
Integrating Model Predictive Control and Dynamic Waypoints
Generation for Motion Planning in Surgical Scenario

Marco Minelli1, Alessio Sozzi2, Giacomo De Rossi3, Federica Ferraguti1,
Francesco Setti3, Riccardo Muradore3, Marcello Bonfè2, Cristian Secchi1

Abstract— In this paper we present a novel strategy for
motion planning of autonomous robotic arms in Robotic
Minimally Invasive Surgery (R-MIS). We consider a scenario
where several laparoscopic tools must move and coordinate in
a shared environment. The motion planner is based on a Model
Predictive Controller (MPC) that predicts the future behavior of
the robots and allows to move them avoiding collisions between
the tools and satisfying the velocity limitations. In order to
avoid the local minima that could affect the MPC, we propose
a strategy for driving it through a sequence of waypoints. The
proposed control strategy is validated on a realistic surgical
scenario.

I. INTRODUCTION

Autonomous robots in surgical practice are not common,
even though robotic surgery is reality since when Intuitive
Surgical released the da Vinci R©system almost 20 years ago.
Introducing autonomy in medical robotics is challenging
because of both ethical and technical issues. As for the
ethical aspects, one should consider if human safety can
be more at risk, while technically the execution of surgical
tasks is hardly predictable, in particular when soft body
parts and tissues are involved [1]–[4]. Nevertheless, the
research on autonomous surgical robots is quite active and
the medical community is looking forward for new results.
For example, [5] proposed a cognitive control architecture
designed to operate a surgical robot for needle insertion
and suturing tasks in either teleoperated [6] and autonomous
mode [7], guaranteeing a stable switch between the two
and an adaptive interaction with the environment in both
modes [8]. Automated suturing is investigated by means of
advanced learning techniques [9], [10] or offline geometry-
based motion planning techniques [11], [12]. A survey on
robotized needle insertion is in [13].

In Robotic Minimally Invasive Surgery (R-MIS) the surgi-
cal tools are inserted into the abdomen of the patient through
trocars, that impose a Remote Center of Motion (RCM) to
the surgical tools. Developing autonomous robots for R-MIS
operations is further complicated, not only because of the
motion constraint given by trocars, but also because such

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 779813
(SARAS).

1 M. Minelli, F. Ferraguti and C. Secchi are with the Dept. of Sciences
and Methods of Engineering, University of Modena and Reggio Emilia,
Italy. marco.minelli@unimore.it

2 A. Sozzi and M. Bonfè are with the Dept. of Engineering, University
of Ferrara, Italy.

3 G. De Rossi, F. Setti and R. Muradore are with the Dept. of Computer
Science, University of Verona, Italy.

operations require the cooperation of several human actors.
In particular, in R-MIS the main surgeon is seated at the
da Vinci R©console and remotely controls its tools, while
an assistant surgeon handles standard laparoscopic tools to
perform secondary tasks (e.g. move organs or suction blood).
A recent EU funded H2020 research project SARAS1 (Smart
Autonomous Robotic Assistant Surgeon) has the goal to
substitute the assistant surgeon with an autonomous robotic
system. To this aim, we developed a cognitive system that
mimics the behavior of the assistant surgeon. This cognitive
system is trained on data acquired with the SARAS Multi-
robots Surgery Platform [14]–[16] when the assistant surgeon
is teleoperating assistive robots [17]. In parallel, we are de-
veloping robot motion planners taking into account dynamic
environments, characterized by the presence of obstacles (e.g.
tools and patient’s organs) whose motion is predictable only
within a short time horizon. This aspect encourages the use
of reactive methods like [18], and discourages the use of
geometry-based and sampling-based planning algorithms.

In this paper we propose a reactive approach to motion
planning for a multi-arms laparoscopic surgical robot in a
dynamic environment, based on Model Predictive Control
(MPC). MPC-based approaches are a good choice in our
scenario because they rapidly converge towards optimal
solutions and allow to account for different types of con-
straints such as velocity limits and distance to obstacles [19].
Nevertheless, embedding the kinematic constraints of R-MIS
in a MPC problem can be cumbersome. In this paper we
will show how to complement the MPC-based approach with
a waypoint computation strategy that guides the obstacle
avoidance manoeuvre towards favourable directions and re-
duces the risk of being trapped into local minima.

The main contributions of this paper are:

• A Model Predictive Controller (MPC) that computes
the collision-free trajectory of multiple laparoscopic
surgical tools to their target positions, considering the
tools as a whole.

• A novel strategy to compute suitable waypoints in the
workspace, improving the convergence of the motions
generated by the MPC towards the target positions,
while avoiding obstacles.

• An experimental validation of the overall control archi-
tecture in a realistic surgical scenario.

1saras-project.eu

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 3157

Fig. 1. Control architecture scheme for robotic laparoscopic surgery.

II. CONTROL ARCHITECTURE FOR ROBOTIC
LAPAROSCOPIC SURGERY

We build on the control architecture for R-MIS proposed
in [16] and summarized in Fig. 1. The overall architecture
can be split in two modules: 1) the Intelligence module,
that determines the desired behavior of the system, and
2) the Control module, that controls the robots in order
to implement the desired behavior. In particular, the Action
Recognition sub-module exploits the endoscopic images to
detect actions executed during the surgical procedure. The
most likely action is then provided to the Supervisory Control
sub-model, together with a confidence level associated with
that detection. The progress of the surgical procedure is
monitored by the Supervisory Control that computes the
targets where the robots have to move, and sends them to the
Control module, together with the confidence level. A Model
Predictive Controller (MPC) is used to translate such targets
into feasible trajectories for the arms.

In this paper we will focus on the Control module. We
will consider the SARAS Multirobots Surgery Platform [14],
where four laparoscopic tools operate in a shared envi-
ronment. However, the approach presented in this paper is
general and can be applied to any system for laparoscopic
surgery where tools guided by robotic arms are used. In the
SARAS setup, two laparoscopic tools, namely the controlled
tools, are controlled by the autonomous system (Assistant
robot left and right arms in Fig. 1), the remaining two
arms, teleoperated by the main surgeon, are located in the
workspace and considered as obstacles. The workspace of
interest for collision-avoidance is the internal part of the
patient’s abdomen; the control system moves autonomously
the controlled tools in order to reach the target configurations
while dynamically avoiding collisions with the obstacles and
between the two controlled tools. The main control system
is based on an MPC where the mathematical model of the
two controlled tools is used to predict their future behavior
and to compute the optimal input with which the robots can
be controlled. Based on an optimization process, the MPC
can be affected by local minima, due to the presence of
obstacles in the workspace. To overcome this problem, we
drive the MPC by computing intermediate waypoints on the
basis of the current position of the tools, the position of
the obstacles and the target position provided by the Intel-
ligence module. Compared to other solutions found in [20],

[21], this approach has the advantage of being specifically
optimized for the guidance of laparoscopic tools in a shared
control environment with dynamical constraints. Operations
can, therefore, be performed in a tight environment by
continuously searching for optimized solutions given both
collision-free geometrical constraints over moving obstacles
and varying velocities to respond to uncertainties.

III. DESIGN OF THE MODEL PREDICTIVE
CONTROLLER

Safety-critical scenarios, of which surgical theaters are a
prime example, require to enforce constraints on velocity
limits and collision avoidance, that are taken into account
to design our MPC-based control system. At the same time,
the control system has to deal with the uncertainty in the
recognition of the action that derives by the Intelligence
module. This uncertainty is the residual of the confidence
level α ∈ [0, 1] paired to each action identified by the Action
Recognition system within the Intelligence module [16]. We
use the confidence level to modulate the Cartesian velocity
of the robots while the control system is planning the motion
of the robot towards the goal position. The intent is to avoid
abrupt movements towards possibly incorrect goal positions,
which are, on average, associated with low confidence levels,
while avoiding stalling the system and impeding the motion
of the teleoperated tools. As the confidence increases for
correct predictions, the modulated tool velocity will conse-
quently increase as well.

A. Robot-Obstacle distance computation

Since a safe interaction between the robotic systems and
the patient needs always to be guaranteed, collisions between
the two controlled tools and between the controlled tools and
the obstacles have necessarily to be avoided.

We decide to model each tools in the workspace using
virtual capsules, in order to enclose them into the fittest
and simplest shape. This allows to make the computation
of the relative distance among the objects very simple and
fast [22]. Given a pair of Cartesian points, a capsule is an
object composed by two hemispheres, centered in that points,
and a cylinder, with longitudinal axis linking the two points.
Let i and j be two generic tools into the workspace. The
distance between the two capsules that enclose the i-th and
j-th tool can be defined as

dji = daxj
axi
− ri − rj (1)

where daxj
axi is the distance between the axes of the capsules,

computed as the distance between segments shown in [22],
while ri and rj are the radii of the i-th and j-th tool virtual
capsule. Fig. 2 shows the procedure used to build a capsule
around a laparoscopic tool. Exploiting (1) the distances
between the tools can be easily computed and embedded
into the MPC to avoid collisions.

3158

Fig. 2. Procedure used to enclose a tool into a capsule. On the left, the
CAD model of the robotic laparoscopic tool and, in red, a capsule. On the
right, the capsule wrapping the robotic laparoscopic tool.

B. Robot model
In the following we will consider as controlled tools two

4-DOFs robotic laparoscopic tools with a RCM. Since the
movements are performed with the tools tips closed for safety
reasons, the 4th degree of freedom of the robot, i.e. the
rotation along its axis, does not affect the obstacle avoidance,
so we do not consider it in the MPC formulation. We indicate
with x̄j ∈ R3, j ∈ {r, l} the coordinates of the position of
the end-effector as the state of each controlled tool, with the
subscripts r and l to identify the right and the left tool. Let
ūj ∈ R3 be the control input, where ū ∈ R3 are the input
linear velocities of the end-effector. The overall system can
be kinematically modeled as a single integrator in the discrete
time domain:

x(k + 1) = x(k) +Bu(k) (2)

where x = [x̄r, x̄l] ∈ R6 is the state vector comprising the
two tools, B = diag{∆tc} ∈ R6×6 is the input matrix, ∆tc
is the sampling time (t = k∆tc, k ∈ Z) and u = [ūr, ūl] ∈
R6 represents the control input.

C. Constraints
Two types of constraints are considered in the MPC

formulation:
• Velocity limit: The velocities of the robots are physically

limited. This can be translated into a bound on the
control input:

||ūj(k)|| ≤ α(k) ūmax
j (3)

where ūmax
j ∈ R+ is the linear velocity limit and α(k)

is the confidence level used to modulate the velocity of
the robots depending on the uncertainty in the action
recognition.

• Collision avoidance constraint: As introduced in Sec-
tion III-A, collisions between the tools into the
workspace need to be avoided during the task execution.
To this aim, the distances between capsules computed
as (1) are exploited and the collisions between the i-th
tool and the j-th tool at time instant k are avoided by
setting the following constraint:

dji (k) ≥ ds (4)

where ds ∈ R is a user-defined positive parameter
representing the safety distance.

D. Cost function

The cost function of the MPC is defined as:

J(xMPC, x) =

p−1∑
i=0

||xMPC(k)− x̂(k + i)|| (5)

where p = N/∆tc is the number of time steps in the
prediction horizon N for the MPC sampling time ∆tc,
xMPC(k) ∈ R6 is the desired state at the time step k driven
to the MPC, and x̂(k + i) ∈ R6 is the predicted state
with initial condition x̂(k + 0) = x(k). This cost function
allows the system to reach the deisred position with a straight
trajectory if no obstacles are detected. The desired state of
the MPC xMPC(k) will be provided by the planner illustrated
in Section IV.

The rotation and the velocity of the tool along its axis
are controlled by an external proportional controller. This
separation between linear and rotational control is possible
by the nature of the 4-DOFs standard laparoscopy tools and
the policy of moving the robots keeping the instruments
closed.

E. MPC formulation

The solution of the following constrained finite-horizon
optimal control problem

min
u

∑p−1
i=0 ||xMPC(k)− x̂(k + i)||

s.t. x̂(k + i+ 1) = x̂(k + i) +Bu(k + i)
||uj(k)|| ≤ α(k) umax

j

drlrr (k + i) ≥ ds
dohrj (k + i) ≥ ds
i = 0, ..., p− 1
h = 0, ..., No

j ∈ {r, l}

(6)

returns the optimal control input sequence u =
[u(k), ..., u(k + p − 1)]. In the optimization problem,
x̂(k + i + 1) represents the estimation of the state at time
k+i+1 computed using the model (2), u(k+i) is the linear
control input at time k + i and drlrr (k + i) is the distance
between the virtual capsule built around the controlled tools
at time k+ 1. dohrj (k+ i) is the distance between the virtual
capsules built around the controlled tool j and the obstacle
h at time k + 1 with No the number of obstacles in the
workspace. The position of each one of the No obstacles in
the prediction horizon is computed considering its velocity
to be constant over the entire horizon. The same holds for
the desired position xMPC(k) and the confidence level α(k).
Finally, the first component u(k) is used to compute the
desired motion position xd(k + 1) , x(k) + Bu(k) to be
actually reached by the robots.

IV. WAYPOINTS GENERATION

When the target configuration, that we can denote as xg ,
selected by the Intelligence module shown in Section II is
directly provided as the MPC desired position x̄mpc, the
MPC alone may not guarantee that the desired configuration
is reached. As shown in Fig. 3, it is possible for the solver

3159

(a) (b)

Fig. 3. Tool position (blue), desired tool position (light-blue) and capsule-
shaped obstacle (red) before (a) and after (b) the insertion movement. The
obstacle cannot be overtaken.

(a) (b) (c)

Fig. 4. Tool position (blue), desired tool position (light-blue) and capsule-
shaped obstacle (red). The waypoint is used to make one of the arm avoiding
the obstacle along its path.

to incur in a local minimum solution: all the constraints are
satisfied, but the final target is not reached. This is mainly
due to the constraint introduced by the trocar point T the tool
is forced to pass through. A possible solution to this problem
consists in properly planning a set of waypoints towards the
final target configuration to be provided as intermediate goals
to the MPC (see Fig. 4). In this way, as shown in [23],
it is possible to lead the robot along preferential directions
to avoid the obstacle while taking into account the trocar
constraint. The proposed planning strategy is based on simple
geometric considerations and it can be executed in real time
with reduced computational overhead when compared to
potential energy-based methods like [20], which is crucial
for having a reactive behavior of the robotic system holding
the laparoscopic tool. The motion of each arm is planned
separately. When the motion of one arm is computed, the
other arms are considered as obstacles. The arm holding the
tool as well as all the obstacles are wrapped into capsules
and, therefore, the planning problem can be seen as the
problem of planning the motion of one capsule constrained
to a trocar point from an initial to a final configuration
while avoiding other capsules. In the following, we will
denote with C(C1, C2) a generic capsule, where C1 =
(xC1

(t), yC1
(t), zC1

(t)) and C2 = (xC2
(t), yC2

(t), zC2
(t))

are the two end-points of the capsule that identify the pose
of the capsule; C1C2 denotes the axis passing through C1

and C2. We will omit the end-points, when clear from the
context.

Let R(R1, R2), G(G1, G2) and Oi(O1,i, O2,i), with i =

Algorithm 1: Local waypoint strategy
1 Data: R, G,Oi

2 Q = ∅
3 M =computeMotionPlane(R1R2,G1G2)
4 for i← 1 to No do
5 Si = Sample(O1,i, O2,i)
6 Zi=getClosest(Si, T)
7 if (isFree(Oi,1, Oi,2, R1,M)) then
8 Wi=∅)

else
9 Wi=project(Zi,M , Oi,1Oi,2)

10 addWayPoint(Wi, Q)

11 W=computeFinalWayPoint(Q)

0, . . . , No be the capsules identifying the tool whose motion
needs to be planned, the goal configuration where R has
to be taken, and the obstacles, respectively. The planning
algorithm is reported in Alg. 1. The necessary data are the
capsules of the arm R, of the goal G and of all the obstacles
Oi, i = 1, . . . , No. For each obstacle, a local waypoint is
generated according to the following procedure. The motion
plane M , i.e. the plane on which the tool can reach the goal
configuration in case of no obstacles, is generated (Line 3).
Formally, this is the plane orthogonal to the normal vector

n =
R1 −R2

‖R1 −R2‖
× G1 −G2

‖G1 −G2‖
(7)

and containing R1R2 and G1G2. Then a set Si of possible
escape points from the obstacle is generated by uniformly
sampling the space around the endpoint of the obstacle
capsule Oi that is the closest to the tool (Line 5). Among
these points, Zi, the closest to the trocar, is chosen (Line 6) in
order to give a preference to the retraction of the tool, which
is often a feasible option. If the capsule of the obstacle is
parallel to the motion plane, i.e. (Oi,1 − Oi,2) · n = 0, but
not contained in it, or if the capsule is not intersecting the
plane, i.e. ((Oi,1 + σ(Oi,2 − Oi,1)) − R1) · n = 0 for all
σ ∈ [0, 1], then the motion plane is free and the robot can
reach the desired configuration. Thus, no local waypoints
are generated (Line 8). If the obstacle intersects the motion
plane, a local waypoint Wi is generated by projecting Zi on
the motion plane along the obstacle axis (Line 9). In this
way, Wi is reachable by the robot and it does not intersect
the obstacle by construction. The set containing the local
waypoints is updated (Line 10).

The global waypoint is computed as the centroid of the
waypoints associated to each obstacle, using as weight of
each waypoint βi the inverse of the distance di between the
tool and the related obstacle (Line 11):

W =

∑N
i=1 βiWi∑N
i=1 βi

(8)

where N represents the cardinality of Q and βi = 1/di.
Despite the fact that each local waypoint is external to
the related obstacle, it is possible (though unlikely) that
their centroid, computed as (8), could lie inside one of the
obstacles: in this case, the waypoint W is set equal to the

3160

Fig. 5. Tool position (blue), desired tool position (light-blue) and capsule-
shaped obstacle (red). The point S1 is chosen to be projected on the plane
M (grey) to find the waypoint Wi

trocar, thus the MPC will compute an extraction movement,
which is always collision free.

V. SIMULATIONS AND EXPERIMENTS

The validation of the proposed system has been performed
on the SARAS platform. In particular, four laparoscopic tools
operate in a shared workspace: two of them are mounted on
prototype robots (Medineering GmbH) and controlled by the
autonomous system, while the other two (the da Vinci R©arms)
are teleoperated and represent the obstacles to be avoided by
the autonomous ones. The control system proposed in this
paper moves the controlled tools in order to avoid collisions
between all the tools inside the environment.

A. Validation in simulation

At first, a simulation environment has been developed
to perform preliminary tests. In order to simulate the real
movement of the robot and faithfully reproduce the real
setup, a visual model and a kinematic simulator of the
SARAS arms were created using the 3D visualizer ROS Rviz
and the CAD’s provided by the robot’s company. The arms
were simulated introducing in the simulation environment
the position of the RCM and the position of the end-
effector of two arms, with the relative virtual capsules.
Figure 6 shows the simulation environment. Simulations are
performed providing to the system the goal configuration xg ,
the initial configuration of the two arms x̃r, x̃l and the initial
configuration of the two obstacles. We set the SARAS and
da Vinci R©capsules’ radii to 7.5 mm, and the additional safety
distance between capsules ds = 5 mm; we conservatively
set the maximum tool velocities to umax

j = 10 mm
s . Figure 7

shows the results achieved using the simulation environment.
The norm of the Cartesian velocity (Fig. 7-a) of the two
controlled arms clearly shows the modulation introduced by
the confidence level, reported in Fig. 7-b, underlining the
capability of the controller of scaling the velocities if an
uncertain situation is detected (e.g. at time t = 13s). Figure
7-c shows the evolution of the Cartesian positions. For the
sake of clarity, only movements along one of the axis are
reported (here and in all the subsequent plots). The position
of the waypoint switches during the simulation in order
to allow the SARAS arms to overtake the obstacles. This

Fig. 6. Simulation environment. A SARAS arm model (courtesy of
Medineering GmbH) is placed on the right side and on the left side. In red,
the virtual capsules wrapping each arm’s tool. In green, the virtual capsules
wrapping the obstacles. The frames at the end of each arm represent the
pose of the end-effector while the other two frames represents the goal
positions.

happens only if an obstacle needs to be overtaken, as for the
left robot in the time interval t ∈ [0, 25]. If no obstacle needs
to be overtaken, the waypoint is set to the target position,
as for the right robot, where the waypoint and the target
position overlap for the entire simulation. Since the waypoint
position is used as reference for the MPC controller and the
waypoint position converge to the target position, the overall
controller allows the system to reach the target position. The
real Cartesian position of the arms is not reported in the
plots since the implemented simulator is purely kinematic,
namely, there are no differences between the commanded
position and the real position. Thanks to the MPC controller
and the waypoint motion strategy, the controller is able to
perform all the movements avoiding collision between tools,
as clearly visible in Fig. 7-d where the distances between the
tools are reported. A particular behavior of the controller can
be also observed from Fig. 7. Indeed, in the first 30 seconds
of the simulation, the right robot reaches the target position
and starts to track it, as visible in Fig. 7-c. At that time, the
right robot moves in order to allow the left robot to reach
its goal position. Indeed, the distance between the two arms
goes to the minimum allowed distance, as visible in Fig. 7-d.
Finally, a new configuration is computed for both the robots
in order to minimize the distance from the target position.
Simulation tests have been performed with moving obstacles
(Figure 8) to validate the local waypoint algorithm and the
response of the MPC optimization. The obstacles pivot at a
constant tool-tip linear velocity of 2 mm

s to interfere with the
initial planned waypoint; the different geometrical alignment
of the tools forces the re-evaluation of a new waypoint. A
direct comparison of Figure 7 and 8, subfigures (c) and
(d), illustrates the adapted control strategy to the moving
obstacles as the obstacle closes in to the moving tools, thus
forcing a different trajectory. Both the static and moving
obstacles behaviors are present in the videoclip attached to
this paper.

B. Validation on the SARAS setup

The experiments has been performed providing to the
system the goal configuration xg . The configuration of the

3161

0.000

0.005

0.010

[m/s]

(a)

Left tool

0.000

0.005

0.010

[m/s]

Right tool

0.000
0.400
0.800
[ad.]

(b)

0.000
0.400
0.800
[ad.]

-0.290

-0.260

-0.230

[m]

(c)

-0.250

-0.237

-0.223

[m]

0 15
0.000

0.023

0.047

[m]

Time[s]

(d)

0 15
0.000

0.023

0.047

[m]

Time[s]

Fig. 7. Simulation results. (a) The norm of the controller output velocity
(red line) and the confidence modulated maximum velocity norm (black
dotted line). (b) The confidence level. (c) The commanded Cartesian position
of the robot (red line), the Cartesian position of the waypoint (blue line) and
the Cartesian position of the target position (green line). (d) The distance
between the robot tool capsule and the first obstacle capsule (red line), the
distance between the robot tool capsule and the second obstacle capsule
(blue line), the distance between the robots tool capsules (green line) and
the minimum allowed distance between tools (black dotted line). Plots are
reported for both left and right robots.

two arms x̃r, x̃l and the configuration of the two obstacles
are continuously updating using the robots readings. The two
controlled arms and the two obstacles arms are initialized
in such a way that each controlled arm needs to overcome
an obstacle, in order to highlight the capabilities of the
controller to avoid obstacles. The radius of the capsules
are set to 5 mm for the da Vinci R© tools and to 4 mm
for the SARAS tools to fit their dimensions with a little
safety margin. The safety distance ds is set to 1 cm, higher
than in simulated environment to take into account possible
calibration inaccuracies. Figure 9 shows the results achieved
using the real setup and confirms the results obtained in
simulation. Figure 9-a reports the Cartesian velocities of the
two controlled arms while Fig. 9-c reports their Cartesian
positions. It is worth highlighting that the noise in the
velocities in Fig. 9-a is due both to the numerical derivation
of positions measured by potentiometers (and not encoders)
and by the fact that the RCMs are virtually (via software)
but not physically present. With real trocars the shaking of
such slender (and not collocated) tools would be drastically
reduced. Good tracking performances can be appreciated
looking at the small difference between the commanded
Cartesian position and the real Cartesian position (red lines

0.000

0.005

0.010

[m/s]

(a)

Left tool

0.000

0.005

0.010

[m/s]

Right tool

0.000
0.400
0.800
[ad.]

(b)

0.000
0.400
0.800
[ad.]

-0.290

-0.260

-0.230

[m]

(c)

-0.260

-0.243

-0.227

[m]

0 15
0.000

0.023

0.047

[m]

Time[s]

(d)

0 15
0.000

0.023

0.047

[m]

Time[s]

Fig. 8. Simulation results with moving obstacles (refer to the caption for
Figure 7).

and orange lines in Fig. 9-c). This shows that the robots
implementing the MPC commands reach their target posi-
tions while avoiding the obstacles, thanks to the waypoint
motion strategy described in Section IV. All the movements
are performed avoiding collisions, as clearly appreciable
in Fig. 9-d, and modulating the velocities with respect to
the confidence level provided to the Control module. The
same position was commanded as goal configuration for
the two controlled tools. Referring to Fig. 9, the position
of the waypoints is computed as an intermediate point for
both the controlled arms. The controlled tools move to the
waypoints. When the tool reaches the waypoint than the
waypoint switches to the target position, driving the robot
towards the goal configuration since obstacles are assumed to
have been already overcome. Since the goal configuration is
the same for both the tools, neither of them reaches the target
position since a collision would occur. The system converges
to a configuration where the distance between the actual
position and the desired one is minimized but collisions are
avoided, as observed also in simulation.

VI. CONCLUSIONS
In semi-autonomous R-MIS a safe interaction between the

robotic system and the patient needs to be guaranteed. Thus,
collisions between all the tools inside the workspace and
between the tools and the obstacles need to be avoided.

In this paper, we proposed a reactive approach to mo-
tion planning to be applied in R-MIS, where multi-arms
laparoscopic surgical robots may be present into a shared
dynamic environment. The motion planner is based on a

3162

0.000

0.005

0.010

[m/s]

(a)

Left tool

0.000

0.005

0.010

[m/s]

Right tool

0.000
0.400
0.800
[ad.]

(b)

0.000
0.400
0.800
[ad.]

-0.290

-0.267

-0.243

[m]

(c)

-0.320

-0.287

-0.253

[m]

0 12 24 36
0.000

0.023

0.047

[m]

Time[s]

(d)

0 12 24 36
0.000

0.023

0.047

[m]

Time[s]

Fig. 9. Experimental results. (a) The norm of the controller output velocity
(red line), the norm of the real velocity of the robot (blue line) and the
confidence modulated maximum velocity norm (black dotted line). (b) The
confidence level. (c) The commanded Cartesian position of the robot (red
line), the Cartesian position of the waypoint (blue line), the real Cartesian
position of the robot (orange line) and the Cartesian position of the target
position (green line). (d) The distance between the robot tool capsule and the
first obstacle capsule (red line), the distance between the robot tool capsule
and the second obstacle capsule (blue line), the distance between the robots
tool capsules (green line) and the minimum allowed distance between tools
(black dotted line). Plots are reported for both left and right robots

Model Predictive Controller that allows to rapidly converge
towards the optimal solution, while satisfying all the con-
straints for velocity limits and collision avoidance. Moreover,
an innovative strategy has been proposed for computing
waypoints that allows to overtake the obstacles when the
MPC alone would fail. The proposed control strategy has
been validated on a realistic surgical scenario.

VII. ACKNOWLEDGMENT

The authors would like to thank Johann Wigger, Sabine
Hertle and Medineering GmbH for the development of the
SARAS robots used in the experiments.

REFERENCES

[1] R. H. Taylor, A. Menciassi, G. Fichtinger, P. Fiorini, and P. Dario,
“Medical robotics and computer-integrated surgery,” in Springer hand-
book of robotics. Springer, 2016, pp. 1657–1684.

[2] G.-Z. Yang, J. Cambias, K. Cleary, E. Daimler, J. Drake, P. E.
Dupont, N. Hata, P. Kazanzides, S. Martel, R. V. Patel, V. J. Santos,
and R. H. Taylor, “Medical robotics – Regulatory, ethical, and legal
considerations for increasing levels of autonomy,” Science Robotics,
vol. 2, no. 4, p. 8638, 2017.

[3] T. Haidegger, “Autonomy for surgical robots: Concepts and
paradigms,” IEEE Transactions on Medical Robotics and Bionics,
vol. 1, no. 2, pp. 65–76, May 2019.

[4] F. Ficuciello, G. Tamburrini, A. Arezzo, L. Villani, and B. Siciliano,
“Autonomy in surgical robots and its meaningful human control,”
Paladyn Journal of Behavioral Robotics, vol. 10, no. 1, pp. 30–43,
2019.

[5] N. Preda, F. Ferraguti, G. De Rossi, C. Secchi, R. Muradore, P. Fiorini,
and M. Bonf, “A cognitive robot control architecture for autonomous
execution of surgical tasks,” Journal of Medical Robotics Research,
vol. 1, no. 04, 2016.

[6] F. Ferraguti, N. Preda, M. Bonfè, and C. Secchi, “Bilateral teleop-
eration of a dual arms surgical robot with passive virtual fixtures
generation,” in IROS, 2015.

[7] N. Preda, A. Manurung, O. Lambercy, R. Gassert, and M. Bonfè,
“Motion planning for a multi-arm surgical robot using both sampling-
based algorithms and motion primitives,” in IROS, 2015.

[8] F. Ferraguti, N. Preda, A. O. Manurung, M. Bonfè, O. Lambercy,
R. Gassert, R. Muradore, P. Fiorini, and C. Secchi, “An energy tank-
based interactive control architecture for autonomous and teleoperated
robotic surgery,” IEEE Transactions on Robotics, vol. 31, no. 5, pp.
1073–1088, 2015.

[9] C. Reiley, E. Plaku, and G. Hager, “Motion generation of robotic
surgical tasks: Learning from expert demonstrations,” in EMBC, 2010.

[10] J. Schulman, A. Gupta, S. Venkatesan, M. Tayson-Frederick, and
P. Abbeel, “A case study of trajectory transfer through non-rigid
registration for a simplified suturing scenario,” in IROS, 2013.

[11] H. Wang, S. Wang, J. Ding, and H. Luo, “Suturing and tying knots
assisted by a surgical robot system in laryngeal MIS,” Robotica,
vol. 28, no. SI 02, pp. 241–252, 2010.

[12] F. Nageotte, P. Zanne, C. Doignon, and M. deMathelin, “Stitching
planning in laparoscopic surgery: Towards robot-assisted suturing,”
International Journal of Robotics Research, vol. 28, no. 10, pp. 1303–
1321, 2009.

[13] I. Elgezua, Y. Kobayashi, and M. G. Fujie, “Survey on current state-
of-the-art in needle insertion robots: Open challenges for application
in real surgery,” Procedia CIRP, vol. 5, pp. 94–99, 2013.

[14] F. Setti, E. Oleari, A. Leporini, D. Trojaniello, A. Sanna, U. Capitanio,
F. Montorsi, A. Salonia, and R. Muradore, “A multirobots teleoperated
platform for artificial intelligence training data collection in minimally
invasive surgery,” in ISMR, 2019.

[15] E. Oleari, A. Leporini, D. Trojaniello, A. Sanna, U. Capitanio, F. Dehó,
A. Larcher, F. Montorsi, A. Salonia, F. Setti, and R. Muradore,
“Enhancing surgical process modeling for artificial intelligence de-
velopment in robotics: the saras case study for minimally invasive
procedures,” in ISMICT, 2019.

[16] G. De Rossi, M. Minelli, A. Sozzi, N. Piccinelli, F. Ferraguti, F. Setti,
M. Bonfè, C. Secchi, and R. Muradore, “Cognitive robotic architecture
for semi-autonomous execution of manipulation tasks in a surgical
environment,” in IROS, 2019.

[17] M. Minelli, F. Ferraguti, N. Piccinelli, R. Muradore, and C. Secchi,
“An energy-shared two-layer approach for multi-master-multi-slave
bilateral teleoperation systems,” in ICRA, 2019.

[18] S. M. Khansari-Zadeh and A. Billard, “A dynamical system approach
to realtime obstacle avoidance,” Autonomous Robots, vol. 32, no. 4,
pp. 433–454, 2012.

[19] M. Cefalo, E. Magrini, and G. Oriolo, “Sensor-based task-constrained
motion planning using model predictive control,” in SYROCO, 2018.

[20] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization.” in Robotics: science and systems, vol. 9, no. 1.
Citeseer, 2013, pp. 1–10.

[21] B. Kehoe, G. Kahn, J. Mahler, J. Kim, A. Lee, A. Lee, K. Nakagawa,
S. Patil, W. D. Boyd, P. Abbeel, and K. Goldberg, “Autonomous
multilateral debridement with the raven surgical robot,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA), May
2014, pp. 1432–1439.

[22] V. J. Lumelsky, “On fast computation of distance between line
segments,” Information Processing Letters, vol. 21, pp. 55–61, 1985.

[23] A. Sozzi, M. Bonfè, S. Farsoni, G. De Rossi, and R. Muradore,
“Dynamic motion planning for autonomous assistive surgical robots,”
Electronics, vol. 8, p. 957, 2019.

3163

