
  

  

Abstract—This paper presents novel control techniques for 

passivation and stabilisation of floating-base systems with 

contacts, whose dynamical models comprise both joint-space, 

and Cartesian floating-base coordinates. The aforementioned 

results are achieved using both minimally model-based, and 

completely model-free controllers that employ power-shaping 

signals. Model-free control is permitted through usage of a 

decoupled dynamical model, procured via coordinate 

transformation operations. It is demonstrated that even though 

passive closed-loop systems are attainable without utilisation of 

exteroceptive feedback, global stabilisation of a floating-base 

robot necessitates direct usage of either measured or estimated 

external forces. The presented asymptotical stabilisation results 

pertain to both the set-point regulation, and trajectory-tracking 

cases, thereby ensuring suitability for static balancing, and 

dynamical locomotion tasks. To ensure practicability and 

production of feasible input signals, a variable impedance 

control, power-shaping term is appended to the original design, 

wherein it circumstantially serves as either a power-dissipating, 

or power-injecting element. This enhancement provably preserves 

closed-loop stability, by appositely shaping the system’s power. 

Experiments involving a metamorphic, quadrupedal walking 

robot, corroborate the theoretical analysis, as they attest to the 

system’s ability to stably execute locomotory tasks using a 

single, unified, model-free control scheme.    

I. INTRODUCTION 

HE vast majority of biological legged machines that 

exist in nature, exhibit remarkable performance in terms 

of dexterity, balancing, speed, agility, and interaction. In 

spite of this phenomenon, one rarely witnesses their artificial 

counterparts display similar abilities, despite the numerous 

scientific exertions that have aimed at the development of 

biomimetic robots. One of the main challenges that currently 

impedes widespread use of these machines, is the efficient 

control of their inherent under-actuated Degrees-of-Freedom 

(DoFs), which is also deemed an open problem in the field 

[1]. However, under-actuation may have distinct 

manifestations, depending on the robotic system under 

consideration. For example, there exists the purely structural 

form of under-actuation, relating to a robot’s inherent joint 

or link properties; this category encompasses soft link [2] 

and soft joint [3] robots. The latter field has received 

considerable attention spanning nearly three decades, with 

one of the early works [4] demonstrating that a Proportional-

Derivative (PD) plus gravity compensation controller, 

suffices for global stabilisation around a set point. The more 

challenging problem of flexible-joint robot tracking control, 
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has been addressed in a limited number of treatises [5]-[8] 

that propound manifold model-based controller designs. 

Soft link robots, such as continuum devices [2][9], are 

occasionally considered hyper-redundant, which further 

increases modelling and control complexity, as compared to 

flexible-joint robots. Analytical methods for provable 

convergence of these robots are unavailable, when excluding 

utilisation of reduced-order models [10].  

Legged robots belong to an aberrant sub-category of 

under-actuated devices, as they can alternate between fully-

actuated, over-actuated, and under-actuated modes, in almost 

immediate succession. Full actuation is typically observed 

when a legged robot (such as a biped) assumes a single 

support stance on a flat surface (full contact), over-actuation 

occurs during the double support phase, and under-actuation 

arises when full contact with the floor cannot be maintained 

during a support phase. The previously described erratic 

dynamics, has traditionally forced roboticists to resort to 

overly simplified representations, such as the Linear 

Inverted Pendulum Model (LIPM) [11], for the purpose of 

devising balancing and locomotion control algorithms. 

However, mechanical devices with the ability to freely 

locomote in space, can be mathematically described with a 

high degree of accuracy, using the floating-base models that 

were initially introduced in [12]-[14]. Since the aforesaid 

methods are predominantly intended for use on space robots, 

the modelling and handling of external contacts is not 

deemed to be of paramount importance, and is consequently 

disregarded. To this end, a method of augmenting a free-

floating humanoid robot model, via indirect incorporation of 

contact/task forces, is delineated in [15]. An extension to the 

latter is provided through [16], wherein the overall 

dynamical model offers a representation comprising the 

floating-base coordinates, joint coordinates, and contact 

forces. Utilisation of the previously described model has 

enabled the development of manifold model-based control 

algorithms for legged robots. [17] outlines a methodology 

for effective computation of an inverse dynamics controller 

that is directly implementable on floating-base systems with 

contact constraints. [18] proposes a modified form of the 

original floating-base dynamical model, for the purpose of 

achieving a decoupling between the floating-base and joint-

space dynamics, thereby leading to immense simplification 

of the mathematical model. A contact-based, gravity 

compensation torque controller is subsequently 

implemented, to compensate for the under-actuated (non-

collocated) gravitational terms. [19] presents an analytically 

sound solution to the inverse dynamics control of floating-

base systems, by means of orthogonal decomposition, which 

obviates the need for contact force feedback. [20] delineates 

an inverse dynamics controller that achieves optimal contact 

force distribution, via exploitation of toque redundancy. [21] 
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demonstrates that a hierarchical cascade of quadratic 

programs containing dynamical models, equality/inequality 

constraints, and contacts, could enable generation of 

complex humanoid robot motions. [22] describes the 

adaptation and implementation of a hierarchical inverse 

dynamics controller to a physical humanoid robot, which 

enables performance of balancing tasks. Moreover, [23] 

delineates a control scheme that amalgamates a passivity-

based controller, with a task hierarchy algorithm, leading to 

a unified balancing framework for torque-controlled bipeds. 

Contrariwise, [24] suggests that usage of simple LQR 

controllers, could offer performance levels that are almost 

equatable with those yielded by involute, optimisation-based 

schemes. Employment of LQR techniques for the design of 

highly under-actuated, passively compliant humanoid 

balancing controllers, is reported in [25][26].  

Even though several legged robot controllers [22][27] are 

numerically stable, eliciting comprehensive stability 

analyses for these systems, is a complex task. Scrutinising 

the relevant literature reveals the existence of a limited 

number of stability analyses for floating-base legged robots 

[23][28][18]. One such example is the regulation stability 

analysis presented in [23] that relies upon satisfaction of 

imposed contact-force constraints. Moreover, the regulation 

stability study proposed in [28] requires linearization of the 

closed-loop dynamics, while [18] provides a passivity 

analysis that avoids differentiation of the proposed storage 

function. Contrarily, this article proposes minimally model-

based, and model-free controllers that demonstrably induce 

passivity and global tracking stability into floating-base 

systems with contacts, which to the best of the authors’ 

knowledge, has not hitherto been reported elsewhere. The 

proposed design idea employs a solution to under-actuation 

that is analogous to those in [29][30], and could therefore be 

perceived as a legged-robot extension to these works. 

 The rest of the paper is structured as follows; section II 

presents minimally model-based control schemes for 

floating-base legged robots with contacts, section III 

introduces model-free controllers for legged machines, and 

section IV describes the experimental results. Finally, 

section V offers the conclusion. 

II. MINIMALLY MODEL-BASED CONTROL OF FLOATING-

BASE LEGGED SYSTEMS WITH CONTACTS 

A. Floating-base Dynamics with Contacts 

The dynamics of an 𝑛-DoF floating-base robot with contacts 

(Fig. 1), may be represented as follows [16][17]:  

 

             𝐌𝐟𝐛�̈�𝒇𝒃 + 𝐂𝐟𝐛�̇�𝒇𝒃 + 𝑮𝒇𝒃 = [
𝟎

𝝉𝒎
] + [

𝐉𝐜𝐛
𝐓 𝒇𝒑

𝐉𝐜𝐣
𝐓 𝒇𝒑

],            (1) 

 

where the inertia matrix 𝐌𝐟𝐛 ∈ ℝ(𝑛+6)×(𝑛+6) = [
𝐌𝐛𝐛 𝐌𝐛𝐣

𝐌𝐣𝐛 𝐌𝐣𝐣
], 

comprises the 𝐌𝐛𝐛 ∈ ℝ6×6, 𝐌𝐛𝐣 ∈ ℝ6×𝑛, and 𝐌𝐣𝐣 ∈ ℝ𝑛×𝑛 

terms, while 𝑮𝒇𝒃 ∈ ℝ𝑛+6 = [
𝐌𝐛𝐛𝑔𝑺𝒔

𝐌𝐣𝐛𝑔𝑺𝒔
], with 𝑺𝒔 =

[01×2 1 01×3]𝑇. 𝐉𝐜𝐛
∈ ℝ6×6 and 𝐉𝐜𝐣

∈ ℝ6×𝑛 signify contact 

Jacobians. The vector 𝒒𝒇𝒃 = [𝒒𝒃
𝑻 𝒒𝒋

𝑻]
𝑻
, contains 𝒒𝒋 ∈ ℝ𝑛 

and 𝒒𝒃 ∈ ℝ6, which denote the joint-space and floating-base 

coordinates, respectively, 𝐂𝐟𝐛 ∈ ℝ(𝑛+6)×(𝑛+6) represents the 

matrix of Coriolis and centrifugal terms, 𝑔 signifies the 

acceleration of gravity, 𝒇𝒑 ∈ ℝ6 symbolises the constraint 

force, and 𝝉𝒎 ∈ ℝ𝑛 denotes the input signal vector.  

 

Inertial Frame

Robot Frame

 
Figure 1. Schematic of a metamorphic quadrupedal floating-base robot. 

 

For the multi-contact case, 𝒇𝒑 ∈ ℝ6𝛿, 𝐉𝐜𝐛
∈ ℝ6𝛿×6, and 𝐉𝐜𝐣

∈

ℝ6𝛿×𝑛, with 𝛿 denoting the number of contacts. 

B. Regulation Control of Floating-base Systems 

Although regulation controllers are, from a theoretical 

standpoint, unsuitable for locomotion tasks, they are useful 

for static balancing, where exploitation of the inherent 

dynamics is desirable. The following regulator is proposed: 

 

     𝝉𝒎 = 𝐊𝐏𝒒𝒋𝑬
− 𝐊𝐃�̇�𝒋 + 𝐌𝐣𝐛𝑔𝑺𝒔 + 𝝂𝑷(�̇�𝒃

𝑻𝐌𝐛𝐛𝑔𝑺𝒔),      (2) 

 

with 𝝂𝑷 ∈ ℝ𝑛 = �̇�𝐒 ∙ [1 … 1𝑛]𝑇 ∙ 𝑟𝑎𝑛𝑘(�̇�𝐒)
+

, �̇�𝐒 ∈ ℝ𝑛×𝑛 =

𝑑𝑖𝑎𝑔(�̇�𝑗)
+

, 𝒒𝒋𝑬
= 𝒒𝒋𝒅

− 𝒒𝒋, while 𝐊𝐏, 𝐊𝐃 ∈ ℝ𝑛×𝑛 denote 

diagonal, positive definite, proportional and derivative gain 

matrices, respectively. The scalar term 𝑟𝑎𝑛𝑘(�̇�𝐒)
+

> 0, 

when ‖�̇�𝐒‖ ≠ 𝟎, and is zero otherwise. Terms multiplied by 

𝝂𝑷, collectively comprise the Power-Shaping Signal (PSS). 

 

Theorem 1: Implementing controller (2) onto the system 

described by (1), yields a passive system.  

 

Proof 1: One may select the following storage function: 

 

                      𝑄 =
1

2
�̇�𝒇𝒃

𝑻 𝐌𝐟𝐛�̇�𝒇𝒃 +
1

2
𝒒𝒋𝑬𝑰

𝑻 𝐊𝐏𝒒𝒋𝑬𝑰
,                     (3)  

 

where 𝒒𝒋𝑬𝑰
= 𝒒𝒋 − 𝒒𝒋𝒅

, whose time derivative yields: 

 

             �̇� = �̇�𝒇𝒃
𝑻 𝐌𝐟𝐛�̈�𝒇𝒃 +

1

2
�̇�𝒇𝒃

𝑻 �̇�𝐟𝐛�̇�𝒇𝒃 + �̇�𝒋
𝑻𝐊𝐏𝒒𝒋𝑬𝑰

,         (4)  

 

Substituting the closed-loop equations into (4), produces: 

 

�̇� = �̇�𝒇𝒃
𝑻 ([

𝟎
𝐊𝐏𝒒𝒋𝑬

− 𝐊𝐃�̇�𝒋 + 𝐌𝐣𝐛𝑔𝑺𝒔 + 𝝂𝑷(�̇�𝒃
𝑻𝐌𝐛𝐛𝑔𝑺𝒔)] 

      + [
𝐉𝐜𝐛

𝐓 𝒇𝒑

𝐉𝐜𝐣
𝐓 𝒇𝒑

] − 𝐂𝐟𝐛�̇�𝒇𝒃 − 𝑮𝒇𝒃) +
�̇�𝒇𝒃

𝑻 �̇�𝐟𝐛�̇�𝒇𝒃

2
+ �̇�𝒋

𝑻𝐊𝐏𝒒𝒋𝑬𝑰
.   (5)  

 

Since �̇�𝒇𝒃
𝑻 (�̇�𝐟𝐛 − 2𝐂𝐟𝐛)�̇�𝒇𝒃 = 0 [31][32], and �̇�𝒋

𝑻𝝂𝑷 = 1 (or 

0), then direct cancellation of terms leads to the result: 
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                           �̇� = −�̇�𝒋
𝑻𝐊𝐃�̇�𝒋 + �̇�𝒇𝒃

𝑻 [
𝐉𝐜𝐛

𝐓 𝒇𝒑

𝐉𝐜𝐣
𝐓 𝒇𝒑

].                      (6) 

 

which consequently satisfies the passivity relationship [33]: 

 

            �̇� = −�̇�𝒋
𝑻𝐊𝐃�̇�𝒋 + �̇�𝒇𝒃

𝑻 [
𝐉𝐜𝐛

𝐓 𝒇𝒑

𝐉𝐜𝐣
𝐓 𝒇𝒑

] ≤ �̇�𝒇𝒃
𝑻 [

𝐉𝐜𝐛
𝐓 𝒇𝒑

𝐉𝐜𝐣
𝐓 𝒇𝒑

].          (7) 

 

This confirms that only a limited amount of energy can be 

extracted from the system [33]. To realise closed-loop 

stability however, one should incorporate force 

compensation terms into the control scheme, as per the law: 

 

     𝝉𝒎 = 𝐊𝐏𝒒𝒋𝑬
− 𝐊𝐃�̇�𝒋 + 𝐌𝐣𝐛𝑔𝑺𝒔 − 𝐉𝐜𝐣

𝐓 𝒇𝒑 

                              +𝝂𝑷(�̇�𝒃
𝑻𝐌𝐛𝐛𝑔𝑺𝒔 − �̇�𝒃

𝑻𝐉𝐜𝐛
𝐓 𝒇𝒑),                     (8) 

 

which contains the 𝒇𝒑 vector.  

 

Theorem 2: Implementing controller (8) onto (1), yields a 

closed-loop system with a Globally Asymptotically Stable 

(GAS) equilibrium at [�̇�𝒇𝒃
𝑻 𝒒𝒋𝑬

𝑻 ] = [𝟎 𝟎].  

 

Proof 2: Equation (3) may be employed as a Lyapunov 

function, whose time derivative simplifies to: 

 

                                    �̇� = −�̇�𝒋
𝑻𝐊𝐃�̇�𝒋 ≤ 0,                                (9) 

 

which does prove a form of stability, even though it is 

devoid of the full state space and/or equilibria. Thus, an 

altered controller of the following form is introduced: 

 

𝝉𝒎 = 𝐊𝐏𝒒𝒋𝑬
− 𝐊𝐃�̇�𝒋 + 𝐌𝐣𝐛𝑔𝑺𝒔 − 𝐉𝐜𝐣

𝐓 𝒇𝒑 

                    +𝝂𝑷(�̇�𝒃
𝑻𝐌𝐛𝐛𝑔𝑺𝒔 − �̇�𝒃

𝑻𝐉𝐜𝐛
𝐓 𝒇𝒑 − 𝑎𝑓 − 𝑎𝑗),         (10)  

 

where 𝑎𝑓 = �̇�𝒃
𝑻𝐊𝐅�̇�𝒃, 𝑎𝑗 = 𝒒𝒋𝑬

𝑻 𝐊𝐉𝒒𝒋𝑬
, with 𝐊𝐅 ∈ ℝ6×6, 𝐊𝐉 ∈

ℝ𝑛×𝑛 denoting positive, diagonal matrices of infinitesimal 

elements. Applying (10) to (1), and using (4), produces: 

 

                             �̇� = −�̇�𝒋
𝑻𝐊𝐃�̇�𝒋 − 𝑎𝑓 − 𝑎𝑗 ≤ 0.                 (11) 

 

Hence, �̇� vanishes only when �̇�𝒇𝒃 = 𝒒𝒋𝑬
= 𝟎, which implies 

that the closed-loop system’s equilibrium is GAS. 

C. Passive Tracking Control of Floating-base Systems 

For the purpose of executing locomotion tasks, it is critical 

to design a control system that is capable of tracking user-

defined trajectories (i.e. 𝒒𝒋𝒅
= 𝒒𝒋𝒅

(𝑡)), whilst preserving 

passivity. To this end, the following control law is proposed: 

 

𝝉𝒎 = 𝐊𝐏𝒒𝒋𝑬
− 𝐊𝐃�̇�𝒋 + 𝐌𝐣𝐛𝑔𝑺𝒔 

                          +𝝂𝑷(�̇�𝒃
𝑻𝐌𝐛𝐛𝑔𝑺𝒔 − �̇�𝒋𝒅

𝑻 𝐊𝐏𝒒𝒋𝑬
).                   (12) 

 

Theorem 3: Implementing controller (12) onto the 

dynamical system described by (1), yields a passive system. 

 

Proof 3: Considering the storage function: 

 

                        𝑄 =
1

2
�̇�𝒇𝒃

𝑻 𝐌𝐟𝐛�̇�𝒇𝒃 +
1

2
𝒒𝒋𝑬

𝑻 𝐊𝐏𝒒𝒋𝑬
,                   (13)  

 

and acquiring its time derivative, yields:  

 

�̇� = �̇�𝒇𝒃
𝑻 ([

𝟎
𝐊𝐏𝒒𝒋𝑬

− 𝐊𝐃�̇�𝒋 + 𝐌𝐣𝐛𝑔𝑺𝒔 + 𝝂𝒔
] 

      +
�̇�𝐟𝐛�̇�𝒇𝒃

2
+ [

𝐉𝐜𝐛
𝐓 𝒇𝒑

𝐉𝐜𝐣
𝐓 𝒇𝒑

] − 𝐂𝐟𝐛�̇�𝒇𝒃 − 𝑮𝒇𝒃) + �̇�𝒋𝑬

𝑻 𝐊𝐏𝒒𝒋𝑬
.  (14) 

 

where 𝝂𝒔 = 𝝂𝑷(�̇�𝒃
𝑻𝐌𝐛𝐛𝑔𝑺𝒔 − �̇�𝒋𝒅

𝑻 𝐊𝐏𝒒𝒋𝑬
). Performing the 

relevant eliminations produces equation (7), thereby leading 

to satisfaction of the passivity conditions [33]. 

D. Stable Tracking Control of Floating-base Systems 

Despite its ability to maintain closed-loop passivity, the 

previously presented controller fails to mathematically 

guarantee stable tracking. To this end, force compensation 

terms should be incorporated into a control law of the form:  

 

𝝉𝒎 = 𝐊𝐏𝒒𝒋𝑬
− 𝐊𝐃�̇�𝒋 + 𝐌𝐣𝐛𝑔𝑺𝒔 − 𝐉𝐜𝐣

𝐓 𝒇𝒑 + 𝝂𝑷(−�̇�𝒃
𝑻𝐉𝐜𝐛

𝐓 𝒇𝒑 

                   −�̇�𝒋𝒅

𝑻 𝐊𝐏𝒒𝒋𝑬
− 𝑎𝑓 − 𝑎𝑗 + �̇�𝒃

𝑻𝐌𝐛𝐛𝑔𝑺𝒔).              (15) 

 

Theorem 4: Implementing controller (15) onto the system 

described by (1), produces a closed-loop system with a GAS 

equilibrium at [�̇�𝒇𝒃
𝑻 𝒒𝒋𝑬

𝑻 ] = [𝟎 𝟎]. 

 

Proof 4: Using equation (13) as a Lyapunov function 

candidate, and performing steps similar to those outlined 

previously (Proof 3), gives rise to the equation: 

 

�̇� = �̇�𝒇𝒃
𝑻 ([

𝟎
𝐊𝐏𝒒𝒋𝑬

− 𝐊𝐃�̇�𝒋 + 𝐌𝐣𝐛𝑔𝑺𝒔 − 𝐉𝐜𝐣
𝐓 𝒇𝒑 + 𝝂𝑷(−𝑎𝑓

−𝑎𝑗 + �̇�𝒃
𝑻𝐌𝐛𝐛𝑔𝑺𝒔 − �̇�𝒋𝒅

𝑻 𝐊𝐏𝒒𝒋𝑬
− �̇�𝒃𝐉𝐜𝐛

𝐓 𝒇𝒑)

]  

       + [
𝐉𝐜𝐛

𝐓 𝒇𝒑

𝐉𝐜𝐣
𝐓 𝒇𝒑

] − [
𝐌𝐛𝐛𝑔𝑺𝒔

𝐌𝐣𝐛𝑔𝑺𝒔
]) + �̇�𝒋𝒅

𝑻 𝐊𝐏𝒒𝒋𝑬
− �̇�𝒋

𝑻𝐊𝐏𝒒𝒋𝑬
,     (16) 

 

Further simplifications lead to equation (11), although given 

that this system is nonautonomous (owing to the time-

varying trajectory), substitution of �̇�’s states directly into the 

closed-loop system is prohibited. Barbalat’s Lemma (BL) is 

a classical technique for analysing nonautonomous system 

stability. In this case however, 𝝉𝒎’s continuity is dubious 

(due to its possession of 𝝂𝑷), which could preclude BL’s 

applicability. Nonetheless, one may apply the ‘new 

Invariance Principle’ (NIP) [34], by considering that the 

closed-loop system is of the form �̇�𝑭 = 𝑓(𝒙𝑭, 𝑡) [34], i.e.: 

 

           �̈�𝒇𝒃 = 𝐌𝐟𝐛
−𝟏 ([

𝟎
𝝉𝒎

] + [
𝐉𝐜𝐛

𝐓 𝒇𝒑

𝐉𝐜𝐣
𝐓 𝒇𝒑

] − 𝑮𝒇𝒃 − 𝐂𝐟𝐛�̇�𝒇𝒃) .    (17) 

 

[34] proves that the state, 𝒙𝑭 = [�̇�𝒇𝒃
𝑻 𝒒𝒇𝒃

𝑻 ]
𝑻
, is bounded, if 

𝑉 > 0 and �̇� ≤ 0. Moreover, discontinuous input signals do 
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not impinge on stability, if 𝑉 > 0 and �̇� ≤ 0 [34], provided 

that there exists a function, 𝑊, such that: 

 

                    �̇� = −�̇�𝒋
𝑻𝐊𝐃�̇�𝒋 − 𝑎𝑓 − 𝑎𝑗 < 𝑊 ≤ 0,                (18) 

  

where 𝑊 = −𝒒𝒘
𝑻 𝛀𝒒𝒘, with 𝛀 > 𝟎 and 𝒒𝒘 = [�̇�𝒇𝒃

𝑻 𝒒𝒋𝑬

𝑻 ]
𝑻
. 

Assuming that 𝐊𝐅 and 𝐊𝐉 are varied in real-time, 

differentiating 𝑊 produces the function:  

 

                            �̇� = −2𝒒𝒘
𝑻 𝛀�̇�𝒘 − 𝒒𝒘

𝑻 �̇�𝒒𝒘.                       (19) 

 

Since �̇� = 0 at 𝒒𝒘 = 𝟎, then �̇� ≡ 0 (identically zero). 

Differentiating once more, yields the following expression: 

 

  �̈� = −2�̇�𝒘
𝑻 𝛀�̇�𝒘 − 2𝒒𝒘

𝑻 𝛀�̈�𝒘 − 4𝒒𝒘
𝑻 �̇��̇�𝒘 − 𝒒𝒘

𝑻 �̈�𝒒𝒘,    (20) 

 

which is only nullified at 𝒒𝒘 = �̇�𝒘 = 𝟎. In view of the fact 

that 𝒒𝒘 ≡ 0, and the system’s states are bounded, while �̇� ≡
0 and contains the equilibria, then in accordance with the 

NIP [34] this nonautonomous system asymptotically 

converges to the 𝒒𝒘 equilibrium, and is therefore GAS. 

III. MODEL-FREE CONTROL OF FLOATING-BASE ROBOTS  

A. Decoupled Dynamics via Coordinate Transformation 

The direct coupling between floating-base and joint-space 

coordinates that is observed in model (1), could be 

expunged by following the approach outlined in [18], which 

yields the model provided below: 

 

   [
𝐌𝐛𝐫 𝟎

𝟎 𝐌𝐣𝐣
] �̈�𝒇𝒅 + [

𝟎
𝐂

] + [
𝐌𝐛𝐫𝑔𝑺𝒄

𝟎
] = [

𝟎
𝝉𝒎

] − [
𝐈

𝐉𝐜
𝐓] 𝒇𝒈, (21) 

 

where 𝑺𝒄 = [0 0 1]𝑻, �̈�𝒇𝒅 ∈ ℝ𝑛+3 = [�̈�𝒄
𝑻 �̈�𝒋

𝑻]
𝑻
, with 

�̈�𝒄 ∈ ℝ3 denoting the Centre-of-Mass (CoM) coordinates, 

𝐂 ∈ ℝ𝑛 = 𝐂(𝒒𝒋, �̇�𝒋)�̇�𝒋 representing the Coriolis and 

centrifugal terms matrix, 𝐉𝐜
𝐓 ∈ ℝ𝑛×3 symbolising the CoM to 

contact-point Jacobian, and 𝒇𝒈 ∈ ℝ3 signifying the Gross 

Applied Force (GAF), as depicted in Fig. 2. The inertia 

matrix 𝐌𝐟𝐝 ∈ ℝ(𝑛+3)×(𝑛+3) = 𝑑𝑖𝑎𝑔(𝐌𝐛𝐫, 𝐌𝐣𝐣), with 𝐌𝐛𝐫 =

𝑑𝑖𝑎𝑔(𝑚, 𝑚, 𝑚). This model also possesses the �̇�𝒋
𝑻(�̇�𝐣𝐣 −

2𝐂)�̇�𝒋 = 0 property [31][32][35], and for simplicity, it 

considers solely the 3 translational CoM coordinates [18]. 

B. Passive Model-Free Control of Legged Robots 

In view of the uncoupled dynamical model shown above, it 

is possible to define the following passivating control law: 

 

                𝝉𝒎 = 𝐊𝐏𝒒𝒋𝑬
− 𝐊𝐃�̇�𝒋 + 𝝂𝑷(�̇�𝒄

𝑻𝐌𝐛𝐫𝑔𝑺𝒄),             (22) 

 

which obviates the need for model-based terms. 

 

Theorem 5: Implementing controller (22) onto the system 

described by (21), yields a passive closed-loop system. 

 

Proof 5: Considering the following storage function: 

                       𝑄 =
1

2
�̇�𝒇𝒅

𝑻 𝐌𝐟𝐝�̇�𝒇𝒅 +
1

2
𝒒𝒋𝑬

𝑻 𝐊𝐏𝒒𝒋𝑬
,                    (23)  

 

and performing steps similar to those outlined in Proofs 1 to 

4, gives rise to the equation: 

 

          �̇� = −�̇�𝒋
𝑻𝐊𝐃�̇�𝒋 − �̇�𝒇𝒅

𝑻 [
𝒇𝒈

𝐉𝐜
𝐓𝒇𝒈

] ≤ −�̇�𝒇𝒅
𝑻 [

𝒇𝒈

𝐉𝐜
𝐓𝒇𝒈

],        (24) 

  

thus satisfying the conditions for passivity [33].  
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Figure 2. Schematic of a metamorphic quadrupedal floating-base robot. 

 

However, controller (22)’s energy efficiency could be 

ameliorated via the following control law: 

 

        𝝉𝒎 = 𝐊𝐏𝒒𝒋𝑬
− 𝐊𝐃�̇�𝒋 + 𝝂𝑷(�̇�𝒄

𝑻𝒇𝒈 + �̇�𝒄
𝑻𝐌𝐛𝐫𝑔𝑺𝒄),     (25) 

 

for the array of reasons outlined in sub-section III. D. 

Implementation of the above scheme, yields the relationship: 

 

                  �̇� = −�̇�𝒋
𝑻𝐊𝐃�̇�𝒋 − �̇�𝒋

𝑻𝐉𝐜
𝐓𝒇𝒈 ≤ −�̇�𝒋

𝑻𝐉𝐜
𝐓𝒇𝒈,             (26) 

 

thereby attesting to passivity of the closed-loop system.  

C. Stable Model-Free Tracking Control of Legged Robots 

A stable control design could be produced in a similar 

model-free fashion to that previously delineated, although in 

this case, compensation of force terms is necessary for 

convergence. Thus, the following control law is proposed: 

 

𝝉𝒎 = 𝐊𝐏𝒒𝒋𝑬
− 𝐊𝐃�̇�𝒋 + 𝐉𝐜

𝐓𝒇𝒈 

              +𝝂𝑷(�̇�𝒄
𝑻𝒇𝒈 + �̇�𝒄

𝑻𝐌𝐛𝐫𝑔𝑺𝒄 − �̇�𝒋𝒅

𝑻 𝐊𝐏𝒒𝒋𝑬
− 𝑎𝑐),       (27) 

 

where 𝑎𝑐 = �̇�𝒄
𝑻𝐊𝐜�̇�𝒄, with 𝐊𝐜 ∈ ℝ3×3 denoting a diagonal 

matrix of infinitesimal-valued terms. Since 𝐌𝐛𝐫 comprises 

the scalar, total robot mass terms, this scheme is model-free. 

 

Theorem 6: Implementing controller (27) onto (21), yields 

a GAS closed-loop equilibrium at [�̇�𝒇𝒅
𝑻 𝒒𝒋𝑬

𝑻 ] = [𝟎 𝟎]. 

 

Proof 6: Considering the following Lyapunov function: 

 

                        𝑉 =
1

2
�̇�𝒇𝒅

𝑻 𝐌𝐟𝐝�̇�𝒇𝒅 +
1

2
𝒒𝒋𝑬

𝑻 𝐊𝐏𝒒𝒋𝑬
,                   (28)  

 

and obtaining its time derivative, while performing 

simplifications analogous to those previously shown, yields: 

 

�̇� = �̇�𝒇𝒅
𝑻 ([

𝟎
𝐊𝐏𝒒𝒋𝑬

− 𝐊𝐃�̇�𝒋 + 𝐉𝐜
𝐓𝒇𝒈 +

𝝂𝑷(�̇�𝒄
𝑻𝒇𝒈 + �̇�𝒄

𝑻𝐌𝐛𝐫𝑔𝑺𝒄 − �̇�𝒋𝒅

𝑻 𝐊𝐏𝒒𝒋𝑬
− 𝑎𝑐)

] 
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+
1

2
�̇�𝐟𝐝�̇�𝒇𝒅 − [

𝐌𝐛𝐫𝑔𝑺𝒄

𝟎
] − [

𝟎
𝐂

] − [
𝐈

𝐉𝐜
𝐓] 𝒇𝒈) + �̇�𝒋𝑬

𝑻 𝐊𝐏𝒒𝒋𝑬
, (29) 

 

which consequently results in: 

 

                               �̇� = −�̇�𝒋
𝑻𝐊𝐃�̇�𝒋 − 𝑎𝑐 ≤ 0.                        (30) 

 

Following the approach outlined in Proof 4, which is based 

on the NIP [34], enables one to conclude that �̇�𝒇𝒅 tends to 

zero. In order to prove GAS however, the zero states of �̇� 

are substituted into the closed-loop dynamics, producing: 

 

                         [
𝐌𝐛𝐫𝑔𝑺𝒄

𝟎
] = [

𝟎
𝐊𝐏𝒒𝒋𝑬

] − [
𝐈
𝟎

] 𝒇𝒈,                    (31) 

 

which implies that 𝒒𝒋𝑬
= 𝟎. One may then state that:  

 

                                 [0 0 𝑚𝑔]𝑇 = −𝒇𝒈,                            (32) 

                      [0 0 𝑚𝑔]𝑇 = −[𝑓𝑥 𝑓𝑦 𝑓𝑧]𝑇 ,                  (33) 

 

thus revealing that 𝑓𝑥 = 𝑓𝑦 = 0, and 𝑓𝑧 = −𝑚𝑔. Hence, 

[�̇�𝒇𝒅
𝑻 𝒒𝒋𝑬

𝑻 ] = [𝟎 𝟎] is the largest invariant set, around which 

the equilibrium point is GAS. For a more direct proof, one 

could append 𝑎𝑗 to the PSS of (27), which would produce 

(11), and the conclusion that since all the equilibria are 

contained in �̇�, then the system is GAS. The presented 

controller constitutes a straightforwardly implementable, 

fully model-free control scheme, which provably converges 

to the desired equilibria during execution of tracking tasks.   

D. Controller Feasibility Discussion 

Unfeasible control signals may arise when �̇�𝒋𝒊
≈ 𝟎, since 

𝐌𝐛𝐫𝑔 inherently possesses a large magnitude. Thus, it is 

preferable to employ the control schemes that contain 

measured or estimated external force elements, given that:  

 

�̇�𝒄
𝑻(𝐌𝐛𝐫𝑔𝑺𝒄 + 𝒇𝒈) = −�̇�𝒄

𝑻𝐌𝐛𝐫�̈�𝒄 = −𝑚(�̇��̈� + �̇��̈� + �̇��̈�), (34)  

 

where the vertical acceleration, �̈�, is typically deemed a 

negligible quantity [11][36], thus reducing the equation to: 

 

    �̇�𝒄
𝑻(𝐌𝐛𝐫𝑔𝑺𝒄 + 𝒇𝒈) = −�̇�𝒄

𝑻𝐌𝐛𝐫�̈�𝒄 = −𝑚(�̇��̈� + �̇��̈�).    (35)  

 

Interestingly, saturation can always be prevented when 

�̇�𝒄
𝑻(𝐌𝐛𝐫𝑔𝑺𝒄 + 𝒇𝒈) − �̇�𝒋𝒅

𝑻 𝐊𝐏𝒒𝒋𝑬
> 0, by using the controller: 

 

            𝝉𝒎 = 𝐊𝐏𝒒𝒋𝑬
− 𝐊𝐃�̇�𝒋 + 𝐉𝐜

𝐓𝒇𝒈 + 𝝂𝑷(𝑓𝑣 − 𝑝𝑠),         (36) 

 

where 𝑓𝑣 = �̇�𝒄
𝑻(𝐌𝐛𝐫𝑔𝑺𝒄 + 𝒇𝒈) − �̇�𝒋𝒅

𝑻 𝐊𝐏𝒒𝒋𝑬
− 𝑎𝑐 − 𝑎𝑗, and 

𝑝𝑠 denotes an arbitrarily large, user-regulated positive 

constant, whose aim is to suppress the portion of the control 

signal that is multiplied by 𝝂𝑷. This is permissible, since 

addition of an arbitrarily large negative value, would lead to: 

 

                    �̇� = −�̇�𝒋
𝑻𝐊𝐃�̇�𝒋 − 𝑎𝑐 − 𝑎𝑗 − 𝑝𝑠 ≤ 0,                 (37) 

 

thereby preserving stability. Obversely, when 𝑓𝑣 < 0, 

addition of an arbitrarily large, positive 𝑝𝑠 value, may lead to 

violation of (37). It is however possible to perform stiffness 

modulations [37]-[39], which will have no bearing on �̇� 

[29], provided that 𝑝𝑠 = 𝑐 ∙ 𝒒𝒋𝑬

𝑻 �̇�𝐏𝒒𝒋𝑬
, with 𝑐 denoting a 

positive constant. To ensure that 𝑓𝑣 − 𝑝𝑠 ≥ 0, when 𝑓𝑣 < 0, 

it is mandatory to decrease the stiffness values, such that 

�̇�𝐏 < 0, which would yield 𝑓𝑣 + 𝑝𝑠 ≥ 0. The objective is to 

then satisfy the following relationship: 

 

                                         𝑓𝑣 + 𝑝𝑠 = 𝑠𝒄,                                     (38) 

 

where 𝑠𝒄 is a user-defined variable that when multiplied by 

‖𝝂𝑷‖, yields 𝜏𝑚𝑟
; a feasible input signal. It is assumed that 

all 𝐊𝐏 gains are modulated at the same rate, such that:  

 

                           𝒒𝒋𝑬

𝑻 �̇�𝐏𝒒𝒋𝑬
= 𝑐 ∙ 𝒒𝒋𝑬

𝑻 𝐈𝒒𝒋𝑬
≥ 𝑓𝑣.                     (39) 

 

The active stiffness gains should then be modulated at a rate 

determined by the following variable: 

 

                                   𝑐 = 𝑓𝑣 ∙ (𝒒𝒋𝑬

𝑻 𝐈𝒒𝒋𝑬
)

+
.                               (40) 

 

In practice, exceedingly large 𝒒𝒋𝑬

𝑻 �̇�𝐏𝒒𝒋𝑬
 magnitudes are 

attainable, since 𝐊𝐏 can be modulated aggressively, thus 

leading to production of values eclipsing �̇�𝒋𝒅

𝑻 𝐊𝐏𝒒𝒋𝑬
. The 𝐊𝐏 

values should be reverted to their original state, once 𝑓𝑣 ≥ 0. 

IV. WALKING EXPERIMENTS USING A METAMORPHIC 

QUADRUPEDAL ROBOT 

A. Experimental Setup 

The Metamorphic Walker (MW) [40] is a 1.2 kg 

reconfigurable robot capable of switching between various 

forms, which allows it to mimic mammal and insect gaits. It 

comprises a total of 14 actuated joints, incorporating 12-bit 

position encoders. In this work, the MW has been equipped 

with four Parallax Inc FlexiForce pressure sensors (~0.7 kg 

resolution), which are used to extract vertical contact force 

measurements that are then transmitted to an Arduino Uno. 

Control law (36) is implemented on a custom 

microcontroller provided by the manufacturer [40]. A 

Mathworks MATLAB interface enables the user to 

broadcast commands to the microcontroller, via Bluetooth, 

thereby triggering a set of predefined actions and gaits.    

B. Arachnoid Gait 

In order to realise locomotory tasks, control law (36) has 

been implemented on the robot, as this is the only presented 

control scheme that yields a GAS closed-loop system, 

through a model-free approach. �̇�, �̈�, �̇�, �̈�, �̇�, and �̈� are 

estimated via numerical differentiation of the forward 

kinematics relationship, �̇�𝒄 = 𝐉𝐭�̇�𝒋, where 𝐉𝐭 ∈ ℝ3×𝑛 denotes 

a CoM Jacobian. This permits computation of the GAF, via 

𝐌𝐛𝐫�̈�𝒄 + 𝐌𝐛𝐫𝑔𝑺𝒄 = −𝒇𝒈. Comparable performance levels 

are observed, regardless of whether the 𝒇𝒈 vector is 

estimated solely via encoder feedback, or calculated from a 

3820



  

combination of encoder and force/pressure sensor readings. 

The former method is preferable however, as the pressure 

sensors introduce slippage effects, and their measurement 

accuracy depends on the nature of the contact. Although  

 
 
 

 

 
 

 

 
 

Figure 3. Joint position tracking during walking (rear right leg). 

 
 

 

 
 

 

 
 

 

Figure 4. Joint position tracking during walking (front right leg). 
 

 

 
 

 

 
 

 

 
Figure 5. Vertical ground reaction forces during locomotion (right legs). 

 

 
 

 

 
 

 

 
 

Figure 6. Joint velocities produced during arachnoid gait (right legs). 

 
 

 

 
 

 
 

 

 
Figure 7. Estimated Cartesian CoM velocities during walking. 

 

 

 

 

 
 

 

 
 

Figure 8. Input signals produced during arachnoid gait (right legs). 

 

slippage effects can be compensated via the PSS, this 

exceeds the presented work’s scope. The controller is 

supplied with a continuous position trajectory, based on 

which the desired joint velocities, �̇�𝒋𝒅

𝑻 , are computed 

iteratively. Figs. 3 and 4 display the joint-tracking performance 

pertaining to the rear-right and front-right legs, during 

walking. The leg joints are enumerated from 1 to 12, starting 

from the rear right leg, with joints closest to the robot’s body 

possessing the lowest numbers in every leg chain. 
 

 
 

 

 
 

 

 
 

Figure 9. Total power shaping signal (right legs). 

 
 

 

 
 

 

 

 

 

Figure 10. Evolution of 𝑓𝑣 − 𝑝𝑠 power signal. 

 
 

 

 
 

 

 
 

 

Figure 11. Proportional gain modulation. 
 

 

 
 

 

 
 

Figure 12. MW snapshots with (right) and without (left) pressure sensors. 

 

Moreover, Fig. 5 contains the ground reaction forces 

measured by the pressure pads (Fig. 12), Fig. 6 illustrates the 

joint velocity values, and Fig. 7 contains the computed 

Cartesian CoM velocities. Fig. 8 depicts the input signals, 

while the various constituents of the overall control signal 

are displayed in Figs. 9 and 10. To be precise, Fig. 9 plots 

the total values of 𝝂𝑷(𝑓𝑣 − 𝑝𝑠), which are clearly upper 

bounded, as a result of the previously described 𝑓𝑣 + 𝑝𝑠 ≈ 𝑠𝒄 

relationship. Fig. 10 displays the scalar 𝑓𝑣 − 𝑝𝑠 term’s real-

time evolution, which determines the required, automatic 

gain modulation presented in Fig. 11 that also includes a 

magnified plot of 𝒒𝟐 and 𝒒𝟓’s gains. Videos of the walking 

experiments are contained within the accompanying file.  

V. CONCLUSION 

This work presents an array of designs for stable and passive 

control of under-actuated, floating-base robots with contacts. 

The control designs are all founded on one central concept, 

namely the direct incorporation of PSS terms into the 

developed control laws, as is also performed in [29][30]. A 

general floating-base model is initially considered, in 

conjunction with minimally model-based controllers that can 

guarantee closed-loop passivity and stability. Subsequently, 

a decoupled version of the floating-base model is 
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constructed via coordinate transformation [18]. Utilisation of 

this tractable mathematical representation enables the 

creation of model-free controllers, which provably guarantee 

passivity and tracking stability, for floating-base robots with 

contacts. A variable impedance control strategy [29][30] is 

then propounded, to guarantee production of feasible control 

signals. Experimental results extacted from a reconfigurable 

quadrupedal robot (MW), corroborate the theoretical 

analysis and the controller’s feasibility. 
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