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Abstract— The purpose of this study is to make life-sized
humanoid robots acquire tool manipulation skills that require
complicated force adjustment. The difficulty in acquisition of
tool manipulation skills comes from the hardship in physical
modeling. Recent research have revealed that deep reinforce-
ment learning (DRL), a model-free approach, performs superior
in such tasks. However, DRL in general has a drawback in
sample efficiency, and this becomes critical in robot learn-
ing especially in life-sized humanoid robots. In this study,
we propose an integrated system incorporating DRL method
and active learning. Our method also leverages a variety of
previous studies on life-sized humanoid robots to overcome
the sample efficiency issue. We demonstrated the effectiveness
of our proposed system through a hacksaw skill acquisition
and a Japanese planer (Kanna) skill acquisition by a life-sized
humanoid robot.

I. INTRODUCTION

Just as we humans have used tools to expand the range of
activities, robots can also use tools to expand the range of
activities. Hence, the tool manipulation by robots has been a
research subject for many years. The difficulty in the tool ma-
nipulation with a robot comes from the hardship in creating
a physical model for a task. Mainly this is because the tool
manipulation is an indirect operation, causing the increase in
the number of uncertain parameters and unobservable states.
Especially for the tool manipulation that requires complex
force adjustment such as sawing (Fig. 1), it is extremely
difficult to create a physical model for a task.

In order to overcome the difficulty of modeling, model-
free reinforcement learning (RL) has been actively studied
in many years and has been widely applied to the robotics
research. As for the tool manipulation, tasks such as pancake
flipping and Ball-in-a-Cup are realized by RL [1] [2]. In par-
ticular, deep reinforcement learning (DRL) has been attract-
ing attention because it has made significant achievements in
complex tasks such as end-to-end picking control, in-hand
manipulation, and door opening from scratch [3] [4] [5].
A drawback of the DRL is a low sample efficiency, and
this becomes a crucial issue when it comes to a real robot,
especially with a life-sized humanoid robot which has the
higher running cost such as the risk of falling down than
normal manipulators.

To overcome the sample efficiency issue, we propose two
approaches summarized in the following.
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Fig. 1: Top: The goal of this research is that the robot learns
the tool manipulation skills that require complicated force
adjustment such as sawing.　Bottom: In order to acquire
those skills, we propose a method in which the robot actively
requests teaching when the robot is not learning the skills
well.

A. Our Approach and Related Work

1) Integrated System for Skill Acquisition by Life-sized
Humanoid Robot: Thanks to the various previous research
on a humanoid robot such as fall prevention and motion
generation, we already have a lot of knowledge, and we
can benefit from these studies, instead of learning everything
end-to-end. Also, we focus on the characteristic that it is
relatively easy to know how to move a tool, even though
adjusting the force is difficult. For example, we know in
advance that we have to push and pull the saw when we
use it for wood cutting. According to these observations, in
order to improve the sample efficiency, we make use of those
previous studies and reduce the parts to be learned by DRL.
Specifically, the force adjustment part is acquired by DRL,
and we utilize motion generation and balance control from
previous research.

2) Learning with Active Teaching Request: Numbers of
techniques have been studied to utilize demonstrations to
increase sample efficiency on DRL [6]–[10]. A life-sized
humanoid robot has the strong advantage that a person can
teach the robot the skills just as that person would teach
another person. However, there are three major problems
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Fig. 2: The overview of the integrated system proposed in this study.

to be solved in order to utilize demonstrations with a life-
sized humanoid robot. (i) Firstly, we cannot know in advance
how many demonstrations should be given. (ii) Secondly,
old demonstrations are inaccurate because the real-world
environment changes slightly over time. (iii) Thirdly, the
teacher’s actions are not always accessible.

To overcome these problems, we propose a novel learn-
ing method called Learning with Active Teaching Request
(LATR) as an extension of off-policy DRL such as Deep Q-
network (DQN) [11] and Deep Deterministic Policy Gradient
(DDPG) [12]. As the name suggests, LATR is inspired by
active learning techniques. By the active teaching method,
we can overcome the problem (i). Related previous work
on RL and active learning include the reward shaping and
interactive human guidance [13], active reward learning [14],
and active deep Q-learning based on the confidence of the
action [15]. Our approach is similar to these studies, but in
LATR, the robot determines whether it needs teaching on
the basis of transition of rewards. This approach is based on
the following simple observations: When a person acquires
tool manipulation skills, he/she first performs trial and error
by him/herself, and when he/she finds difficulty in trial and
error, he/she requests an expert to teach. In addition, in order
to overcome the problems (ii), LATR raises the importance
of the latest trial and error. Also, in order to overcome the
problems (iii), LATR estimates the teacher’s actions online.
We will explain the detail of LATR in Section III.

B. Contribution of This Study

The contributions of this study are as follows.
• An integrated system that learns tool manipulation skills

with DRL while making use of the knowledge that has
been obtained with the model based research on life-
sized humanoid robots.

• A learning method that actively requests teaching based
on the transition of the reward and estimates the
teacher’s actions online.

• Acquisition of skills in sawing and planing wood using
a life-sized humanoid robot.

• Presenting application to making a bookshelf with
learned skills.

In the following, Section II describes the detail of the
integrated system mentioned in I-A.1, and Section III
describes LATR in detail. We demonstrate the effectiveness
of our approach through the experiments in Section IV.

II. INTEGRATED SYSTEM FOR SKILL ACQUISITION BY
LIFE-SIZED HUMANOID ROBOT

In this study, we propose an integrated system for skill
learning that utilizes the knowledge that has been studied
in life-sized humanoid robots for many years. Fig. 2 shows
the overview of the proposed system. The proposed system
consists of three components: offline motion generation,
online skill learning, and real-time control.

A. Offline Motion Generation

As mentioned in the Section I, it is relatively easy to know
how to move the tools in advance. Therefore, this component
creates a motion for manipulating the tool offline.

Firstly, in order to create the motion, we determine the
sequence of the pose of the tool P tool

i and the sequence
of the target contact reaction force F def

i heuristically. Note
that the target contact reaction force F def

i is an approximate
value, which is not appropriate for actually using a tool.

Next, we generate a sequence of joint positions of the
robot θi by using full-body inverse kinematics and torque
distribution optimization [16]. Optimizing torque distribution
prevents the motor temperature from rising, and makes it
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possible for the robot to operate continuously for a long
time. For efficient skill learning, it is especially important
for robots to be able to operate continuously.

B. Online Skill Learning

The learning component runs at a lower frequency than the
real-time controller. While learning, the component switches
two modes, (1) trial and error and (2) teaching by demon-
stration. When the learning component selects trial and
error mode, similar to the normal reinforcement learning,
the component receives sensor values as a state, and the
component outputs the target force applied to the tools as
an action according to its policy. On the other hand, when
the learning component selects teaching by demonstration
mode, the robot first requests a human expert to teach by
saying “Help!”, and the human expert performs teaching
by kinesthetic teaching. Then, during the demonstration, the
robot saves the state transitions based on its sensor values
and stores them in its demonstration buffer.

C. Real-time Control

The Real-time controller modifies the pre-generated mo-
tion to realize the target reaction force in both hands while
preventing the robot from falling down, then the controller
commands the joint positions to motors in the end. In the
case of trial and error, the controller receives F ref

i calculated
by the learning component as the target contact reaction
force. On the other hand, in the case of teaching, the
controller receives F def

i which is determined heuristically
beforehand. The controller works as follows: 1) In order to
realize F ref

i or F def
i in both hands, the hand contact force

controller modifies positions of both hands by impedance
control algorithm [17] according to errors between F act

i and
F ref
i or between F act

i and F def
i . 2) In order to compensate

F ref
i or F def

i to keep balancing, the feed-forward balancing
controller modifies the center of gravity. 3) The controller
commands the joint positions to the motors.

III. LEARNING WITH ACTIVE TEACHING REQUEST

In this section, we detail the Learning with Active Teaching
Request (LATR), a learning algorithm that acquires skills
while actively requesting teaching. In Fig. 2, this section
corresponds to the part surrounded by the dashed gray line.

A. Background: Off-policy Deep Reinforcement Learning
with Replay Buffer

In recent off-policy deep reinforcement learning using
experience replay represented by DQN and DDPG, an al-
gorithm seeks a policy to maximize reward by repeating
task trials. Although there are various derivations depending
on whether the action is discrete or continuous, and what
algorithm is used to update the policy, the basic framework
is to repeat the following two steps:

• Action Execution:
The agent’s policy determines the action at based on
the current state st. After executing action, the agent
observes the next state st+1 and reward rt. Then, the
transition (st, at, rt, st+1) is stored in the replay buffer.

• Policy Update from Replay Buffer:
Agent updates its policy using minibatch of transitions
randomly sampled from replay buffer.

B. Overview of LATR: Learning with Active Teaching Re-
quest

In LATR, three steps are added to the conventional off-
policy reinforcement learning: judgment of teaching neces-
sity, learning from the demonstration buffer, and estimating
teacher behavior. Algorithm 1 is a pseudo-code algorithm
of LATR. The demonstration buffer described in the Al-
gorithm 1 is a memory having the same data structure as
the replay buffer and is used for storing transitions observed
while teaching.

Algorithm 1 Learning with Active Teaching Request: LATR

Dexp : replay buffer
Ddemo : demonstration buffer
eprev : index of the last episode for which the teaching
was performed
m : interval for checking teaching necessity

1: Dexp ← {} // Initialize Dexp

2: Ddemo ← {} // Initialize Ddemo

3: for e = 1, ..,M do // repeat episode for M times
4: if checkTeaching(Dexp) and e mod m == 0 then
5: Request teaching by speaking
6: Observe demonstration transitions
7: Save demonstration transitions to Ddemo

8: eprev ← e
9: end if

10: Observe initial state s0
11: for i = 0, .., T do // each episode has T frames
12: Execute action ai and observe si+1, ri
13: Store (si, ai, ri, si+1) to Dexp

14: Update policy from replay buffer Dexp

15: updateFromDemo(e, eprev,Dexp,Ddemo)
16: end for
17: updateDemonstrationBuffer(Dexp,Ddemo)
18: end for

The processing from the 12th to 14th lines de-
scribed in Algorithm 1 are the same as the pro-
cessing performed in conventional off-policy reinforce-
ment learning (DQN, DDPG, etc.). The details of
checkTeaching on line 4, updateFromDemo on line 15, and
updateDemonstrationBuffer on line 17 are described in the
subsections below.

C. Judging Demonstration Necessity

The determination as to whether to request the demonstra-
tion from human expert is made simply by comparing the
recent rewards with the past rewards. Algorithm 2 shows a
pseudo-code representation of this process. Let Rk;0 be the
average reward from the last k episodes to the present, let
R2k;k be the average reward from the last 2k episodes to
the last k episodes, and let ir (improve threshold) be the
threshold that determines whether the reward is improving.
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Note that Rk;0 represents recent rewards and R2k;k repre-
sents past rewards. In LATR, Rk;0 and R2k;k are compared,
and if Rk;0/R2k;k > ir, it is judged that the reward is suffi-
ciently improved and teaching is not necessary. Conversely, if
Rk;0/R2k;k ≤ ir, it is determined that teaching is necessary.

Qualitatively, ir is a parameter indicating how much the
robot depends on the human expert. When ir is∞, the robot
requests teaching every time, and when ir is zero, the robot
performs a trial and error by itself every time.

Algorithm 2 Judgment of Demonstration Necessity

k : window size for comparing reward
ir : task improvement threshold

Require:
Dexp : replay buffer

Ensure:
TRUE or FALSE : TRUE when teaching is needed and
FALSE for otherwise

1: function checkTeaching(Dexp)
2: Get rt−2k, ..., rt from experience memory
mathcalDexp

3: Rk;0 ← (rt−(k−1) + ...+ rt−1 + rt)/k
4: R2k;k ← (rt−2k + ...+ rt−(k+1) + rt−k)/k + 1
5: if Rk;0/R2k;k ≤ ir then
6: Return TRUE
7: else
8: Return FALSE
9: end if

10: end function

D. Policy Update from Demonstration

In the off-policy deep reinforcement learning algorithms
such as DQN, DDPG, and their derivatives, the policy is
updated by using the transition sampled from the replay
buffer. In LATR, the policy is not only updated from the
replay buffer, but also updated from the demonstration buffer.
The same algorithm is used for updating policies from the
demonstration buffer as for updating policies from the replay
buffer. The benefit of this is that LATR can be applied
generally to off-policy deep reinforcement learning using
replay buffers.

Especially in LATR, when updating the policy from the
demonstration buffer, the number of updating policy Ndemo,
is adjusted. Algorithm 3 shows the procedure of the policy
update from demonstration. The adjustment is performed as
follows:

1) Set Ndemo high immediately after teaching
2) Decrease Ndemo linearly with the number of episodes

passed since last teaching
The reason for (1) is to perform learning so as to em-

phasize the imitation of the teacher and to find a better
trajectory in a wide search space at an early stage. The
reason for (2) is to take an adaptive action in a changing
environment. In the real world, the environment changes
slightly depending on the time. Therefore, we aim to acquire

adaptability to the environment by placing importance on
information based on the trial and error of the robot acquired
in the recent environment, rather than the information at the
time of teaching acquired in the old environment.

Algorithm 3 Update Policy from Demonstration

Ndemo : number of iteration to update policy from
demonstration buffer
Ndemo ini : initial Ndemo to set after teaching.
rd : ratio of decay

Require:
Dexp : replay buffer
Ddemo : demonstration buffer
ecur : index of current episode
eprev :index of the last episode for which the teaching
was performed

1: function updateFromDemo(ecur, eprev,Dexp,Ddemo)
2: Ndemo ← bNdemo ini − rd ∗ (ecur − eprev)c
3: if Ndemo ≥ 1 then
4: for i = 1 ... Ndemo do
5: Sample random transitions from Ddemo

6: Update Policy using sampled transitions
7: end for
8: end if
9: end function

E. Estimating Teacher’s Action

Generally, even if the state transition at the time of teach-
ing is accessible, the action taken by the teacher is not always
accessible. For example, when only an image of a dashboard
camera is given as teacher data for automatic driving, the
operation of the steering wheel and the accelerator cannot
be fully accessible from the image alone. Similarly, teaching
a robot how much force to apply to a tool through kinesthetic
teaching is the case where the action of the teacher is not
fully accessible. Therefore, in LATR, we train state transition
model f : S×S → A with the state transitions (st, at, st+1)
in replay buffer. Then, by using this model, we estimate
the teacher’s action. Algorithm 4 shows a pseudo-code of
this procedure. Specifically, the state transition model was
implemented with a neural network in LATR. The estimation
of the teacher’s action by the model f is performed for all
the transitions stored in the demonstration buffer at the end
of each episode. This is to ensure that the transitions in the
demonstration buffer is always based on the latest estimation
when updating the policy.

Related previous studies include model-based reinforce-
ment learning [18] and system identification [19]. In these
methods, model of the state transitions is learned from the
record of the movement of the robot and are used for learning
policy or designing controllers. LATR uses these techniques
to estimate teacher’s actions.

IV. EXPERIMENT

In order to confirm the effectiveness of the proposed
method, LATR, we conducted an experiment with a simula-
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Algorithm 4 Learning physical model and estimating action
to reproduce demonstration

f : neural net model that predict a from (s, snext)
Require:
Dexp : replay buffer
Ddemo : demonstration buffer

1: function updateDemonstrationBuffer (Dexp,Ddemo)
2: Train f with transitions that are randomly sampled

from Dexp.
3: Estimate teacher’s action for all transitions stored in
Ddemo.

4: Update Ddemo with newly estimated teacher’s action
5: end function

tor. In addition, as a real-world experiment of skill acquisi-
tion by a life-sized humanoid, we conducted a hacksaw skill
acquisition and a Japanese planer (Kanna) skill acquisition
by a life-sized humanoid robot HRP2 [20].

A. Simulated Experiment: Inverted Pendulum

1) Experimental setup: An experiment to learn the control
of inverted pendulum was performed on a simulator [21].
Learning was performed using DQN and LATR at different
irs. For comparison, the policy update algorithm of LATR
was set in the same way as DQN. In another word, the proce-
dures from the 12th to 14th lines described in Algorithm 1
are the same procedures of DQN. Also, LATR and DQN
shares the same network structures for Q-network.

For Q-network, we used two-hidden-layer network with
size 150-150 and used hyperbolic tangent function (Tanh)
as activation. The network size was determined empirically
so that the learning process terminates within 20ms (50Hz)
per frame. Discount factor of γ = 0.95 was chosen, and
for exploration strategies, epsilon-greedy with ε = 0.2 was
chosen for both LATR and DQN. For f in Algorithm 4, we
used one-hidden-layer network with size of 100 and used
ReLU for activations. Adam optimizer [22] is chosen with
base learning late of 0.001 for the learning of both Q-network
and f . As for m in Algorithm 1 and k in Algorithm 2, we
chose m = k = 5.

The default reward has been overwritten, and the agent
receive the reward of 1 at the end of the episode if the agent
could stand up the inverted pendulum more than 195 frames,
otherwise -1. The agent only receives rewards at the end of an
episode and receives zero rewards during the episode. The
maximum simulation time of each episode was set to 200
frames, and we conducted 10 sets of 750 episodes of learning
for each algorithm. As for the teacher’s demonstration, we
used a record of the trajectory of a previously trained agent
executing a task.

2) Experimental result: The results of the learning curve
for DQN and LATR at different ir are shown in Fig. 3.
Table I represents the average of the number of teachings.
For the inverted pendulum control task, Fig. 3 shows that
the more the request for teaching is, the faster the learning
is raised.

Fig. 3: The figure shows the learning curves comparing DQN
and LATR (ours) with different parameters of ir. The bold
line shows the average, and the filled range represents the
range of the variance 1σ.

TABLE I: Average number of requests for teaching

DQN LATR (ir=0.5) LATR (ir=1.0) LATR (ir=10.0)
0 1.6 59.3 148.0

B. Real-world Experiment: Hacksaw manipulation skills

1) Experimental setup: In this experiment, DQN was
also used as the off-policy reinforcement learning algorithm
for LATR. The sawing motion was created in advance as
described in Section II.

State features are five-dimensional and include the reaction
forces of both hands and the velocity of the tool. The reaction
forces are two-dimensional for each hand: the direction in
which the hacksaw is pushed and pulled, and the direction
in which the hacksaw is pressed. State is a 20-dimensional
vector that connects state features for the last four frames.
The reaction forces are measured using a 6-axis force sensor
attached to the robot’s wrists.

Discrete actions are expressed by strengthening or weak-
ening the target reaction force in each hand. We set five
actions in each hand: strengthening, strengthening slightly,
not chancing, weakening slightly, and weakening. The pair
of the five actions in each hand was used as the discrete
actions. Hence, the actions consist of 25 different action. In
this study, we used ±1 N change in target reaction force
for strengthening or weakening and used ±0.5 N for slighter
changes. Fig. 4 explains the state and action used in this
experiment.

One episode in learning was a movement in which the
hacksaw was reciprocated once, and an episode was divided
into 80 frames. The actions were determined in each frame.
We conducted three sets of 110 episodes training each on
LATR and DQN.

Rewards are determined based on the sound. Roughly, the
reward is set to be high when the sound is close to the
sound of the expert’s operation, and the reward is set to be
low when the sound is different from the expert’s operation.
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(a) State features include the re-
action forces of both hands and
the velocity of tool.

(b) Action is to increase or to
decrease the target contact force
in the next frame.

Fig. 4: State and action defined for hacksaw task.

Specifically, for 80 frames that constitute one episode, the
sound in each frame is identified, and the total number of
frames determined to be close to the expert operation is
calculated as a reward. For example, if there are sounds
that are determined to be close to a human sound in 30
frames out of 80 frames, the reward is calculated as 30.
Sound identification is performed by classifying spectrogram
images using a neural network that had been trained in
advance. We chose NIN [23] as the network structure. Fig. 6
shows a spectrogram image when the expert operates a
hacksaw. To collect a data set for pre-training, a microphone
was placed beside the wood and the expert actually cut the
wood with a hacksaw, as shown in Fig. 5. At this time, the
expert not only operated the hacksaw well to collect positive
examples but also intentionally operated the hacksaw poorly
to collect negative examples. A total of 240 sound samples
were prepared, including positive and negative examples.
Among the prepared samples, 80% was set as the train data
and 20% was set as the validation data. As a result of 20
epochs of training with the augmented data, the identification
success rate with the validation data was 90.7 %.

Microphone to record sound

Demonstra�on by expert

Fig. 5: The expert operates the hacksaw and samples the
sound to train the NN to determine whether the operation
sound of the hacksaw is close to the sound of expert’s
operation.

2) Execution of teaching: Fig. 7 shows how the human
expert teaches to the robot. The human expert taught the
robot by applying force to the link closer to the body than the
link with the robot’s 6-axis sensor. By doing so, the resultant
force of the force applied to the tool by the human and the
robot can be measured by the six-axis force sensor attached
in robot’s wrist. While teaching, the robot was controlled
with impedance control so that the tool and wooden parts can

Fig. 6: Left: An example of a spectrogram image when the
hacksaw is operated successfully. Right: An example of a
spectrogram image when a hacksaw is operated poorly.

naturally interact with each other. In addition, we created an
interface to input whether the teaching was successful, and if
it failed, we did not save the data in the demonstration buffer,
preventing the incorporation of incorrect teaching data.

t=0.0[s] t=6.0[s]t=3.0[s]

Help!

Fig. 7: The robot requests teaching based on recent reward
transitions, and a human expert teaches the robot the appro-
priate target reaction force through kinesthetic teaching.

Fig. 8: This graph shows the reward gained by the HRP2
while learning wood cutting skill in average over 10
episodes.

3) Experimental result: Fig. 8 shows the moving average
of the reward while learning the hacksaw task. In the LATR,
the robot asked humans for teaching 17 times on average.
From Fig. 8, the rewards in LATR and DQN converge to the
same after around 90th episode, but on the other hand, from
0th to 80th episode, the reward increases faster with LATR,
suggesting that LATR enables efficient learning.

C. Real-world Experiment: Acquisition of Japanese Planer
(Kanna) manipulation skills

1) Experimental setup: We also conducted experiments to
learn the skills of Japanese Planer (Kanna). Japanese planers,
like hacksaws, are also tools that require complex adjustment
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of force. As for the state and the action in learning, the target
reaction force of the hand and the speed of the tool were used
as in the experiment with the hacksaw. Other parameters
in the LATR were the same as in the hacksaw experiment.
The reward was judged by the human expert. The reward
is 1 if the robot can handle the planer correctly and -1
if it fails. Fig. 9 shows the situation when the planer was
handled correctly and when it failed. As shown in Fig. 10,
the teaching of the planer operation was performed by the
human holding the upper arm of the robot and correcting the
force to apply while the robot was operating the planer. The
experiment with the planer took longer than the experiment
in the hacksaw, so we conducted the experiment only with
LATR.

0.0[s] 4.0[s] 8.0[s]

0.0[s] 4.0[s] 8.0[s]

success

fail

Fig. 9: Figures in upper row shows successful handling of the
Japanese planes. On the other hand, the figure below shows
when it failed.

0.0 [s] 4.0[s] 8.0[s]

Fig. 10: Teaching force adjustment of kanna shaving motion
by kinesthetic teaching.

Fig. 11: Graph above shows transition of success ratio of
kanna shaving motion in average over 100 episodes.

2) Experimental result: Fig. 11 is a graph showing a
moving average of the success ratio. Since the reward is +1
for success and -1 for failure, the success ratio can be easily
calculated from the reward. During training for 400 episodes,

the robot requested teaching 32 times in total. From Fig. 11,
the success ratio is gradually increasing, indicating that the
robot mastered the skills to operate a Japanese planer.

D. Real-world Task: Building a Simple Bookshelf

We conducted experiment to make sure that the acquired
skills are practically useful by making a small bookshelf
using the tool operation skills acquired in the previous sec-
tion. The completed view of bookshelf is shown in Fig. 12.
As shown in Fig. 13, the bookshelf is made of (A) two
square bars and (B) two flat plates. The steps for making
the bookshelf are as follows:

• HRP2 chamfers parts (B) with a Japanese planer
(Kanna).

• HPR2 cuts parts (A) off with a hacksaw to 45 degrees.
• A person assembles parts (A) and (B) with adhesive.
Fig. 14 shows a series of flows to build a small bookshelf

using the acquired skills. This experiment showed that the
acquired skills can be used practically.

Fig. 12: Completed view of bookshelf.

Fig. 13: (A) A rectangular lumber cut down by hacksaw. 2
of them are needed to complete bookshelf.
(B) A wooden plate whose edges are cut off by kanna. 2 of
them are also needed.

V. SUMMARY AND CONCLUSIONS

In this study, we proposed a novel method for a life-
sized humanoid robot to acquire tool manipulation skills that
require complicated force adjustment. Various studies have
been conducted on life-sized humanoid robots such as fall
prevention and motion generation, and it is essential to ben-
efit from these studies. We have proposed an integrated sys-
tem that incorporates the latest deep reinforcement learning
while utilizing these studies. The proposed integrated system
consists of three components: off-line motion generation,
high-frequency online control, and low-frequency learning
components. In this study, by being benefited from the latest
research in each field, we realized the acquisition of tool
manipulation skills by a life-sized humanoid robot.

In addition, a learning algorithm with high sample effi-
ciency is indispensable for reinforcement learning using a
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Fig. 14: (a)(b) The HRP2 shaves and cuts off edge of wooden
plate. (c)(d) The HRP2 cuts down rectangular lumber with
the partner. (e) The partner assembles the parts. (f) The
bookshelf is indeed useful.

real robot. In particular for a humanoid robot, the cost of
running the robot is higher than normal manipulators. Hence,
the sample efficiency is a critical issue. Despite this issue,
a life-sized humanoid robot has the strong advantage that
a person can teach the robot the skills just as that person
would teach another person. In this study, we proposed a
learning method called Learning with Active Teaching Re-
quest (LATR), in which a robot determines whether it needs
teaching based on the transition of rewards and learns tool
manipulation skills while teaching interactively. Furthermore,
using the integrated system incorporating LATR, we realized
the acquisition of hacksaw manipulation skills and Japanese
planer manipulation skills by the life-sized humanoid robot.
In addition, we demonstrated through a practical experiment,
the bookshelf making task, that the acquired skills were
indeed practical.

In future work, instead of creating the motions of the robot
heuristically, we would like to create them by observing how
a person operates a tool. Also, considering that it is actually
costly for humans to teach, as an extension of LATR, we
would like to investigate a learning method that considers
the cost of human teaching.
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