 25 finite elements, so there was a
total of 2×25+1 = 51 collocation points. IPOPT and ma57
were again used to solve the resulting NLP. Using the naive-
seed approach, TROPIC converged to a feasible solution
in approximately 4 minutes. When using a relatively good
initialization with results from the previous optimization,
TROPIC needed less than 1 minute to find an optimized
gait (22 seconds in IPOPT and 31 seconds in NLP function
evaluations). A one-step snapshot of the resulting gait is
shown in Figure 6, in which the biped model can be seen
taking advantage of the extra DOFs in the upper limbs to
swing the arms back and forth. TROPIC is able to optimize
the full dynamics of the 20-DOF biped model for energetic
efficiency, which produces a human-like gait with balancing
arm motion.

TABLE IV: Geometric & mass parameters of 12-DOF and
20-DOF spatial bipeds used in Sections IV.B&C. The center
of mass (CoM) location is measured from the proximal joint.

Length (m) CoM (m) Mass (kg)

Lower leg 0.40 0.08 1
12-DOF Upper leg 0.40 0.08 1
Model Pelvis 0.20 – 1

Torso 0.25 0.0625 5

Lower leg 0.40 0.08 2.5
Upper leg 0.40 0.08 3.5
Pelvis 0.20 – 2

20-DOF Torso 0.45 0.1125 15
Model Shoulder 0.35 – 1

Head 0.10 0.05 2
Upper arm 0.25 0.075 2.5
Lower arm 0.30 0.12 2.5
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Fig. 6: Two-step snapshot of optimized 20-DOF biped gait.
The total mass of the biped is 42 kg and model parameters
are detailed in Table IV.

V. CONCLUSIONS

This paper introduced TROPIC, an open-source optimiza-
tion package that allows systematic gait design for biped
robots using MATLAB’s interpreted language and CasADi’s
implementation of algorithmic differentiation. The approach,
based on gait design via optimization of virtual constraints,
generates a feedback controller for a given gait instead of
a conventional open-loop state-control pair that can be hard
to stabilize in practice. TROPIC’s CasADi backbone enables
fast and efficient transcription of the gait optimization prob-
lem, which becomes a large but sparse NLP using direct col-
location methods. Comparative studies showed that TROPIC
enables gait optimization 4 times faster than another state-of-
the-art optimization package for a 7-DOF planar biped. The
framework was also applied to 2 spatial bipeds: 12- and 20-
DOF models, and results suggest that TROPIC’s formulation
is particularly well-suited to leverage CasADi’s unprece-
dented efficiency into gait design for higher-dimensional
biped robots.

Ongoing work aims to 1) generate C code expressions
to further accelerate numerical evaluation and symbolic
processing, 2) provide Universal Robot Description Format
(URDF) parsing capabilities, and 3) use TROPIC for gait
optimization of yet more complex legged systems, such as
quadruped robots with multi-contact phases.
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