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Abstract— Despite plenty of motion planning strategies
have been proposed for bipedal locomotion, enhancing the
walking robustness in real-world environments is still an open
question. This paper focuses on robust body and leg trajectories
synthesis through integrating constrained optimization with
imitation learning. Specifically, we first propose a Quadratically
Constrained Quadratic Programming (QCQP) algorithm to
make use of the ankle strategy and stepping strategy. Based
on the Linear Inverted Pendulum (LIP) model, body motion
can be determined by the modulated Center of Pressure (CoP)
position and step parameters (including step location and
step duration). After that, we exploit an imitation learning
approach Kernelized Movement Primitives (KMP) to plan robot
leg motions, which allows for adapting the learned motion
patterns to new situations (e.g., passing through various desired
points) in a straightforward manner. Several LIP simulations
and whole-body dynamic simulations demonstrate that higher
walking robustness can be achieved using our framework.

I. INTRODUCTION

Humanoid robots are expected to accomplish various tasks
in unstructured environments, which consequently brings
significant challenges to walking motion planning as well as
stabilization. In order to improve walking robustness, body
and leg motions need to be synthesized online in order to
respond timely to external disturbances.

In a typical framework of humanoid motion planning, the
step parameters are usually first determined, and then robot
body and leg movements complying with certain stability cri-
teria are generated. Tracking the pre-defined step parameters,
the utilization of ankle strategy (i.e., manipulating the Center
of Pressure (CoP) movement inside the support polygon)
contributes to gain robust walking patterns [1]–[3]. However,
in this way, the CoP movement is limited by the finite-sized
support feet, which in turn weakens the walking robustness.

Note that step parameters modulation in real-time, as
an effective way for recovering from severe disturbances,
has been widely studied in the past few decades. In par-
ticular, various analytic solutions have been proposed for
step parameters adjustment [4]–[8]. In order to guarantee
the feasibility, the physical constraints (e.g., due to the
sudden changes of step location and duration) arising in the
walking process should be taken into account carefully. To
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do so, the constrained optimization technique was adopted
for modulating step parameters online. For example, Model
Predictive Control (MPC) strategies capable of using future
information have been applied for step location adjustment
[9]–[12] and step duration modulation [13]. Nonlinear Op-
timization (NLP) techniques were employed to compute
optimal step parameters, e.g., [14]–[16]. However, the NLP
is often time-consuming because of non-linearity caused by
step duration modulation. To reduce the computational cost,
further works on simplified NLPs were proposed in [17]–
[19], where duration-related variables were introduced to
replace the exponential term of time.

Recently, to further improve the robustness, some works
have been done to integrate the ankle strategy with stepping
strategy. By taking [17] as a basic optimizer, the works in
[20] and [21] manipulated the Zero Moment Point (ZMP)
movement to fully use the allowable support region. In [18]
and [22], the hierarchical structure was also proposed to
realize CoP movement and step parameters adjustment.

Once CoP motion and step parameters are determined,
the robot body movement can be synthesized by using
the relationship revealed in dynamic models, such as the
Linear Inverted Pendulum (LIP) model [23]. After that,
another key-point for gait generation is to plan the feasible
leg trajectories. Generally, this problem can be solved by
interpolation schemes, e.g., the high order polynomial [2] and
Bezier curves [24], [25]. However, this kind of interpolation
is prone to over-fitting or under-fitting when via-/end- point
or time duration changes dramatically (e.g., due to external
disturbances) within one step.

As a promising solution to generate proper robot leg
movements, motion primitives have been used in recent
works [26]–[28]. However, the optimal adjustments of robot
motions or step parameters that compensate for dynamic
disturbances should be determined beforehand. To cope
with these prerequisites, Reinforcement Learning (RL) was
introduced into the Dynamic Movement Primitive (DMP)
algorithm [29]. Following this idea, the task-space DMP
[30] and the joint-space DMP [31] were employed for push
recovery. However, it is often time-consuming to find the
optimal policy using RL approaches. Specifically, DMP is
limited to trajectory adaption towards a target point, where
via-point modulation is not allowed. Moreover, DMP can
only guarantee the converged velocity as zero while the
velocity over the execution process is not controllable.

In this paper, we attempt to provide a novel framework
for robust gait synthesis. Unlike those works that used the
RL technique to train walking patterns, our framework con-
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sists of the constrained optimization and imitation learning
technique. Specifically, we propose a Quadratically Con-
strained Quadratic Programming (QCQP) algorithm for step
parameters adjustment and CoP manipulation. In this way,
the proposed strategy can make use of ankle strategy and
stepping strategy for disturbance compensation. Meanwhile,
the optimal body movements can also be synthesized based
on the LIP model. Then, using the modulated step parameters
(including step location and step duration), the swing leg tra-
jectories are generated by using the state-of-the-art imitation
learning algorithm, Kernelized Movement Primitives (KMP)
[32], [33]. Compared with the aforementioned studies, e.g.
[17]–[19], the main advantages of our framework include:

(i) the optimal step parameters and CoP positions under
dynamic disturbances are determined by QCQP, while taking
into account feasibility constraints. Differing from the works
in [18] and [22], the ankle strategy and stepping strategy can
be activated flexibly;

(ii) unlike DMP [34], KMP can adapt leg trajectories
towards arbitrary online-generated desired points (e.g., via-
points and end-points) as well as step duration in real-time;

(iii) through introducing duration-related substitution vari-
ables, the constrained optimization problem can be solved in
a more efficient way. Besides, KMP provides an analytic
solution for leg trajectories generation. Thus, the overall
computational cost is suppressed to a very low level.

The rest of this paper is organized as follows. We first
introduce the framework of our work in Section II. Subse-
quently, we propose the QCQP strategy for CoP position and
step parameters modulation in Section III. In Section IV, the
principle of KMP is presented. After that, LIP simulations
and dynamic simulations are provided in Section V. Finally,
conclusions are drawn in Section VI.

II. OVERVIEW OF THE PROPOSED FRAMEWORK

Taking the reference step parameters, including reference
step length sref

x , step width sref
y , step duration T ref and others,

as inputs, the reference robot status can be determined by
using the simplify dynamic models, such as LIP model.
However, due to the modelling errors and external distur-
bances, real robot states usually deviate from the reference
ones. Therefore, in each control loop, QCQP is employed to
simultaneously modulate step parameters (i.e., step length sx,
step width sy and step duration T ) and the CoP movement
([px, py]T ), aiming at tracking desired step parameters and
Center of Mass (CoM) state. At the same time, the body
movement (characterized by CoM trajectories [cx, cy, cz]

T

when using LIP model) will also be determined.
Once the step parameters are determined, swing leg tra-

jectories ([xsw, ysw, zsw]T ) are generated via KMP, where
desired points (e.g., via-points) are introduced to avoid self-
collision or collisions with the ground. It is worth mentioning
that the adapted leg trajectories can be obtained directly by
using KMP, without the need of collecting various motion
demonstrations under different walking modes.

Finally, using lower-level balance controllers, the robust
walking can be ultimately accomplished. Since the tracking
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Fig. 1: Overview of the proposed framework. Based on the sensory
information, QCQP is employed to manipulate the CoP position,
adjust step parameters and modulate the body movement. Subse-
quently, KMP adapts the leg motions (i.e., swing leg trajectories)
using updated step parameters.

control problem lies outside the scope of this paper, readers
are advised to refer to the admittance controller in [35]. An
overview of the framework is illustrated in Fig. 1.

III. ROBUST BODY MOTION GENERATION

As explained in Section II, robot body motions should be
re-generated in real-time in order to obtain robust walking
patterns. In particular, when unexpected disturbances, such
as severe external pushes, are imposed to robots, step pa-
rameters and CoP positions need to be adjusted to maintain
balance. In this section, we propose a QCQP algorithm to
integrate ankle strategy with stepping strategy.

A. LIP motion

By employing the LIP model, robot body motions are
characterized by the CoM movements. As shown in Fig. 2,
considering the CoP motion, the CoM motion is determined
by

l
pγ =

l
cγ −

1

ω2 l
c̈γ , γ ∈ {x, y},

ω =
√
g/Zc,

(1)

where
l
cγ denotes the horizontal CoM position (relative to

the current support center, i.e., local coordinate),
l
c̈γ denotes

the CoM acceleration,
l
pγ denotes the relative CoP position,

ω is the natural frequency, g is the gravitational acceleration
and Zc is the constant pendulum height,

Assuming the fixed CoP position during the whole step,
the CoM state can be determined by

l
cγ(te) =

l
cγ(0) cosh(ωte) + l

ċγ(0)

ω
sinh(ωte) +

l
pγ ,

l
ċγ(te) =

l
cγ(0)ω sinh(ωte) +

l
ċγ(0) cosh(ωte),

(2)

where te is the elapsed time,
l
cγ(te) and

l
ċγ(te) separately

denote the current CoM position and velocity,
l
cγ(0) and
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Fig. 2: LIP movement in the horizontal plane, where the CoM move-
ment is determined by the step parameters and CoP movements.
The red solid curve plots the CoM trajectory of current step and
the red dash curves respectively depict the CoM trajectories of the
previous and next steps. [dx, dy]

T denotes the global step location,
sx and sy are the step length and step width, Σw and Σl represent
the origins of the global and local coordinates, respectively.

l
ċγ(0) denote the initial CoM position and velocity, sinh and

cosh denote the hyperbolic sine and cosine function.
Given the current state (i.e., CoM position, CoM velocity

and CoP position) at time te, the final state is predicted as

l
cγ(T )=(

l
cγ(te)−l

pγ) cosh(ω(δT ))+l
ċγ(te)

ω
sinh(ω(δT ))+

l
pγ ,

l
ċγ(T )=(

l
cγ(te)−l

pγ)ω sinh(ω(δT ))+
l
ċγ(te) cosh(ω(δT )),

(3)
where δT = T−te is the remaining time of current step (T
is the time duration),

l
cγ(T ) and

l
ċγ(T ) separately denote the

final CoM position and velocity of current cycle.
As done in [18] and [19], duration-related variables are

defined as

tch = cosh(ω(δT )), tsh = sinh(ω(δT )), (4)

which can be used to rewrite (3) in a compact form

l
cγ(T ) = (

l
cγ(te) − l

pγ)tch + l
ċγ(te)

ω
tsh +

l
pγ ,

l
ċγ(T ) = (

l
cγ(te) − l

pγ)ωtsh +
l
ċγ(te)tch.

(5)

Obviously, as time goes by, the te increases from 0 to
T . Thus, the δT decreases from T to 0. In this case, the
monotonicities of the hyperbolic sine and cosine functions
are guaranteed. As a result, we can exploit the duration-
related variables to simplify LIP motion equations.

Observing (5), we can find that the CoM motion is fully
determined by two conditions, if there is no CoP motions
during the whole step (i.e.,

l
pγ is constant). In this paper,

to track the reference step parameters and guarantee the
continuity of the CoM trajectory, we choose the current
sensing CoM position and the final reference position of
CoM as boundary conditions, i.e.,

l
cγ(te) =

l
ce
γ(te)

,
l
cγ(T ) = sγ/2, (6)

where
l
ce
γ(te)

is the estimated CoM position, sγ is the current
step length or step width. Intuitively, isγ/2 is set to be the
reference final CoM position of current step.

B. QCQP formulation

In [19], by employing the duration-related variables, a
constrained optimization problem was formulated to modu-
late step location and step duration, where the NLP strategy,

however, ignored the CoP movement and thus failed to utilize
the support region caused by foot size. In contrast, by taking
into account the feasibility constraints, we exploit QCQP
technique to accomplish robust walking by integrating ankle
strategy with stepping strategy.

1) Objective Function: In order to accomplish desired
walking tasks, we propose to track the desired step parame-
ters, desired final CoM states and desired CoP movement.
Particularly, to simplify this problem, we only optimize
the system state of current step1, yielding a minimization
problem

f(X ) =
∑
X

σ
X

2
‖ X−Xref ‖2, (7)

where X =[sx, sy, tch, tsh, lpx, lpy]T consists of step length
(sx), step width (sy), step-duration related variables (tch,
tsh) and CoP position (px, py) of current step. X =
[X T ,

l
cx(T ), lcy(T ), l ċx(T ), l ċy(T )] denotes the variables con-

tributing to the cost terms. σ
X

denotes the weight coefficient.
Xref denotes the reference value. For example, the

l
cref
x(T ),

l
cref
y(T ), t

ref
ch , tref

ch ,
l
pref
x and

l
pref
y are given as

l
cref
x(T ) = sref

x /2, l
cref
y(T ) = sref

y /2,

tref
ch = cosh(ω(δT ref)), tref

sh = sinh(ω(δT ref)),

l
pref
x = 0,

l
pref
y = 0,

(8)

where δT ref = T ref − te (T ref denotes the reference time
duration of current step), sref

x and sref
y are the reference step

length and step width of current step.
Since the robot is expected to track the absolute step

location, the reference step length and step width for the
current (ith) step are determined as

isref
x = i+1dref

x − idx,
isref
y = i+1dref

y − idy, (9)

where [i+1dref
x ,

i+1dref
y ]T is the desired step location of next

step cycle, which is calculated by adding the pre-defined
step parameters recursively. [idx,

idy]T is the optimal step
location of current step, which is calculated by adding the
real-time generated step parameters recursively.

Note that all the cost terms in (7) can be expressed as
quadratic forms of the optimal variables, excepting for the
tracking error terms defined on the final CoM position and
velocity, where the multiplication operation between

l
pγ and

tch(tsh) appear, as expressed in (5). To simplify this problem,
we replace the

l
pγ , that was involved in the multiplication

operation (in (5)), by the estimated CoP position. As a result,
the objective function (7) can be formed as a quadratic
function of the optimal variables, i.e.,

f(X ) =
1

2
X TGX + gTX , (10)

1It has been proved that, if the CoM state is viable, adjusting one step is
enough to reject severe dynamic disturbances [17]. In [19], we also found
that, in some cases, one-step-prediction could gain almost the same push
recovery capability as the two-steps-prediction. Thus, considering the CoP
movement, we merely adjust the step parameters of current step.
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where G ∈ <6×6 and g ∈ <6 are defined as

G = σsxST1 S1+σsyST2 S2+σtchS
T
3 S3+σtshS

T
4 S4+σ

l
pxST5 S5

+ σ
l
pyST6 S6+σ

l
cx(T )

HT

l
cx(T )

H
l
cx(T )

+σ
l
cy(T )

HT

l
cy(T )

H
l
cy(T )

+ σ
l
ċx(T )

HT

l
ċx(T )

H
l
ċx(T )

+σ
l
ċy(T )

HT

l
ċy(T )

H
l
ċy(T )

,

g = −(σsxs
ref
x S1+σsys

ref
y S2+σtcht

ref
ch S3+σtsht

ref
sh S4

+ σ
l
cx(T ) l

cref
x(T )Hl

cx(T )
+σ

l
cy(T ) l

cref
y(T )Hl

cy(T )

+ σ
l
ċx(T ) l

ċref
x(T )Hl

ċx(T )
+σ

l
ċy(T ) l

ċref
y(T )Hl

ċy(T )
)T .

(11)
Here, Sj ∈ <1×6(j ∈ 1, 2, · · · , 6) is the variable selective
matrix2, H

l
cx(T )

, H
l
cy(T )

, H
l
ċx(T )

, and H
l
ċy(T )

are the
matrices about the reference CoM state, which are given by

H
l
cx(T )

= (
l
ce
x(te)
−

l
pe
x(te)

)S3 +
1

ω l
ċe
x(te)

S4 + S5,

H
l
cy(T )

= (
l
ce
y(te)
−

l
pe
y(te)

)S3 +
1

ω l
ċe
y(te)

S4 + S6,

H
l
ċx(T )

= (
l
ce
x(te)
−

l
pe
x(te)

)ωS4 +
l
ċe
x(te)

S3,

H
l
ċy(T )

= (
l
ce
y(te)
−

l
pe
y(te)

)ωS4 +
l
ċe
y(te)

S3,

(12)

with [
l
ce
x(te)

,
l
ce
y(te)

]T , [
l
ċe
x(te)

,
l
ċe
y(te)

]T and [
l
pe
x(te)

,
l
pe
x(te)

]T

being the estimated CoM position, CoM velocity and CoP
position, respectively.

2) Feasibility Constraints: To guarantee the feasibility,
constraints arising from the physical limitations of actuation
capability, mechanical structure and environmental scenarios
should be taken into account when planning walking patterns.
In this paper, the feasibility constraints for the NLP formu-
lation defined in [19] are used. Specifically, these constraints
consist of the limitations on step duration, step location,
swing leg velocities, as well as those on the high-order
derivatives of CoM state (e.g., CoM acceleration and jerk).
Besides, the CoP should stay within the support polygon. To
be brief, only the constraints on step duration variation and
CoP movements are introduced here.

Constraints of step duration variation: The step fre-
quency, determined by the step duration, is limited by the
actuation capability. First, given the lower boundary Tmin

and upper boundary Tmax of the step duration, we can
derive the constraints on variables tch and tsh by utilizing
the monotonicity of hyperbolic functions. For example, the
max-min constraint of tch is given as

cosh(ω(max(Tmin−te, 0)))≤ tch≤cosh(ω(Tmax−te)),
(13)

where max() function returns the maximal value among
input variables.

Additionally, considering the property of hyperbolic func-
tions, the following equality constraint should be satisfied

t2ch − t2sh = 1. (14)

Constraints of CoP movement: The CoP movement
should be restricted within the support region so as to
guarantee the walking stability. Herein, we consider the max-
min constraint on CoP movement, expressed as

l
pmin
γ ≤

l
pγ≤ l

pmax
γ , (15)

2All the elements in Sj are zeros except that the jth element is 1.

where
l
pmin
γ and

l
pmax
γ respectively denote the lower bound-

ary and upper boundary of CoP position.
Thus, the feasibility constraints can be expressed in the

form of quadratic inequalities and accordingly the NLP
problem can be formulated as a QCQP problem, which
can be solved by Sequential Quadratic Programming (SQP).
Please refer to [12] for more details.

IV. ROBUST LEG MOTION GENERATION

Assuming that we have obtained the optimal step parame-
ters by deploying the QCQP optimizer, we now focus on the
generation of robust leg trajectories. As explained before,
several key features should be taken into account when
planning leg trajectories: (i) sudden changes of step param-
eters (including step locations and step duration) should be
incorporated and (ii) feasible constraints should be satisfied,
including collision avoidance and landing impact reduction.

In order to generate feasible leg trajectories, we propose to
generate swing leg trajectories by resorting to the imitation
learning strategy, where robot motions can be generated by
learning from a few demonstrations which are collected from
human or robot walking experiments. Since the supporting
leg keeps static when the swing leg is moving during one
step, we consider only the swing leg trajectory relative to
support leg.

Now, we explain the principle of KMP which we apply
in our framework. Formally, assuming that we have ac-
cess to a set of demonstrations (i.e., training data) D =
{{tn,h, ξn,h}Nn=1}Hh=1, with ξn,h ∈ <3 denoting the Carte-
sian trajectory point at the nth time step from the hth demon-
strations. Here, N and H separately denote the trajectory
length and the number of demonstrations. Then, we can
use Gaussian Mixture Model (GMM) to model the joint
probability distribution P(t, ξ) [33], [36], yielding[

t
ξ

]
∼

C∑
c=1

πcN (µc,Σc), (16)

where πc, µc =

[
µt,c
µη,c

]
and Σc =

[
Σtt,c Σtη,c

Σηt,c Σηη,c

]
re-

spectively correspond to the prior probability, mean and
covariance of the c-th Gaussian component in GMM. Sub-
sequently, Gaussian Mixture Regression (GMR) [33], [36],
[37] is used to retrieve a probabilistic reference trajectory
Dr = {tn, µ̂n, Σ̂n}Nn=1, which in fact encapsulates the
distribution of demonstrations and will be used to train KMP.

Let us denote

Σ = blockdiag(Σ̂1, Σ̂2, . . . , Σ̂N ),

U = [µ̂1 µ̂2 · · · µ̂N ].
(17)

For an arbitrary inquiry input t∗, KMP predicts the corre-
sponding output as

ξ(t∗) = k∗(K + λΣ)−1U (18)

with
k∗ =

[
k(t∗, t1) k(t∗, t2) . . . k(t∗, tN )

]
(19)
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and

K =


k(t1, t1) k(t1, t2) . . . k(t1, tN )
k(t2, t1) k(t2, t2) . . . k(t2, tN )

...
...

. . .
...

k(tN , t1) k(tN , t2) . . . k(tN , tN )

 , (20)

where k(ti, tj) = k(ti, tj)I3 with k(·, ·) being a kernel
function (e.g., Gaussian kernel).

It is worth mentioning that the trajectory adaptation issue
can be straightforwardly solved by KMP through concate-
nating the original reference trajectory with the desired
points. For example, given L desired points, described by
D̄ = {t̄l, µ̄l, Σ̄l}Ll=1, where µ̄l and Σ̄l correspond to the
mean and covariance of the desired point at the time t̄l, we
can simply combine D̄ with D, resulting to an extended
reference trajectory D̃ = D̄ ∪ D. After that, by exploiting
D̃ instead of D in (18)-(20), KMP is capable of generating
adapted trajectories that pass through all desired points and
meanwhile maintaining the shape of demonstrations. We
suggest readers refer to [32], [33] for the details of KMP.

V. EVALUATIONS

To verify our framework, the LIP and whole-body dy-
namic simulations are conducted on the prototype of a 69kg
weighted humanoid robot “COMAN+”, which is 1.6m in
height and actuated by compliant Series Elastic Actuators
(SEAs). For bipedal walking, the default step length, step
width and step duration are respectively set as 0.1m, 0.206m
and 0.7s. Besides, the clear height of the swing foot (lh)
is 0.07m, and constant LIP height (Zc) is 0.89m. The
sampling time for QCQP solution (dt) is 0.05s. Other relevant
parameters are listed in Appendix.

For the leg motion generation, we used 5 demonstrations
under subject #8 (walking mode) from the motion capture
database released by the Graphics Lab in Carnegie Mellon
University [38] to train KMP. Based on modulated step
parameters, the adapted leg trajectory was required to track
a via-point ([idx, idy, lh]T ) at the middle of one step while
track the end-point ([i+1dx, i+1dy, 0]T ) at the end of one step3.
Besides, the desired velocity when passing through the via-
point was set to be [(i+1dx− i−1dx)/T, (i+1dy− i−1dy)/T, 0]T

out of experience while the velocity when passing through
the end-point was set to be [0, 0, 0]T for reducing landing
impact. Note that the single support phase took up the 80%
of one step.

A. LIP simulation

In this section, we test our framework through the push
recovery evaluations. Without loss of the generality, the
multi-directional horizontal pushes were imposed on the
pelvis, lasting 0.1s. Specifically, we imposed a 300N forward
force and a 225N leftward force at 2.1s, followed by a 300N
backward force and a 225 N rightward force at 4.5s. The
generated motions by using our framework are demonstrated
in Fig. 3 - Fig. 5.

3That is to say, the via-point and end-point would be modulated as the
step parameters change
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the right and left leg trajectories. Gray zones cover the periods
where step duration suddenly changes. The black circles mark the
calculated via-points at the step when the push force was imposed.

TABLE I: Modulated step parameters for push recovery

Paras
step 1 4 5 7 8 others

sx(m) 0 0.2 0 0.065 0.135 0.1
|sy |(m) 0.206 0.11 0.11 0.156 0.156 0.206
T (s) 0.699 0.674 0.699 0.744 0.699 0.699
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1) Body motion generation: As can be seen in Fig. 3
and Fig. 4, when the left-forward push was applied at 2.1s,
the robot landed on the ground with a larger step length
(variation from 0.1m to 0.2m). Since the robot was currently
supported by the left leg, the smaller step width was also used
(from 0.206m to 0.11m). Besides, the robot also reduced the
step period so as to compensate for the disturbance. As can
be seen in Table I, the step duration of the 4th step reduced to
be 0.674s. Apart from the stepping strategy, the CoP position
was also modulated (deviated from the support center as
shown in Fig. 4 and Fig. 5), which contributed to higher
walking stability. After that, when the right-backward force
was applied, the robot shortened the step length to 0.065m
and reduced the step width to 0.156m (right leg supports
the whole body at this step). At the same time, the robot
extended the step duration to 0.744s in order to absorb the
perturbation. In addition, as can be seen in Fig.4, the CoP
trajectory was also modulated.

Since the objective function aims to track the global step
location, the 5th step length reduced to be 0m while the step
width reduced to be 0.11m. As a result, the robot returned
to the reference status after two-steps modulation. The same
phenomenon can also be observed at the 8th step.

2) Leg trajectory generation: As shown in Fig. 5, KMP
was capable of generating feasible leg trajectories according
to the modulated step parameters. Specifically, KMP can
reserve the shape of demonstrated motions (especially the
shape of height trajectory) whenever a shorter step duration
(the 4th step) or a longer one (the 7th step) is required, where
the under-fitness or over-fitness is avoided.

In addition, when subjecting to variant desired points (via-
points and end-points), the adaptive leg motions could still
be generated, which can pass through the desired via-points
and end-points precisely, as can be seen in Fig. 5. Detailed
analysis revealed that the adapted trajectories also satisfied
the velocity constraints at the via-points and end-point points.
That is to say, the KMP can adapt leg trajectories towards
online-generated desired points via desired velocities, which
can not be accomplished by DMP to our knowledge.

B. Whole-body Dynamic Simulation

The whole-body dynamic simulations were carried out by
using the open-source simulator Gazebo. The control system
was based on XbotCore [39]. Written in c+ + language,
each optimization loop can be computed within 0.5ms on a
3.0 GHz CPU. The balance controller is run in 500 Hz.

1) Non-periodic walking: Modelling errors are usually
inevitable when using the LIP model, such as those arising
from the distributed mass of the swing leg and the intrinsic
compliance of the robot structure. To achieve higher robust-
ness in real-world environments, the robot should be able to
accomplish different walking tasks while taking into account
modelling errors. In this section, the robot is controlled
to accomplish non-periodic walking with time-varying step
lengths (as listed in Table II), consisting of forward and
backward motions.

TABLE II: Step length setup for non-periodic walking

Paras
step 1 2 3-5 6 7-11 12

sx(m) 0 0.05 0.1 0 -0.05 0

5 6 7 8 9 10 11 12 13
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Fig. 6: Generated trajectories for non-periodic walking. The clear
height of swing leg for startup was adjusted to be 0.05m due to the
modelling errors.

As can be seen in Fig. 6, the smooth CoM trajectory
was obtained by the proposed QCQP method, where the
CoP movement was adjusted. Notably, the leg movements
for backward walking could also be obtained using KMP,
even only these demonstrations corresponding to the forward
walking were used to train KMP. The snapshots of evalua-
tions are depicted in Fig. 7. Please see also the supplementary
video for the details of these evaluations.

2) Recovery from external pushes: Now, we evaluate the
push recovery capability of our framework, where the robot
is stepping in place while various horizontal forces were
applied on the pelvis, with each force lasting 0.1s.

Push recovery from lateral pushes: We first applied a 150N
rightward force at 9.9s and subsequently a 150N leftward
force at 12.5s. By employing the proposed framework, the
ankle and stepping strategies were combined to maintain
stability. The robot motions are demonstrated in Fig. 8 and
the modulated step parameters are listed in Table III.

To compensate for the status errors caused by external
pushes, the CoP position was modified, as shown in Fig.
8. For example, after the leftward push, the generated py
deviated from the 12th and 13th step locations. In addition,
the optimal step parameters were also modulated in real-
time, as can be seen in Table III. By observing Fig. 8, we
can find that the robot reduced the step duration dramatically
(the step duration of the 8th was reduced to 0.5s) when
the rightward push was detected. Meanwhile, the step width
was also reduced. Afterwards, when the leftward push was
detected, the robot accelerated the step frequency while
taking a smaller step width.

Differing from the LIP simulation, when the external push
disappeared, the modified step widths can not guarantee that
global lateral step locations were tracked accurately in each
step. Nevertheless, since the step width was re-computed in
each loop, the overall lateral displacement could be ignored,
as depicted in Fig. 8. Note that the step parameters of the 4th

and 5th steps were also adjusted, which compensated for the
modelling errors, especially the intrinsic compliance caused
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Fig. 7: Snapshots of the non-periodic walking. Red arrows depict the walking directions.
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Fig. 8: Robust gait for rightward and leftward push recovery. ce
y is

the estimated forward CoM trajectory, black arrows indicate time
moments when the external forces were applied.

TABLE III: Modulated step parameters for push recovery (the
parameters of other steps are almost the same with reference values)

Paras
step 4 5 8 9 12 13

|sy |(m) 0.194 0.192 0.197 0.191 0.188 0.195
T (s) 0.692 0.695 0.5 0.696 0.687 0.697

by the compliant actuators and the long leg structure.
We also tested our framework by imposing the forward and

backward pushing forces, please watch the complementary
video for these evaluations.

Maximal tolerant forces: Another advantage of this work
is that different balance strategies can be flexibly activated
by simply setting different weight ratios for each cost term
in (7). In this section, by manually tuning these parameters,
we test the maximal tolerant push from which the robot can
recover. The evaluations are presented in Fig 9, showing that
the push rejection capability has been enhanced dramatically
as a consequence of the integration of stepping strategy.

VI. CONCLUSIONS

We have proposed a novel framework, which consists of
the constrained optimization and imitation learning. Using
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Fig. 9: Maximal tolerant forces under different strategies.

TABLE IV: Weight coefficients for QCQP solution

σ
l
px

3.5×107/5×106 σ
l
py

4×107/5×106

σsx 1×108/3×108 σsy 2×108/1×109

σtch
3×108/2.5×107 σtsh

3×108/2.5×107

σ
l
cx(T )

5×107/1×106 σ
l
cy(T )

4×107/8×106

σ
l
ċx(T )

2×105/8×106 σ
l
ċy(T )

5×106/8×105

TABLE V: Boundary conditions for feasibility constraints

Step location constraints Step duration constraints
smin
x /m -0.05 Tmin/s 0.5
smax
x /m 0.2 Tmax/s 1.2
smin
y /m 0.11 CoP movement constraints
smax
y /m 0.26 lp

min
x /m -0.03

ṡmin
x /m·s�1 -0.75 lp

max
x /m 0.07

ṡmax
x /m·s�1 1.5 lp

min
y /m -0.04

ṡmin
y (ṡmax

y )/m·s�1 -1 lp
max
y /m 0.05

the QCQP strategy, the CoM trajectories and step parameters
are modulated in real-time so as to respond timely to external
disturbances, where the ankle strategy and stepping strategy
are integrated. Then, the KMP algorithm is deployed to gen-
erate adaptive swing leg trajectories through learning from
human walking data. Simulations on a compliant humanoid
robot demonstrate the robustness of the proposed framework.

In the future, the foot rotation can be integrated into
our framework. Besides, based on the presented work, the
body movements and leg movements would be learned
simultaneously while considering the physical constraints,
with the goal of realizing human-like walking.
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APPENDIX

The basic parameters for QCQP solution are listed in Table
IV and Table V. For each weight coefficient, the right one
is for LIP simulations while the left one is for the whole-
body simulations. The boundary conditions for feasibility
constraints are used for both LIP simulations and whole-body
dynamic simulations. Several boundary conditions which are
ignored in Table V can be found in [19].
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