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Abstract— Spiking neurons might play a larger role than
simply as an efficient signal transmitter. Several studies have
demonstrated how movements can be generated using networks
of spiking neurons. However, the complexity of spiking neural
networks makes their implementation difficult, and the use of
spiking neurons in robotics has remained largely impractical. In
this paper, we show that the addition of a single layer of spiking
neurons can help improve performance on stabilization tasks
in dynamically changing environments. In a one-dimensional
inverted pendulum stabilization task, the spiking neurons seem
to expand the space of usable parameters of the controller.
Using a robot arm in 3-D space, the additional layer of spiking
neurons suffices to improve performance up to 30% on an
inverted pendulum stabilization task. We expect this technique
to enhance performance in most stabilization tasks but also
tasks that are essentially similar such as reaching tasks and
posture control. We also expect the effects of this layer to
be greatest when the optimal tuning of control parameters is
difficult, such as when the environment is unpredictable and
dynamic.

I. INTRODUCTION

Cognition and movement generation in animals and hu-
mans are one of the fundamental touchstones against which
we assess progress for many tasks in the field of robotics and
machine learning. One of the building blocks of the nervous
system, the spiking neuron, has been at the center of research
aiming at uncovering the mechanisms responsible for some
of the feats we have been observing from these biological
systems.

This line of research includes neuromorphic platforms[1],
which are very-large-scale integration systems used to sim-
ulate large scale networks of spiking neurons. Simulation
of models of neurons can easily become computationally
expensive, but through event-based computations and sub-
stantial architectural parallelism, neuromorphic platforms
offer an efficient alternative to more traditional Von Neu-
mann architectures[2], [3]. However, the applications of
such platforms are oftentimes more abstract, cognitive tasks
such as image processing, constraint satisfaction problems or
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simultaneous localization and mapping[4], [5], and remain
limited in terms of movement generation.

While not necessarily implemented on neuromorphic plat-
forms, there are multiple studies on movement generation
using networks of spiking neurons. It was shown that reach-
ing movements can be generated from a fairly large generic
spiking neural network (not tuned for the specific task) by
simply training a linear read-out that generates commands
from the firing activity of the network[6]. Spiking neural
networks can also be used to generate movement trajectories
towards a goal while avoiding obstacles[7], [8]. This path
planning can even be taken a step further to control a real
robot arm[8].

These studies shed light on some of the computing prin-
ciples that govern movement generation in a biological ner-
vous system. However, these control systems are relatively
complex and their application to more practical situations is
difficult. In this paper, we build upon a novel paradigm for
the application of spiking neurons to robot control[9], whose
simplicity makes its implementation on most control systems
a lot easier. It consists of the addition of a single layer
of independent spiking neurons to a conventional controller.
While spiking neuron implementations of controllers such as
a PI controller exist[10], we deliberately constraint our use
of spiking neurons as a ”filter layer” to focus on the intrinsic
properties of the generated spikes: In a simplified setting, a
stabilization task with periodically varying random perturba-
tions, we show that the use of a Spiking Neuron Ensemble
(SNE) seems to allow previously inadequate parameters to be
used successfully for stabilization. Next, we demonstrate in a
more practical setting, involving the control of a robot arm in
3-D space, that the use of the SNE enhances performance on
a stabilization task in a dynamically changing environment.

II. CONTROL MODEL, SPIKING NEURONS ENSEMBLE AS
A FILTER

A. Overview of the control model

We consider a hybrid control system composed of a
controller and a layer of independent spiking neurons, where
the output of the controller is fed into the layer of spiking
neurons. The layer is essentially an ensemble of spiking
neurons that do not receive any collateral connections from
other neurons and hence are solely influenced by internal
noise and the common input. This architecture was first
proposed in [9] and was inspired by the finite-size mean
field approximation of random spiking neural networks[11],
and the sparse and parallel structure of lower motor neurons
innervating muscle fibers[12].
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Fig. 1: Control System. The output of a controller is fed to a filter consisting of an ensemble of independent spiking neurons

In our case, we consider a PD controller, whose output
signal I is fed to an ensemble of Leaky Integrate-and-Fire
(LIF) neurons. An LIF neuron is defined by the following
dynamics:

τmu̇ = −u+ gioI(t) +
√
2DW (t) (1)

u = uth ⇒

{
t = ts (record spike timing)
u = ur until t = ts + τref

where u is the membrane potential, τm the membrane time
constant, uth the firing threshold of the neuron, ts the time of
firing, ur the resting membrane potential, τref the refractory
period, gio the input gain, D the noise intensity, and W the
Gaussian input noise of unit intensity.

The ”fire and forget” dynamics of a LIF neuron (i.e.
information is lost due to the reset dynamics) could also be
understood as a sigmoid-like kernel with additional noise.
This can be a fairly accurate model of LIF neuron dynamics
in the case of constant input [13] but rapidly becomes
irrelevant for time-varying inputs.

The action potentials resulting from the firing of neurons
in turn act as excitatory signals σi to a synapse from which
we obtain an activation signal A:

spike train: σi(t) =
∑
s

δ(t− ts)

τsẏ = −y(t) + gs
N

N∑
i=1

σi(t)

A(t) = gacty(t)−A0

(2)

Where gs, gact are gain parameters, y is the post-synaptic
membrane potential, τs is the synaptic time constant, and N
is the total number of neurons in the ensemble.

Therefore, the SNE can be seen as a signal filter rather
than a controller (Fig. 1) and could be used to complement

virtually any controller. Qualitatively, the filter would trans-
form a typically smooth control signal into a stochastic and
discontinuous one. Such filtering does not encode positive
and negative-value inputs in the same way. To remediate
this problem, similar to the presence of antagonistic muscle
pairs, we use two SNEs, each encoding activation in opposite
directions:

Apos(t) = gactypos(I, t)−A0

Aneg(t) = gactyneg(−I, t)−A0

A(t) = Apos(t)−Aneg(t) (3)

This controller-filter duality allows us to isolate the effects
of the dynamics of LIF neurons from the controller, and
the bidirectional SNEs allow a spike-based encoding of the
activations. Indeed, a firing rate-based encoding in which
positive and negative activations are encoded relative to
a threshold firing rate is also possible (e.g. firing rates
above and below 5Hz encode positive and negative outputs
respectively). However, this method requires the recording
of action potentials during an arbitrary time window and
is maladaptive to the observation that individual spikes, as
opposed to firing rates, provide valuable information[9].

B. Interpretation of the control system

The SNE can, therefore, be seen as a temporal filter of the
control signal generated by the PD controller. The number
of neurons N in each SNE and the synaptic time constant τs
modulate the stochasticity of the output signal[13]. A higher
number of neurons in the ensemble or a larger synaptic
time constant reduce the stochasticity of the output signal.
Theoretically, an infinitely large N and an adequate τs should
completely remove the influence of internal noise on the
output, making it a deterministic system. An exception is
when all neurons fire synchronously, in which case the SNE’s
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firing pattern would be closer to that of a single stochastic
spiking neuron.

III. EXPANSION OF THE SPACE OF ADEQUATE CONTROL
PARAMETERS

Before the inverted pendulum stabilization using a robot
arm, we investigated the effect of the SNE in a simpli-
fied environment. To remove the nonlinearity and high-
dimensionality associated with the use of a robot arm in 3-D
space, we consider the stabilization of an inverted pendulum
in 2-D space, subject to periodic perturbations.

A. Overview, inverted pendulum stabilization in 2-D

Let the inverted pendulum be a rod of length 1.5 meters,
placed vertically on a flat, horizontal surface and subjected
to a vertical gravitational force and a periodically changing
horizontal external force at its center of mass, as well as
a horizontal force at its base which is specified by the
controller (Fig. 2).

𝐹𝑒𝑥𝑡

𝐴(𝑡)

𝑔

Fig. 2: Inverted pendulum stabilization in 2-D space

The system can be viewed as a one-dimensional system
with an external perturbation force Fext to the pendulum as
in (4). The PD controller specifies the horizontal acceleration
of the base A(t) = Ẍ(t) using the angular displacement θ
of the pendulum measured from a vertical position, and the
angular velocity θ̇. Performance is defined as ”the simulated
time (in seconds) until the pendulum falls (vertical angle θ
of the pendulum reaches ±π/2)”. The simulation time step
is ∆t = 1.0ms. The pendulum is initialized at varying angles
from the vertical, sampled from the uniform distribution
U(−π/2, π/2), and with an initial angular velocity θ̇(t =
0) = 0.

The external perturbation Fext is a constant force whose
direction and amplitude were determined by sampling from
the uniform distribution U(−extF, extF ). From now on,
”Gain of external force” will refer to extF which specifies
the sampling space of the external perturbation force Fext.
Various values of extF were examined. This sampling of
Fext was done once, every one second of simulated time.

To summarize, the whole system can be fully described
by the following equation:

θ̈ − g

l
sin θ = F cos θ − Ẍ

l
cos θ (4)

N τs gio τm τref uth ur

40 2.0ms 1.0 15.0ms 2.0ms 20.0mV 15.5-17.0mV

TABLE I: List of parameters set for the Spiking Neuron
Ensemble

where θ is the angle of the pendulum, Ẍ = A(t) is the
acceleration at the base of the pendulum, l = 1.5m the length
of the rod, g = 9.81m/s2 the standard gravity.

Therefore, when no SNE is involved, the PD controller
solely determines the acceleration of the base of the pendu-
lum:

Ẍ = A(t) = Kpθ(t) +Kdθ̇(t) (5)

In the case of a SNE-driven control, the above signal
Kpθ(t) + Kdθ̇(t) is given as input to the SNEs and is
filtered according to (1) and (2), to produce the activation
A(t) = Ẍ(t).

B. The SNE can adapt to inadequate PD controllers

For a successful stabilization, the parameters of the PD
controller need to have high enough gains but also an ade-
quate Kp/Kd ratio. If this ratio is inadequate, even extremely
high gains might not lead to stabilization. 10 seconds of
stabilization time was deemed long enough to label the
stabilization of the pendulum a success. We investigated
how the addition of the SNEs change performance, for
various ratios Kp/Kd as well as various gains of external
force extF . We examined extF ranging from 0N up to
extremely high forces of 50kN (Fig. 3). These unrealistically
high forces remain relevant only because of the simplicity
of the system considered in this toy-problem, and no such
perturbations were considered in the more realistic case using
a robot arm.

All the cases considered reflected the same trend, which
we describe below. All combinations of Kp and Kd taken
from {1, 10, 102, 103, 104, 105, 3×105, 5×105, 7×105, 106}
were examined (total of 10×10=100 cases). For the PD+SNE
controller, each PD controller was tested with an output gain
gact from {1, 102, 104, 105, 3× 105, 5× 105, 106} for a total
of 700 cases. Among the other parameters of the SNE, N
and τs were set at values that often worked well in our
experience, and the rest was set at biologically plausible
values, which can be found in Table I.

In Fig. 3, we show the results of the best PD controller
found for that each of 4 Kp/Kd ratios, along with perfor-
mance when a SNE layer is added that same PD controller
(for various SNE output gains gact). The overall best PD
controller was determined manually as in most cases the best
PD controller for a specific Kp/Kd showed the best results
for virtually all extF .

Both in the case of the PD controller and the PD+SNE
controller, we can observe a monotonic decrease in perfor-
mance as extF increases (Fig. 3). However, while for the
PD controller, performance suddenly drops above a threshold
extF , this decrease is notably smoother in the case of the
PD+SNE controller, a testament to the ability of the PD+SNE
controller to adapt to a wider range of external perturbations.
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Fig. 3: Performance according to gain of external force extF (in kN) for 4 Kp/Kd ratios, with and without SNE. Error
bars represent standard deviations

In 3 out of the 4 cases, the additional SNEs dramatically
enhances performance (Kp/Kd=10−2,1,102). Overall, an
adequate Kp/Kd ratio for the PD controller seems to lie
in between Kp/Kd = 10 and Kp/Kd = 100, outside of
which the stabilization is only successful when no or little
perturbation is involved. For the PD+SNE controller, we
observed substantial improvements (similar to that seen in
Fig. 3) compared to the PD controller for all ratios Kp/Kd

= 10 and below. For ratios above Kp/Kd = 100, where the
controller is essentially a P controller, both PD and PD+SNE
controllers show poor results. For ratios between Kp/Kd =
10 and Kp/Kd = 100, both PD and PD+SNE controllers can
adapt to extremely high extF (above 20kN).

Therefore, the SNE seems to expand the space of adequate
parameters for the PD controller, especially for ratios below
Kp/Kd=10. In other words, it allows optimal control while
being less demanding on the specific values of the parameters
of the controller. Similar results, in a task different from
the inverted pendulum, were reported in [9]. The synapse
acting as the error-integration term in a PID controller is a
possible explanation of the results. However, the extremely
short integration time window that it would imply (1-10ms),
and the ”fire-and-forget” dynamics of LIF neurons make this
explanation unlikely. Moreover, analytical derivations of the
output of such architecture do not include any integration
terms[13].

IV. INVERTED PENDULUM STABILIZATION USING A
ROBOT ARM

In the case of a robot arm moving in 3-D space, we
can expect different optimal PD control gains depending
on the direction of the movement relative to the arm and
depending on the initial state of the arm, as the dynamics
vary significantly between a fully extended arm and one
with the hand close to the body. A single PD controller
with constant parameters, therefore, might not be optimal
for the various states of the arm. We can expect that the
lenience concerning the control parameters, granted by the
use of an SNE, would work favorably and lead to overall
better performance.

A. Settings

We consider an inverted pendulum, placed on the hand of a
robot arm with 4 Degrees of Freedom (Fig. 4). The shoulder
joint is a universal joint, the elbow and wrist joints are hinge
joints with parallel rotation axes. The measurements of the
arm are detailed in Table ??. The pendulum is connected
at its base to the hand with a ball joint. The pendulum is
of length 0.5 meters and the dimensions of the robot are
noted in Fig. 4. The inverted pendulum is initialized without
angular velocity, at various angles. The mass density of each
part of the arm in described in Fig. 4, with ρ0 set at ρ0 =
5000kg/m3.

This set-up aims at increasing the complexity of the previ-
ous task, by adding the nonlinearity and high-dimensionality
associated with the use of the robot arm and the extension
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to 3-D space. This set-up should not be reducible to two
separate 2-Dimensional problems as the dynamics of the
robot arm varies significantly between the x and y axis. It
also inherits the previous control architecture which specifies
the acceleration of the base of the pendulum and not the
torque at each joint motors. The SNEs process the signals
specifying the acceleration of the base of the pendulum
because filtering the signal for each joint motor would make
the arm oscillate vertically. It is a well-known fact that
rapid vertical oscillations can induce an inverted pendulum
to stabilize[14]. An eventual performance improvement could
thereby be attributed to these rapid vertical oscillations and
not specifically to the activity of the spiking neurons. There-
fore, the SNEs were applied to the horizontal acceleration of
the hand of the robot, to circumvent the effects of vertical
oscillations.

𝜌0/10

𝐹𝑒𝑥𝑡

𝑥

𝑦

10𝜌0

𝜌0

100𝜌0

𝜌0
𝑦

𝑧

Fig. 4: An illustration of the robot arm used in the simulation
and its dimensions

Fig. 5: A snapshot of the simulated inverted pendulum
stabilization using a robot arm

An external force modeling the wind is applied, parallel
to the ground, at the center of mass of the pendulum. The
force is of constant amplitude F = 0.3N and its direction
is changed every second. Additional small variations (of 1%

of the amplitude F ) are applied along each axis, at every
simulation time step ∆t = 1.0ms. Numerical simulations of
the arm, joint, and body contact dynamics were done with
ODE(Open Dynamics Engine)[15].

In addition to the controller that signals the planar accel-
eration at the base of the pendulum (the ”hand controller”),
another PD controller was used to move the base of the
robot (the trunk as opposed to the hand) and avoid extreme
contractions or extensions of the arm during stabilization.
This PD controller, which we name ”trunk controller”, is not
subject to signal filtering by an SNE and its gain parameters
are optimized in conjunction with the main controller. We
assumed that in a biological system, the stochasticity of spik-
ing neurons would have very little influences on the lateral
movements of the heaviest parts of the body (the trunk), and
thereby decided not to subject the ”trunk controller” to SNE
filtering.

Moreover, it allowed us to investigate the effects of an
indirect limit on the output of the hand controller. This was
done by clamping the output of the ”trunk controller” to
maintain it within prescribed values. This clamping limits
the capabilities of the robot to readjust its base relative to
the hand, and thereby it’s regulation of the extension or
contraction of the arm is impaired. This imposes an indirect
limit to the movement of the hand as a sudden extension
of the arm could lead to its full extension and therefore its
inability to further adjust to the falling pendulum. Unless
otherwise stated, the trunk controller is not clamped.

We also compared our results with the performance of a
sigmoid kernel with additive white noise:

Apos(t) =
Ks

1 + e−asI(t)+bs
+
√

2DsWs(t)

If our hypothesis made during the previous task is correct,
the PD+SNE controller should demonstrate overall better
performances than a regular PD controller. This is why we
optimized both the PD controller and the PD+SNE controller
independently, to see if the PD+SNE controller can attain
performances that are not possible with the use of a PD
controller alone. Both controllers were optimized using a ge-
netic algorithm. The genetic algorithm employed, consisted
of a binary gene representation of the parameters, a dynamic
population size reduction over generations, a crossover rate
of 80%, and a mutation rate of 1%. Parameters were tuned
according to the reward function: ”Simulated time until
the pendulum falls (becomes parallel to the ground)”. The
simulation time-step was set at ∆t = 1.0ms. The parameters
to be optimized are: Kp, Kd (of both controllers), N , τs,
gio, and gact.

This optimization was done twice, with and without
clamping of the output of the trunk controller.

B. Results

After optimization of the parameters, the performances for
each controller, with/without clamping of the output of the
trunk controller, were as follows (Table II). These results
are the mean and standard error (over 5 samples) of the

3793



mean performance, which was calculated as the mean time
until the pendulum falls (over 2000 trials). At each trial, the
arm was reset at the same initial position, and the polar and
azimuthal angles of the pendulum were sampled from the
uniform distributions U(−π, π) and U(0, π/2) respectively.

PD PD+SNE PD+Sigmoid+Noise
Default 5.779± 0.136 7.028± 0.067 3.095± 0.062
Clamp 5.523± 0.080 6.977± 0.108

TABLE II: Performance of the optimized PD controller and
PD+SNE controller, in seconds

We found that the PD+SNE system showed an 18-26%
better performance compared to the PD controller. When
an indirect limitation is put on the output of the controller
through clamping of the trunk controller (as discussed in
the previous section), we observed a 23-30% increase in
performance compared to the PD controller. Therefore, we
can confirm that the use of SNEs substantially increased
performance compared to the PD controller alone. Moreover,
the noticeably lower performance of the application of a
sigmoid kernel and white noise indicates that the effects of
the SNE layer do not simply come from a non-linear gain
manipulation and the addition of noise. These results are
in accordance with the idea that individual spikes provide
valuable information.

Drawing the robot arm in action (please refer to the video
in the supplementary materials) reveals that the use of the
SNE filter led to the adoption of a stabilization mode that
differs from the one arising from the use of a PD controller
alone. Instead of attempting to draw the pendulum closer
to its vertical state, as would be expected from the PD
controller, the PD+SNE controller stabilizes the pendulum
by actively swinging the pendulum and keeping the swings
within certain angles.

We would like to emphasize again that the SNE only acts
as a filter of the control signal generated by the PD controller.
These results show that the utilization of spiking neurons and
the temporal filtering that it offers, add adaptivity to the agent
(in the context of an inherently random and dynamically
changing environment).

V. CONCLUSIONS

An ensemble of independent spiking neurons consists of
using an ensemble of independent spiking neurons to filter
the activation signal of the controller, before giving it to the
actuators. This seemingly simple architecture applied to a
PD controller for the stabilization of an inverted pendulum
subjected to external forces led to a substantial expansion
of the control parameters that can be used to successfully
stabilize the pendulum. The mechanisms of this phenomenon
need to be elucidated by further research.

In a more complex and practical setting, involving the
control of a robot arm in 3-D space, this additional layer
of SNE allowed noticeably higher performance (an 18-30%
increase) compared to the PD controller alone. The expansion
of usable control parameters which was observed in the first

experiment can also be interpreted as the SNEs granting
adaptability to the control system. A transient change in the
environment shifts the optimal control parameters and the
space of ”adequate” parameters. In a conventional controller,
this shift can render the current control parameters not
optimal and even inadequate. However, using the SNEs can
allow us to potentially avoid this problem. We hypothesize
that in the case of the robot arm, the change in the arm
position and the external perturbation forces transiently shift
the optimal parameters for the PD controller, and as a result,
the adaptability granted by the SNEs would lead to an
improvement of performance.

This simple and practical addition can potentially be
coupled with any controller. While analyzing this architecture
involved optimization using a genetic algorithm, we often
found that SNE shows the most benefits in the N=1-50
neurons and τ=1-20ms time constant range. This leads us to
think that the aforementioned properties of the SNE could
potentially be leveraged without or very limited optimization.
Furthermore, we expect this architecture to lead to perfor-
mance improvements in other tasks involving some form of
stabilization such as reaching a moving target, or posture
control.

REFERENCES

[1] M. Davies et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[2] J. Von Neumann, “First draft of a report on the edvac,” IEEE Annals
of the History of Computing, vol. 15, no. 4, pp. 27–75, 1993.

[3] P. Blouw et al., “Benchmarking keyword spotting efficiency on neuro-
morphic hardware,” in Proceedings of the 7th Annual Neuro-inspired
Computational Elements Workshop, 2019, pp. 1–8.

[4] T. Hwu et al., “A self-driving robot using deep convolutional neural
networks on neuromorphic hardware,” in 2017 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2017, pp. 635–641.

[5] G. Tang et al., “Spiking neural network on neuromorphic hardware for
energy-efficient unidimensional slam,” in International Conference on
Intelligent Robots and Systems (IROS). IEEE/RSJ, 2019.

[6] Joshi, Prashant and Maass, Wolfgang, “Movement generation with
circuits of spiking neurons,” Neural Computation, vol. 17, no. 8, pp.
1715–1738, 2005.

[7] M. N. Zennir et al., “Spike-time dependant plasticity in a spiking
neural network for robot path planning.” in AIAI Workshops, 2015,
pp. 2–13.

[8] E. Rueckert et al., “Recurrent spiking networks solve planning tasks,”
Scientific reports, vol. 6, no. 1, pp. 1–10, 2016.

[9] S. Yonekura et al., “Spike-induced ordering: Stochastic neural spikes
provide immediate adaptability to the sensorimotor system,” Proceed-
ings of the National Academy of Sciences, vol. 117, no. 22, pp. 12 486–
12 496, 2020.

[10] S. Glatz et al., “Adaptive motor control and learning in a spiking
neural network realised on a mixed-signal neuromorphic processor,” in
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 9631–9637.

[11] T. Schwalger et al., “Towards a theory of cortical columns: From
spiking neurons to interacting neural populations of finite size,” PLoS
computational biology, vol. 13, no. 4, p. e1005507, 2017.

[12] Baker, SN and Lemon, RN, “Computer simulation of post-spike
facilitation in spike-triggered averages of rectified emg,” Journal of
Neurophysiology, vol. 80, no. 3, pp. 1391–1406, 1998.

[13] B. Lindner, “Coherence and stochastic resonance in nonlinear dynam-
ical systems,” Ph.D. dissertation, 2002.

[14] A. Stephenson, “Xx. on induced stability,” The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, vol. 15,
no. 86, pp. 233–236, 1908.

[15] R. Smith, “Open dynamics engine,” May 2001, www.ode.org.

3794


